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Abstract: Soil Organic Carbon (SOC) is one of the key indicators of land degradation. SOC positively
affects soil functions with regard to habitats, biological diversity and soil fertility; therefore, a
reduction in the SOC stock of soil results in degradation, and it may also have potential negative
effects on soil-derived ecosystem services. Dynamical models, such as the Rothamsted Carbon
(RothC) model, may predict the long-term behaviour of soil carbon content and may suggest optimal
land use patterns suitable for the achievement of land degradation neutrality as measured in terms of
the SOC indicator. In this paper, we compared continuous and discrete versions of the RothC model,
especially to achieve long-term solutions. The original discrete formulation of the RothC model was
then compared with a novel non-standard integrator that represents an alternative to the exponential
Rosenbrock–Euler approach in the literature.
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1. Introduction

The United Nations Convention to Combat Desertification (UNCCD) is an interna-
tional agreement, established in 1994, that links the environment and development with
sustainable land management. The first objective indicated in the UNCCD 2018–2030
Strategic Framework is to improve the conditions of affected ecosystems, combat desertifi-
cation/land degradation and promote sustainable land management [1]. For each country,
the commitment is to achieve no net loss of land-based natural capital by 2030 [2]. No net
loss means that the quantity and quality of land-based natural capital are maintained or
increased, despite the impacts of global environmental change, whether due to human or
natural causes. Land degradation is monitored through the changes of the values of a spe-
cific set of consistently measured indicators from their baseline quantities, conventionally
identified as their initial values. The deviations from the baseline values of these indicators
are the basis for monitoring land degradation.

Soil Organic Carbon (SOC) is one key indicator of land degradation [3]. Monitoring
the SOC stocks and the loss of soil organic carbon due to land use changes is fundamental
for maintaining the physical, chemical and biological quality of soil [4]. Soil organic
carbon positively affects soil functions with regard to habitats, biological diversity, soil
fertility, crop production potential, erosion control and water retention. A high SOC content
improves the processes of soil formation, nutrient storage, water holding capacity and the
absorption of organic or inorganic pollutants. Thus, a reduction of the SOC stock not only
indicates soil degradation, but may also have potential negative effects on soil-derived
ecosystem services.

Starting from the SOC baseline, predictive spatial modelling can simulate the car-
bon dynamics, estimate carbon sequestration under the actual land use and evaluate the
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deviation from the baseline average value of total carbon [5]. Moreover, a dynamical
model may determine the optimal potential land use pattern that is suitable to achieve
land degradation neutrality in terms of SOC indicator values. Well-validated models,
such as Rothamsted Carbon (RothC) [6], CENTURY [7] and MOMOS [8], which take into
account the interactions among the climate, pedology, cropping systems and soil and crop
management, can be used to predict SOC changes under different management practices
and climatic conditions. These models are essentially compartmental, meaning that they
represent soil organic matter as a few discrete compartments (generally two to five) charac-
terized by different chemical characteristics of the soil’s degradation. The decomposition
rates, applied to each compartment, are governed by kinetic and stoichiometric laws and
are mainly ruled by the environmental conditions (e.g., soil moisture level, aeration and
soil temperature). These models are used in a variety of ways and often for long-term
studies. Indeed, being able to compute and predict long-term solutions is extremely valu-
able for various reasons: it gives a synthetic view of the system in the given agro-climatic
conditions; it makes it possible to test if a studied soil has reached equilibrium or not;
and it allows envisioning what would be the consequences of specific events on a given
soil [9]. In this paper, we compared continuous and discrete versions of the RothC model,
especially regarding long-term solutions. Moreover, since the discrete RothC version can
be interpreted as a first-order approximation of the continuous model, we introduced a
non-standard discrete approximation that can be interpreted as a novel discrete model
of soil carbon dynamics. The original discrete formulation of the RothC model was then
compared to the novel non-standard integrator, which represents a different approach with
respect to the Exponential Rosenbrock–Euler (ERE) discretization [10].

2. Rothamsted Carbon Model—Continuous Formulation

The SOC indicator is considered to be the result of the equilibrium between the inputs
and outputs of the soil system. SOC contained in the organic matter is constantly built
up and decomposed and is then released into the atmosphere as CO2 and recaptured
through photosynthesis. Inputs in the soil organic matter decomposition model consist
of two major components: living organisms’ biomass (mainly plant roots and microbial
biomass) and plant and animal residues at various stages of decomposition. Outputs result
from the heterotrophic respiration processes when soil organic carbon is used as an energy
source by soil organisms and returned to the atmosphere as CO2 fluxes. The Rothamsted
Carbon model [6,11] (RothC) is a model of carbon turnover in non-waterlogged soils [12].
Initially developed for arable soils, it was later expanded to grasslands and forests. It takes
into account the effects of temperature, moisture content and soil type. The RothC model
divides the soil carbon into four active compartments and one inactive, characterized by
different chemical decomposition rates of degradability (see Figure 1). The Inert Organic
Matter (IOM) represents the inactive pool, resistant to decomposition, which does not
receive carbon (C) inputs. At each time step, incoming plant residues are split between
easily Decomposable Plant Material (DPM) and Resistant Plant Material (RPM), depending

on the ratio
γ

1− γ
, which estimates the decomposability of the particular plant material

inputs, which in turn depends on the specific cultivation being considered. The fraction
2 η of the input of Farmyard Manure (FYM), if any, is equally split between the DPM and
RPM compartments; the remaining part 1 − 2 η enters in the system directly as Humified
organic matter (HUM). Both DPM and RPM decompose to form CO2, microbial Biomass
(BIO) and more HUM. The fraction α + β of metabolised C incorporated into the sum of
compartments BIO+HUM is determined by the clay content of the soil, while the remaining
part 1− α− β is released as CO2 and lost by the system. The BIO+HUM carbon content

is then split into
α

α + β
percent BIO and

β

α + β
percent HUM. Finally, both BIO and HUM

decompose to form more CO2, BIO and HUM.
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Figure 1. Flow diagram of the Rothamsted Carbon (RothC) model. FYM, Farmyard Manure; DPM, Decomposable Plant
Material; RPM, Resistant Plant Material; BIO, microbial Biomass; HUM, Humified organic matter; IOM, Inert Organic Matter.

The four active compartments undergo decomposition as a function of different rate
constants, which correspond to the entries of the vector k = [kdpm, krpm, kbio, khum] and of
the rate modifier ρ(t), which depends on the clay content of the soil, on climatic variables
(rainfall, temperature, open pan evaporation) and land cover.

In real soil systems, processes involved in the RothC model are continuous in time,
and thus, in [10], the author proposed the following continuous formulation:

ċ = ρ(t) A c + b(t), c(t0) = c0 ≥ 0 (1)

where c(t) = [cdpm(t), crpm(t), cbio(t), chum(t)]T and c0 ≥ 0 denotes the vector of the initial
concentrations. The matrix A is given by:

A =



−kdpm 0 0 0

0 −krpm 0 0

α kdpm α krpm (α− 1) kbio α khum

β kdpm β krpm β kbio (β− 1) khum


.

The vector b(t) represents the carbon amount entering the system at time t. It consid-
ers both the input of plant residues g(t) a(g) and the input of FYM f (t) a( f ), so that:

b(t) := g(t) a(g) + f (t) a( f ).

The entries of vectors a(g) := [γ, 1 − γ, 0, 0]T and a( f ) := [η, η, 0, 1 − 2 η]T are the
fraction inputs 0 ≤ γ ≤ 1, 0 ≤ η ≤ 1/2, which sum up to one; the carbon of plant
residues enters the soil only through the DPM and RPM compartments, while the carbon
amount of FYM enters through the DPM, RPM and HUM compartments.

It can be shown that, under the hypothesis 0 < α + β ≤ 1 and ρ(t) > 0, the solution
of the homogeneous part of the RothC system (1) with non-negative initial data verifies the
more general assumptions stated in [13,14] for biochemical systems, which ensure the well-
posedness and positivity of the solution. Comparison theorems guarantee the positivity of
the solution of the complete RothC system when g(t), f (t) are assumed positive.
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Definition 1. We define as the SOC indicator of the continuous RothC model (1) the function
SOC(t) = ciom + cdpm(t) + crpm(t) + cbio(t) + chum(t) for t ≥ t0, where ciom denotes the
constant carbon content in the compartment IOM.

Theorem 1. Let α, β > 0 and δ := 1− α − β > 0; suppose 0 < g(t) + f (t) ≤ B and ρ(t) are
uniformly bounded from below by a constant µ > 0. The set:

Ω =

{
(cdpm, crpm, cbio, chum) ∈ R4

+ : 0 ≤ (cdpm + crpm + cbio + chum) ≤
B

µ δ kmin

}
with kmin = mini k(i) is positively invariant and globally attractive for Model (1).

Proof. By denoting ω(t) = SOC(t) − ciom, from System (1), and recalling that eT a(g) =
eT a( f ) = 1, we can show that:

ω̇ = eT ċ = ρ(t) eT A c + g eT a(g) + f eT a( f ) = g(t) + f (t) − ρ(t) δ kT c (2)

where e = [1, 1, 1, 1]T . Consequently,

ω̇ ≤ g(t) + f (t) − ρ(t) δ kmin ω ≤ B − µ δ kmin ω

so that:

ω(t) ≤ B
µ δ kmin

−
[

B
µ δ kmin

−ω(t0)

]
e−µ δ kmin (t− t0).

Therefore, if ω(t0) ≤
B

µ δ kmin
, then ω(t) ≤ B

µ δ kmin
, with Ω, resulting in a positively

invariant set for model (1). Moreover, if ω(t0) ≥
B

µ δ kmin
, then limt→∞ ω(t) ≤ B

µ δ kmin
and Ω is globally attractive for Model (1).

Under the hypothesis of Theorem 1, the set:

ΩSOC =

{
SOC ∈ R+, ciom ≤ SOC ≤ ciom +

B
µ δ kmin

}
is globally attractive for the SOC model:

˙SOC = eT ċ = ρ(t) eT A c + g(t) + f (t). (3)

Finally, to complete the understanding of the mathematical features of the RothC
model, we provide the following theorem:

Theorem 2. Suppose g(t) and f (t) are integrable on every finite subinterval of [t0,+∞). If

α + β = 1, then SOC(t) = SOC(t0) +
∫ t

t0

(g(s) + f (s)) ds.

Proof. Under the assumption α + β = 1, the unit vector e ∈ ker(AT). We have ˙SOC =
eT ċ = ρ eT A c + g eT a(g) + f eT a( f ) = g + f .

Long-Term Solutions

When the RothC model is used in real application, the first step is to run the model to
equilibrium to calculate the required carbon inputs needed to match the initial SOC content
measured. Hence, being able to compute and predict the long-term solution are extremely
valuable in order to avoid long-run simulations, which can lead to numerical artefacts if
numerical tools are not properly used [15].

We firstly consider the (unrealistic) case when no CO2 release (i.e., α + β = 1) is con-
sidered.
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Theorem 2 indicates that:

• if there is no external carbon input (g = f = 0), then the SOC indicator is a linear
invariant for the SOC model (3);

• if the carbon input g + f is replaced by its average value ĝ + f̂ , then SOC(t) grows
linearly in time;

• if g(t) and f (t) are integrable on every finite subinterval of [t0,+∞) and the im-
proper integral

∫ +∞
t0

(g(s) + f (s)) ds converges to its value C∞, the indicator SOCR(t)
increases in time tending to the finite amount SOC∗ := SOC(t0) +C∞ (steady-state so-
lution);

• if both g(t) and f (t) are integrable on every finite subinterval of [t0,+∞) and
∫ t

t0
(g(s) +

f (s)) ds is a bounded periodic function of period T, then SOC(t) oscillates indefinitely
with period T (periodic solution).

Theorem 3. Suppose α, β, δ > 0 with α + β < 1 and k(i) > 0, i = 1, . . . 4. For ρ, g, f , not
varying with time, the RothC model admits a unique positive globally stable equilibrium, which has
the following expression:

c∗cont =
1
ρ

[
g γ + f η

kdpm
,

g (1− γ) + f η

krpm
,
(g + f )α

kbio δ
,

f (1− α)(1− 2 η) + β(g + 2 f η)

khum δ

]ᵀ
. (4)

Consequently, the SOC indicator has SOC∗cont = ciom + eT ccont as the equilibrium, which

satisfies SOC∗cont ≤ ciom +
f + g

ρ kmin δ
.

Proof. From the assumptions, it follows that 0 < α, β < 1. The eigenvalues of the matrix A
are given by λ1 = −kdpm < 0, λ2 = −krpm < 0, and λ3,4 are the roots of the second0order
polynomial:

λ2 + λ (kbio (1− α) + khum (1− β)) + δ kbio khum

with discriminant ∆(λ) = (α − 1)2 k2
bio + (β − 1)2 k2

hum + 2 kbio khum(α(β + 1) + β −
1) > 0. Consequently, from Descartes’ rule of sign, λ3, λ4 < 0. The matrix A turns out to be

negative definite and admits an inverse. It is trivial to check that det(A) = δ
4

∏
i=1

k(i) > 0.

For constant (positive) values of ρ, g, f , the equilibrium is achieved by solving the linear
system ρ A c = −b, i.e.,

c∗cont = −1
ρ

A−1 b, (5)

with:

−A−1 =
1

det(A)



δ k2,3,4 0 0 0

0 δ k1,3,4 0 0

α k1,2,4 α k1,2,4 (1− β) k1,2,4 α k1,2,4

β k1,2,3 β k1,2,3 β k1,2,3 (1− α) k1,2,3


where we adopted the convention that ki,j,m := k(i) k(j) k(m) with i, j, m ∈ {1, 2, 3, 4}.

Finally, the stability of the equilibrium is guaranteed as A is negative definite.
As concerns the equilibrium of the SOC indicator, first notice that, from (2), it results

that kT c∗cont =
f + g

ρ δ
, then,

SOC∗cont = ciom + eT c∗cont ≤ ciom +
1

kmin
kT c∗cont = ciom +

f + g
kmin ρ δ

.
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When climatic and agricultural variables are considered, the functions ρ(t), g(t) and
f (t) are chosen to be time varying on a periodical basis, and the system defined by c(t) is
expected to tend toward an oscillatory state as t −→ +∞. If we introduce ξ(t) :=

∫ t
t0

ρ(s) ds
for all t ≥ t0, then the solution of (1) is given by:

c(t) = e ξ(t) A c0 + e ξ(t) A
∫ t

t0

e−ξ(s)A b(s) ds. (6)

The study of the eigenvalues of ξ(t) A enables characterizing the solution behaviour.
We can first observe that if the eigenvalues of A ξ(t) are negative, c(t) as t → +∞ does
not depend on initial conditions c0. Secondly, if there exists a periodic solution c(t) with
period T, then c(t0 + T) = c0, and the following theorem holds:

Theorem 4. Assume that ρ(t), g(t) and f (t) are periodic with period T. If α + β 6= 1 and
k(i) 6= 0 for all i ∈ [dpm, rpm, bio, hum], then I − e ξ(t0+T) A is not singular. Starting from:

c0 := (I − e ξ(t0+T) A)−1 e ξ(t0+T) A
∫ t0+T

t0

e−ξ(s)Ab(s) ds

the RothC model admits a (unique) periodic solution.

Proof. From the periodicity of ρ(t), it follows that:

ξ(t + T) =
∫ t+T

t0

ρ(s)ds =
∫ t0+T

t0

ρ(s)ds +
∫ t+T

t0+T
ρ(s)ds = ξ(t0 + T) + ξ(t).

By imposing in (6) that c(t0 + T) = c0, it follows that:

c0 = e ξ(t0+T) A
(

c0 +
∫ t0+T

t0

e−ξ(s)Ab(s) ds
)

. (7)

Under the assumed hypothesis, A is not singular, and consequently, the matrix I −
e ξ(t0+T) A has the inverse. Exploiting the periodicity of b(t) inherited by the periodicity of
both g(t) and f (t), we have that:

c(t + T) = e ξ(t+T) A
(

c0 +
∫ t+T

t0

e−ξ(s)A b(s) ds
)

= eξ(t)A eξ(t0+T)A
(

c0 +
∫ t0+T

t0

e−ξ(s)A b(s) ds +
∫ t+T

t0+T
e−ξ(s)A b(s) ds

)
= eξ(t)Ac0 + eξ(t)A eξ(t0+T)A

∫ t

t0

e−ξ(s+T)A b(s) ds

= eξ(t)Ac0 + eξ(t)A
∫ t

t0

e−ξ(s)A b(s) ds

= c(t).

This proves the periodicity of c(t).

The condition α + β < 1 is always true for the RothC model due to the definition of α
and β (see [6]), and thus, the stock of carbon in each compartment tends towards a periodic
solution in large times whatever the input values are.

Although the continuous approach (1) gives a simple explicit solution, the function
of both the input variables and the parameters of the model, in real applications, first-
order discretized versions are applied. We analyse the original discrete formulation of the
RothC model, the Exponential Rosenbrock–Euler (ERE) version and a novel first-order non-
standard procedure, closer to the classical discrete RothC procedure than the ERE model.
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3. Non-Standard RothC Discrete Models
3.1. Original Discrete RothC

By denoting with I the identity matrix and with

Λ =


0 0 0 0
0 0 0 0
α α α α
β β β β

, D =


kdpm 0 0 0

0 krpm 0 0
0 0 kbio 0
0 0 0 khum


the discrete (monthly) formulation of the RothC Version 26.3 [11] in vectorial form is
given by:

cn+1 = (Λ + (I −Λ) e−∆t ρ(tn)D) cn + ∆t b(tn) (8)

where cn ≈ c(tn) and the discrete temporal grid tn+1 = t0 + n ∆t advances with stepsize
∆t = 1.

Discrete RothC has been applied using data from long-term experiments across several
ecosystems, climate conditions and Land Use (LU) classes. It has been extensively applied
in Europe for SOC modelling, and applications of RothC to a long-term experiment in
semi-arid conditions in Italy can be found in [16,17].

In the case when g(t), f (t) and ρ(t) do not depend on time t, then b = g a(g) + f a( f );
by setting F(∆t) = Λ + (I − Λ) e−∆t ρD, one can demonstrate that, whenever k(i) 6= 0,
(I − F(∆t)) has an inverse, and the system yields a steady-state solution.

Theorem 5. The steady-state solution c∗cont in (5) of the continuous model (1) and the steady-state
solution c∗RothC(∆t) of the discrete RothC model (8) satisfy the following relation:

c∗cont = ϕ(−∆t ρ D) c∗RothC(∆t)

where ϕ(z) = z−1(ez − 1).

Proof. Firstly, evaluate I− F(∆t) = (Λ − I) (e−∆t ρ D − I). From c∗RothC = F(∆t) c∗RothC +
∆t b, one can write:

c∗RothC(∆t) = ∆t (I − F(∆t))−1 b

= ∆t (e−∆t ρ D − I)−1 (Λ − I)−1 b
(9)

From the definition of c∗cont in (5) and by noticing that the matrix A that defines the
continuous problem (1) verifies the relation A = (Λ − I) D, it follows that:

c∗RothC(∆t) = ϕ(−∆t ρ D)−1 c∗cont

As the original discrete RothC model is applied with ∆t = 1, we can estimate the
deviation of the equilibrium of the continuous model with respect to the equilibrium
c∗RothC(1) of the original discrete RothC model. Given the matrix norm ‖ · ‖ induced
by a vector norm, as −ρ D is negative definite, it results that ‖ϕ(−ρ D)‖ ≤ ‖ I ‖ = 1
and ‖c∗cont‖ ≤ ‖ϕ(−ρ D) c∗RothC(1)‖ ≤ ‖c

∗
RothC(1)‖. This indicates that the equilibrium

c∗RothC(1) is, in norm, an overestimation of the theoretical equilibrium c∗cont. The relative
error depends on the stepsize ∆t according to:

‖c∗RothC(∆t) − c∗cont‖
‖c∗cont‖

≤ ‖ϕ(−∆t ρ D)−1 − I‖. (10)
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As concerns the equilibrium of the SOC indicator, it results that:

SOC∗RothC(∆t) = ciom + eT c∗RothC(∆t) = ciom + eT ϕ(−∆t ρ D)−1 c∗cont,

and consequently,

SOC∗RothC(∆t) − SOC∗cont = eT
(

ϕ(−∆t ρ D)−1 − I
)

c∗cont = wT(∆t) c∗cont

where:

w(∆t) =

[
1 − ϕ(−∆t ρ kdpm)

ϕ(−∆t ρ kdpm)
,

1 − ϕ(−∆t ρ krpm)

ϕ(−∆t ρ krpm)
,

1 − ϕ(−∆t ρ kbio)

ϕ(−∆t ρ kbio)
,

1 − ϕ(−∆t ρ khum)

ϕ(−∆t ρ khum)

]
(11)

a vector with positive entries that verifies lim∆t→0 w(∆t) = 0.
Since the original discrete RothC model is applied with ∆t = 1, the deviation of

the SOC∗cont of the continuous model with respect to the equilibrium SOC∗RothC(1) of the
original discrete RothC model is given by SOC∗RothC(1) = SOC∗cont + wT(1) c∗cont, thus
indicating that the evaluation of soil organic carbon by means of the discrete RothC model
is an overestimation of the theoretical value SOC∗cont.

Usually, ρ, g and f vary through time, but it can be assumed that they have a periodic
behaviour. Typically, if the agricultural practices are cyclic and if the weather conditions can
be considered periodic, then ρ = ρ(t), g = g(t) and f = f (t) will also behave periodically.
Assuming that the periodicity of these variables is T = N∆t, one looks for a solution of c
such that c0 = cN . Then, we can write:

cn+1 = (Λ + (I −Λ) e−∆t ρ(tn)D) cn + ∆t b(tn)

for n = 0, . . . N − 2 and then impose the periodic condition cN = c0:

c0 = (Λ + (I −Λ) e−∆t ρ(tN−1)D) cN−1 + ∆t b(tN−1).

Setting Fn := Fn(∆t) := Λ + (I −Λ) e−∆t ρ(tn)D, the above relations can be reformu-
lated as:

0 I 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 I
I 0 . . . 0 0




c0
c1
...
cN−2
cN−1

 =



F0 0 . . . . . . 0

0 F1
. . . . . .

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 FN−1




c0
c1
...
cN−2
cN−1

 + ∆t


b0
b1
...
bN−2
bN−1


which yields:


c0
c1
...
cN−2
cN−1

 = −∆t



F0 −I . . . . . . 0
0 F1 −I . . .
...

. . . . . . . . .
...

...
. . . . . . −I

−I . . . . . . 0 FN−1



−1
b0
b1
...
bN−2
bN−1

, (12)

where bn := b(tn), for n = 0, . . . , N − 1. Equation (12) provides a vector of dimension
4× N and a sequence of states cn = [c(dpm)

n , c(rpm)
n , c(bio)

n , c(hum)
n ]T , n = 0, . . . N − 1, which

characterizes the oscillatory state of the carbon stock in each compartment, keeping track
of the temporal variability of the forcing variables over the period.
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3.2. Exponential Rosenbrock–Euler Model

If we regard the stepping procedure in (8), which defines the original discrete RothC
model as a first-order approximation of the solution of the continuous model (1), then
different discrete RothC models can be formulated. As an example, the discretization
of Equation (1) from tn = t0 + n ∆t to tn+1 = tn + ∆t by means of the exponential
Rosenbrock–Euler model (for non-autonomous systems) [10,18,19] leads to:

cn+1 = e∆t ρ(tn) A cn + ∆t ϕ(∆t ρ(tn) A) b(tn)

= cn + ∆t ϕ(∆t ρ(tn) A) f(tn; cn)
(13)

where f(t; c) := ρ(t) A c(t) + b(t). Notice that A is negative definite, and for z < 0, it
results in 0 < ϕ(z) < 1. In [10], it was shown that A = (Λ− I) D and:

Fn(∆t) = Λ + (I −Λ) e−∆t D ρ(tn) ≈ e ∆t ρ(tn) A, ∆t ϕ(∆t ρ(tn) A) = O(diag(∆t)).

Of course, the approximated solutions via the Exponential Rosenbrock–Euler (ERE)
method (13) differ from the values given by the original discrete RothC model (8); the major
consequence is that the constant discrete steady-state solution, which for the ERE method
coincides with the continuous equilibrium c∗cont, does not depend on ∆t. As concerns its
stability, given A negative definite, it is enough to notice that the eigenvalues of e∆t ρ(tn) A

are positive, but all less than one.
To find periodic solutions via the ERE method, we can generalize the approach

followed for the discrete original RothC model as follows. Suppose that T = N ∆t, and let
us impose that c0 = cN :

cn+1 = e∆tAρ(tn) cn + ∆t ϕ(∆t A ρ(tn)) b(tn)

for n = 0, . . . N − 2 and:

c0 = e∆tAρ(tN−1) cN−1 + ∆t ϕ(∆t A ρ(tN−1)) b(tN−1)

which yields:
c0
c1
...
cN−2
cN−1

 = −∆t



e∆t A ρ(t0) −I . . . . . . 0
0 e∆t A ρ(t1) −I . . .
...

. . .
. . .

. . .
...

...
. . .

. . . −I
−I . . . . . . 0 e∆t A ρ(tN−1)



−1

b̃0

b̃1
...
b̃N−2

b̃N−1

, (14)

with b̃n := ϕ(∆t ρ(tn) A) bn, for n = 0, . . . , N − 1.
The sequence of states cn, n = 0, . . . N − 1 characterizes the oscillatory state of the

carbon stock in each compartment. Of course, the solution differs from the periodic solution
provided in (12).

3.3. Novel Non-Standard Discrete RothC Model

The ERE procedure described in (13) belongs to the more general class of non-standard
finite difference schemes [14,20]. Different first-order non-standard approximations can be
used, depending on the function of the stepsize used to advance the first-order procedure.
Each of them can be considered as discrete RothC models, alternative to the ERE model.

A discrete model, closer to the original formulation of the RothC model, can be
introduced as follows. Consider the discrete formulation of RothC (8). Simple evaluations
lead to the equivalent expressions:

cn+1 = Fn(∆t) cn + ∆t b(tn)

= cn + ∆t ϕ(∆t ρ(tn) Ã) ρ(tn) A cn + ∆t b(tn)
(15)
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where the eigenvalues of the matrix Ã = −A (I −Λ)−1 = −(I −Λ) D (I −Λ)−1 are the
entries of the vector −k, and the columns of:

(I −Λ)−1 =
1
δ


δ 0 0 0
0 δ 0 0
α α β− 1 α
β β β α− 1

 (16)

are the corresponding eigenvectors.
A novel Non-Standard (NS) discrete RothC model is given by:

cn+1 = cn + ∆tϕ(∆t ρ(tn) Ã) f(cn; tn)

= Fn(∆t) cn + ∆t ϕ(∆t ρ(tn) Ã) b(tn)

(17)

Indeed, we can prove that:

Theorem 6. The NS model (17) is a non-standard first-order approximation of the continuous
model (1), i.e.,

∆t ϕ(∆t ρ(tn) Ã) = O(diag(∆t)), for ∆t→ 0.

Proof. From the definition of the exponential matrix, we have that:

∆tϕ(∆t ρ(tn) Ã) =
1

ρ(tn)
Ã−1

(
e∆t ρ(tn) Ã − I

)
=

1
ρ(tn)

Ã−1
∞

∑
j=1

1
j!

(
∆t ρ(tn) Ã

)j

= diag(∆t) +
∆t2

2
ρ(tn) Ã +

∞

∑
j=2

∆tj+1

(j + 1)!

(
ρ(tn) Ã

)j

It follows that ∆tϕ(∆t ρ(tn) Ã) = O(diag(∆t)), for ∆t→ 0.

By comparing the ERE flow (13) with the above non-standard formulation (17), we
notice that the main difference is in the replacement of the matrix A with the matrix Ã,
which has a simple representation in Jordan form. This simplifies the evaluation of the
matrix function ϕ(∆tρ(tn) Ã) because it can be evaluated on the known eigenvalues −k(i)
and eigenvectors in (16).

Moreover, the comparison of the original discrete formulation of the RothC model
(8) with the novel NS procedure (17) allows us to notice that, different from the ERE
method (13), the decomposition dynamic is now treated in the same way as the original
discrete RothC model. The time updating procedure related to the carbon amount entering
the system at time t + ∆t is now evaluated up to a factor given by ϕ(∆t ρ(tn) Ã) , different
from the ERE approximation, which advances evaluating ϕ(∆t ρ(tn) A).

As the ERE method, in the case of constant functions ρ, g, f , the novel method NS has
c∗cont as the steady-state solution.

Theorem 7. Under the hypothesis 0 < α + β < 1, the equilibrium c∗cont of the NS method (17) is
globally stable.
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Proof. It is enough to prove that the eigenvalues of Fn(∆t) = Λ + (I −Λ) e−∆t ρ(tn)D are
in modulus less than one. It is easy to see that two eigenvalues are given by e−∆t ρ(tn) kdpm

and e−∆t ρ(tn) krpm . The others are the eigenvalues of the sub-matrix:

F3,4 =

 α− e−∆t ρ(tn) kbio (α− 1) α− α e−∆t ρ(tn) khum

β− β e−∆t ρ(tn) kbio β− e−∆t ρ(tn) khum (β− 1)


The eigenvalues lie in the union of the two Gershgorin sets:

K1 =
{

z ∈ C : |z − α + e−∆t ρ(tn) kbio (α− 1)| ≤ |β− β e−∆t ρ(tn) kbio |
}

,

K2 =
{

z ∈ C : |z − α + α e−∆t ρ(tn) khum | ≤ |β− e−∆t ρ(tn) khum (β− 1)|
}

.

Notice that F3,4 has positive entries. Set

M = max(F3,4(1, 1) + F3,4(2, 1), F3,4(1, 2) + F3,4(2, 2)); if z ∈ K1 ∪ K2, then |z| ≤ M.

evaluate:

F3,4(1, 1) + F3,4(2, 1) = (α + β) (1− e−∆t ρ(tn) kbio ) + e−∆t ρ(tn) kbio < 1

Similarly,

F3,4(1, 2) + F3,4(2, 2) = (α + β) (1− e−∆t ρ(tn) khum) + e−∆t ρ(tn) khum < 1

Hence it results that the eigenvalue of F3,4 are less than one in modulus.

To search for periodic solutions via the novel non-standard model, we need to solve
the linear system:

−



F0 −I . . . . . . 0
0 F1 −I . . .
...

. . . . . . . . .
...

...
. . . . . . −I

−I . . . . . . 0 FN−1




c0
c1
...
cN−2
cN−1

 = ∆t


b̂0
b̂1
...
b̂N−2
b̂N−1

,

where b̂n := ϕ(∆t ρ(tn) Ã) bn, for n = 0, . . . , N − 1. As already observed, we have the
same coefficient matrix of the system (12), while the knowledge of the explicit Jordan form
of the matrix Ã simplifies the evaluation of the coefficients b̂n.

In the next two sections, we compare the behaviour of the different discrete models
on the evaluation of steady-state and long-term periodic solutions. Firstly, the comparison
is made on a theoretical basis comparing the accuracy of the methods in approximating the
solutions of the continuous model; secondly, we tested both the ERE and the novel non-
standard model with respect to the original discrete RothC model on a classical monthly
time-scale experiment where real measurements were available.

A freely accessible MATLAB routine named NSRothC [21] was implemented to repli-
cate all the simulations presented in the next sections. The package includes two versions.
The first one (contNSRothC) allowed us to run the model with different stepsizes, when
the continuous periodic input functions ρ(t) and b(t) have the particular form presented
in Section 4. In the second version (monNSRothC), the stepsize was fixed to one month,
and the discrete monthly values of input residuals and FYM were required, as well as the
monthly values of weather variables (temperature, rainfall and moisture). As an example,
data from the Hoosfield spring barley experiment [6] were used.
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4. Numerical Tests

Let us compare long-term solutions obtained by using the original discrete RothC
model, the exponential Rosenbrock–Euler method and the novel non-standard first-order
scheme. We set parameters α = 0.1, β = 0.12, γ = 0.59 and η = 0.49. The vector of the
decomposition rates k = [0.8333, 0.0250, 0.0550, 0.0017] and functions ρ(t), g(t) and f (t)
are supposedly expressed on a monthly scale. They vary with the same period T = 12 and
have Gaussian distributions according to:

ρ(t) = aρ +
G(t, µ

(1)
ρ , σ

(1)
ρ )∫ t0+T

t0

G(s, µ
(1)
ρ , σ

(1)
ρ ) ds

b(1)ρ +
G(t, µ

(2)
ρ , σ

(2)
ρ )∫ t0+T

t0

G(s, µ
(2)
ρ , σ

(2)
ρ ) ds

b(2)ρ

g(t) = ag +
G(t, µg, σg)∫ t0+T

t0

G(s, µg, σg) ds
bg, f (t) = a f +

G(t, µ f , σf )∫ t0+T

t0

G(s, µ f , σf ) ds
b f

where G(t, µ, σ) :=
1

σ
√

2 π
e

−
(

t− t0 − µ−
⌊

t− t0

T

⌋
T
)2

2 σ2 for t ≥ t0.

Values aρ = 0.3561, µ
(1)
ρ = T

2 , µ
(2)
ρ = 5 T

6 were set, amplitudes b(1)ρ = 0.9596 and

b(2)ρ = 1.4996 were chosen, while dispersion coefficients were given by σ
(1)
ρ = σ

(2)
ρ =

0.6738. The function ρ(t) in a time-span of three years is shown in Figure 2 on the left.
Values ag = 0, µg = T

2 , bg = 2.7996, σg = 0.9974 define the function g(t), while
values a f = 0, µ f = T

6 , b f = 1.5, σf = 0.1995 define the function f (t). The four
components of the input function b(t) := g(t) a(g) + f (t) a( f ) are depicted in Figure 2, on
the right.

Jan Jun Oct Jan Jun Oct Jan Jun Oct Jan

Months

0.4
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0.8
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1

1.1

1.2

1.3
(t)

Feb Jun Feb Jun Feb Jun Jan

Months

0

0.5

1

1.5
b(t)

b
1
(t)

b
2
(t)

b
3
(t)

b
4
(t)

Figure 2. The function ρ(t) (on the left) and the vectorial function b(t) (on the right) in a three-year
time-span.

4.1. Steady-State Solution

To compare long-time periodic and steady-state solutions, we consider the average
values of ρ(t) and b(t) over one period T:

ρ̂ = aρ +
b(1)ρ

T
+

b(2)ρ

T
= 0.5610,

b̂ =

(
ag +

bg

T

)
a(g) +

(
a f +

b f

T

)
a( f ) = 0.2333 a(g) + 0.125 a( f ) = [0.1989, 0.1569, 0, 0.025]T ,
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and we evaluate the steady-state solution (4) of the continuous RothC model (1):

c∗cont = [0.4254, 11.1867, 1.4887, 61.6253]T . (18)

We recall that both the ERE and the NS method have c∗cont as the steady-state solu-
tion of their discrete flows, and consequently, they provide the value of SOC∗cont as the
equilibrium for soil organic carbon; differently, the steady-state solution of the discrete
RothC model (9) depends on the chosen stepsize ∆t. In Table 1, we report the equilib-
rium solutions c∗RothC(∆t) for decreasing values of the stepsize ∆t. When we proceed
with ∆t = 1, we obtain the original monthly time-stepping procedure, while ∆t = 1/30
represents a daily temporal updating. Notice that, as predicted by the theoretical re-
sults, ‖c∗cont‖2 = 62.6516 ≤ ‖c∗RothC(1)‖2 = 62.695, i.e., the original discrete RothC model
overestimates in norm the theoretical equilibrium value.

The reduction of the temporal stepsize of 1/30 causes approximately the same re-

duction of the absolute errors as
‖c∗cont − c∗RothC(1)‖2

‖c∗cont − c∗RothC(1/30)‖2
= 31.534, with this confirming

the first-order accuracy of the approximation of the steady-state solution. In Figure 3a,

we report the relative errors
‖c∗cont − c∗RothC(∆t)‖2

‖c∗cont‖2
in correspondence of halved stepsizes

starting from ∆t = 1 together with their bounds evaluated in (10). In the same figure, we
report the error on the equilibrium value of SOC normalized respect to c∗cont, i.e.,

SOC∗RothC(∆t)− SOC∗cont
‖c∗cont‖2

= wT(∆t)
c∗cont
‖c∗cont‖2

where w(∆t) is defined in (11), with respect to the same reduction of the stepsize ∆t.

Table 1. Dependence of the steady-state solution of the discrete RothC model on the temporal
stepsize ∆t. The values in each compartment converge, with first-order accuracy, to the entries of
c∗cont = [0.4254, 11.1867, 1.4887, 61.6253]T .

∆t 1 1
5

1
10

1
15

1
20

1
25

1
30

c∗RothC

0.5326 0.4456 0.4354 0.4321 0.4304 0.4294 0.4287

11.2653 11.2024 11.1946 11.1919 11.1906 11.1899 11.1893

1.5118 1.4933 1.4910 1.4902 1.4898 1.4896 1.4894

61.6541 61.6311 61.6282 61.6272 61.6267 61.6265 61.6263

4.2. Periodic Solutions

In these experiments, we compared the periodic solutions provided by the three
discrete models, obtained for the functions ρ(t) and b(t) plotted in Figure 2. Differ-
ent from the evaluation of steady-state solutions, the ERE and the novel NS procedure,
as well as the discrete RothC model provide long-term periodic solutions affected by
their own numerical errors, also depending on the chosen stepsize ∆t. As shown in
Figure 3b, the RothC discrete model provides the worst performance when compared with
the other procedures in terms of errors with respect to the reference solution. In Figure 4,
we plot the related SOC indicator (1) in a one-period time span obtained with the three
discrete procedures applied with reduced stepsizes ∆t = 1, 1/2, 1/4, 1/8. In the same
figure, the reference solution obtained in the long run with the ode45 MATLAB function,
with tolerance set at machine precision, is plotted. Notice that all the methods need to be
applied with a ∆t << 1 in order to have an acceptable level of accuracy when compared
to the reference solution. Again, the original discrete RothC model was confirmed as a
less accurate integrator of the continuous model (1) with respect to both the ERE and
NS models.
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(b)
Figure 3. (a) Relative errors of c∗RothC (blue) and SOC∗RothC (orange) with halved stepsizes, starting from ∆t = 1. The bounds
on the relative error ‖ϕ(∆t ρ D)−1− I‖2 in (10) are also plotted in black. The estimated order of convergence is 1.0037 for the
relative error on c∗RothC and 1.0022 for the relative error on SOC. (b) The log-log plot of the norm two errors of the periodic
solutions of discrete RothC, Exponential Rosenbrock–Euler (ERE) and Non-Standard (NS) schemes, with respect to the
reference solution obtained in the long run with the ode45 Matlab code, at ∆t = 1/2i, i = 2, . . . , 8. The estimated orders of
convergence are 1.0042, 1.0017 and 1.0018 for the discrete RothC, ERE and NS schemes, respectively.

In our second experiment, we started at t0 = 1 with c0 = c∗cont in (18), and we
proceeded until the final time Tf = t0 + 15 T was reached. We recall that the period
was set at T = 12, and we used the monthly, weekly and daily update by setting ∆t = 1,
∆t = 1/4 and ∆t = 1/30, respectively. In Figure 5, we report the values of SOC obtained
for the three different procedures. Two main observations have to be made: first, the initial
value c∗cont corresponding to the equilibrium solution with mean values ρ̂ and b̂ was higher
than the attained value of SOC reference value at Tf when ρ(t) and b(t) were not averaged.
This indicates that the temporal oscillations of ρ(t) and b(t) around their mean values
cannot be neglected when evaluating, through the SOC indicator, the achievement of land
degradation neutrality in the fifteen years from 2015–2030. Second, whatever discrete
model is chosen, a qualitative long-term accordance between an approximate value of the
SOC indicator and its theoretical solution needs, at least, a weekly update procedure.
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Figure 4. Periodic dynamics of the SOC indicator in a one-period span: convergence of approximated solutions to the
reference solution (plotted as a continuous red line) obtained with MATLAB ode45 code, by an increasingly reduction of the
stepsize ∆t.
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Figure 5. Long-term simulation of the SOC indicator over 15 years with the discrete RothC, ERE and NS methods. Stepsizes
are set as ∆t = 1 (1 month), ∆t = 1/4 (1 week) and ∆t = 1/30 (1 day). The reference solution obtained by ode45 with
tolerance at the machine precision is also plotted.
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5. The Hoosfield Spring Barley Experiment

We illustrate the model and test the three methods using data from the Hoosfield
spring barley experiment, one of the classical long-term experiments carried out at the
Rothamster Experimental Station [22]. The same dataset was used as an example of the
use of the RothC model in [6]. The Hoosfield experiment was conducted from 1852 till
2000. Spring barley has been grown continuously in the whole period, except in the
years 1912, 1933, 1943 and 1967, when the experiment was fallowed to control weeds.
The initial SOC content in the soil at 1852 was measured as 33.8632 t C ha−1, split out in
the soil compartments in the following way: 2.7 t C ha−1 in IOM, 0.1533 t C ha−1 in DPM,
4.4852 t C ha−1 in RMP, 0.6671 t C ha−1 in BIO and 25.8576 t C ha−1 in HUM.

The ρ function was estimated on a monthly basis from the weather dataset in [6],
including average monthly air temperature, monthly open pan evaporation and monthly
rainfall. It was also affected by the percentage of clay in the soil (23.4% in Rothamsted soil)
and by the monthly soil cover factor (covered or fallow). Assuming that the soil was covered
only from April to July for each crop year, the ρ function assumed the values in Table 2.
The other parameters of the model were set as α = 0.10, β = 0.12, γ = 0.59 and η = 0.49.
Moreover, the monthly decomposition rate vector k = [0.8333, 0.0250, 0.0550, 0.0017]
was considered.

Table 2. Monthly values for ρ for the Hoosfield spring barley experiment, estimated from weather data in [6], clay content
of 23.4% and soil cover factors in crop and fallow years.

Jan. Feb. Mar. Apr. May Jun. July Aug. Sep. Oct. Nov. Dec.

ρ(tn)
Crop years 0.3561 0.3723 0.5068 0.4471 0.7473 0.7779 0.2491 0.4151 0.6570 1.1277 0.6092 0.4594

ρ(tn)
Fallow years 0.3561 0.3723 0.5068 0.7451 1.2454 1.2965 0.4151 0.4151 0.6570 1.1277 0.6092 0.4594

Three different scenarios were simulated with the three numerical methods analysed
in Section 3, and the results were compared with direct observations of SOC quantity in
the soil in 1882, 1913, 1946, 1975, 1982 and 1987:

Scenario 1. Unmanured treatment: For this scenario, the annual input of plant residuals
was calculated to be 1.60 t C ha−1 y−1, distributed as in Figure 6, in every year except
in those that were fallow. For these years, a null plant residuals input was considered.
In this scenario, FYM input was zero.

Scenario 2. Farmyard manure: The second treatment included inputs from both plant
residuals and FYM, as scheduled in Figure 7. The annual input of plant residuals
was calculated to be 2.8 t C ha−1 y−1, greater than the one in Scenario 1, due to the
farmyard treatment.

Scenario 3. Mixed treatment, farmyard manure till 1871: In this scenario, farmyard ma-
nure was assured every February till 1871 and nothing thereafter. This caused an
annual plant residual input equal to 2.8 t C ha−1 y−1 from 1852 till 1876 and equal
to 1.60 t C ha−1 y−1 in the following years, except for the fallow ones. Input data are
shown in Figure 8.
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Figure 6. Hoosfield barley experiment. Scenario 1: unmanured treatment.

Figure 7. Hoosfield barley experiment. Scenario 2: farmyard manure annually (two times in 1931).

Figure 8. Hoosfield barley experiment. Scenario 3: farmyard manure 1852–1871 and nothing thereafter.

Figures 9–11 show the modelled data for total soil organic C in the three treatments,
together with the measured data. The modelled results for Scenario 3 when the treatment
considered FYM for only the first twenty years were considerably lower than the measure-
ments; agreement was closer with the other two treatments (Scenarios 1 and 2). To test
the models’ ability to predict the achievement of land degradation neutrality, note that all
the simulations gave results in agreement with measured data, i.e., the loss of neutrality
in 2000 for Scenario 1 and the achievement of neutrality for Scenario 2 with respect to
the initial value in 1852. Measurements indicated the achievement of land degradation
neutrality also for Scenario 3; in this case, however, the three models failed in predicting
for SOC(2000) a value lower than the initial one, i.e., SOC(1852) = 33.80 t C ha−1.

1860 1880 1900 1920 1940 1960 1980 2000

Year

27

28

29

30

31
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35
SOC

RothC
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NS

Data

Figure 9. Hoosfield barley experiment. Scenario 1: unmanured treatment. Organic C in soil data
(red bullets) modelled by the RothC (8), ERE (13) and NS (17) methods in the temporal horizon
[1852, 2000] with ∆t = 1. According to Table 3, ERE approximation shows the best performance with
respects to both the statistical indicators RMSE and modelling Efficiency (EF).
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Figure 10. Hoosfield barley experiment. Scenario 2: farmyard manure annually. Organic C in soil
data (red bullets) modelled by the RothC (8), ERE (13) and NS (17) methods in the temporal horizon
[1852, 2000] with ∆t = 1. According to Table 3, RothC approximation shows the best performance
with respect to both the statistical indicators RMSE and EF.
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Figure 11. Hoosfield barley experiment. Scenario 3: farmyard manure 1852–1871 and nothing there-
after. Organic C in soil data (red bullets) modelled by the RothC (8), ERE (13) and NS (17) methods in
the temporal horizon [1852, 2000] with ∆t = 1. According to Table 3, RothC approximation shows
the best performance with respect to both the statistical indicators RMSE and EF.

To assess the performance of the discrete models and compare measured and simu-
lated valued, as in [16], we used two well-known statistical indices: RMSE (Root Mean
Squared Error) and EF (modelling Efficiency):

RMSE =

√√√√ 1
N

N

∑
i=1

(Oi − Si)
2 EF = 1−

N

∑
i=1

(Oi − Si)
2

N

∑
i=1

(
Oi −O

)2

where Oi and Si are observed and simulated SOC at the ith value, O is the mean of the
observed data and N is the number of observations. The closer the RMSE is to zero, the
better the simulated solution describes the data. EF can range from −∞ to one, with the
best performance at EF = 1. Negative values of EF indicate that the observed mean is a
better predictor than the model.
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The results of the evaluation of the above indicators related to the three discrete models
applied to approximate Hoosfield barley experiments data for the three different scenarios
are reported in Table 3. The obtained values confirm that Scenario 3 was the worst case,
i.e., the case when simulated data were more different from the measurements. The three
discrete models provided similar values for the simulation of the three different treatments,
and we could not select a method that clearly outperformed the others. However, from
Table 3, we could set the ERE model as the best model for Scenario 1, while the RothC
model provided better results for both Scenarios 2 and 3. Comparing the indicators for all
scenarios with respect to the approximation of the experimental data, the minimum value
of RMSE = 1.1596 was assumed by the ERE model in Scenario 1, while the maximum
value of EF = 0.9609 was assumed by the RothC method in Scenario 2.

Table 3. RMSE and EF statistical indices for evaluating and comparing the performances of the RothC, ERE and novel
non-standard NS models.

Scenario 1 Scenario 2 Scenario 3

RothC ERE NS RothC ERE NS RothC ERE NS

RMSE 1.1665 1.1596 1.1599 3.5406 3.6029 3.5961 4.5772 4.6310 4.6254
EF 0.7318 0.7350 0.7348 0.9609 0.9595 0.9597 0.2564 0.2388 0.2406

6. Conclusions

Soil organic carbon is one of the key indicators of land degradation status. In this
paper, we analysed the RothC model, a simple tool developed for predicting the dynamic
evolution of the content of soil organic carbon under the effect of weather conditions and
land use data. Both the continuous version, based on a linear, non-autonomous differential
system, and the original discrete monthly time-stepping procedure were considered. The
aim of our study was to compare the qualitative analysis of both continuous and discrete
dynamics in approximating steady-state and long-term periodic solutions. We focused
on these aspects since they provide the information concerning the possible achievement
of land degradation neutrality. We found that the steady-state solutions of the original
discrete model were first-order accurate approximations of the steady-state solutions of
the continuous differential model. The accuracy of the approximation represents the
main weakness of the RothC discrete model when considered as a first-order accurate
approximation of its continuous version. We point out that well-established numerical
procedures such as, for example, the Exponential Rosenbrock–Euler (ERE) method, have,
by construction, the same equilibria of the approximating differential system. Conversely,
the discrete RothC model overestimates the steady-state equilibrium of the continuous
flow, so that, in order to obtain the correct estimate with first-order accuracy, we have
to reduce the stepsize of the updating time procedure. This fact may have a negative
effect in real applications. It is necessary to run the RothC model to equilibrium first,
in order to align the initial content of soil organic carbon with the measured one [6].
Nevertheless, the good matching of real data and numerical approximations, together
with the available implementation in the RothC 26.3 open-source interface [6], justifies the
wide use in the literature of the original discrete RothC model and explains the lack of
use of more accurate numerical integrators. For this reason, in this paper, our additional
objective was to propose a novel non-standard first-order procedure, the so-called NS
discrete model, able to approximate the decomposition dynamics in the same way as the
original discrete RothC model. This procedure features the same steady-state solution of
the continuous model and exhibits a computational cost lower than the one required by
the ERE time-stepping procedure. We also provided a simple code that implements both
the original discrete RothC model and the monthly time-stepping NS and ERE models
in a MATLAB environment. That allows the reproduction of our results and facilitates
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future comparisons among all the approaches. The discrete models were firstly tested
on a hypothetical example as first-order accurate numerical integrators, and secondly,
they were tested on the classical Hoosfield barley experiment to evaluate their ability in
reproducing observed data. If we consider the discrete RothC model as a difference scheme,
which approximates the continuous RothC differential system, numerical tests showed its
coarseness with respect to both the ERE and NS procedures. When applied to the Hoosfield
barley experiment, the three discrete models provided very similar results. However, the
evaluation of the statistical error indicators still revealed the discrete RothC model as the
best scheme for approximating real data in both Scenarios 2 and 3, while the ERE model
outperformed the discrete RothC and the novel procedure in Scenario 1. In predicting the
long-term behaviours, which are useful to establish the achievement of land degradation
neutrality, the three discrete models failed in giving results in accordance with theoretical
values in our hypothetical test, as well as with real data in the case of Scenario 3 of the
Hoosfield spring barley experiment. This motivates our future research to consider more
complex SOC dynamics. In particular, we will analyse the MOMOS model [23,24], which
puts the microbial community at the centre of all transformation processes in the cycle of
organic matter, from assimilation by degradation to loss by mineralization. Further analysis
will also consider nonlinear SOC dynamics [25,26] and spatially explicit models described
by partial differential equations [27,28] in order to deal with real domains, as protected
areas, covered by non-homogeneous land use patterns. Finally, using field measurements
and remote sensing information for modelling land degradation will significantly improve
the obtained results [29]. The final aim is to select and provide a robust modelling tool
for evaluating the trends of SOC stocks in the Alta Murgia National Park, where the
achievement of land degradation neutrality is hampered by a combination of anthropic
pressures and climate change [30–32].
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