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1. Introduction

In topological dynamics, the topological entropy of a dynamical system measures the
information in orbits, by counting the exponential growth rate of different partial orbits
with a certain of accuracy. One example of a dynamical system is a subshift, a dynamical
system whose points are infinite words over a finite alphabet A, and the dynamics is the
left shift. One-way entropy can arise in a subshift when, somewhere in partial orbits, we
literally see all distinct words An up to n. One may ask to what extent entropy always
arises from such “free choices”.

Two formal notions that most directly capture this idea are the independence entropy of
a subshift and independence sets. The former measures how much entropy comes from “set-
theoretic hyperrectangles”, namely sets of the form A1 × A2 × · · · An which are contained
in the language of the subshift as n → ∞, where Ai ⊆ A are any subsets of the alphabet
and we consider consecutive letters only, see [1], (p. 303) for the precise definition. Positive
entropy does not imply positive independence entropy (see Proposition 1).

Independence sets, on the other hand, are defined similarly in [2,3], but we allow
gaps between the positions where the prescribed letters appear, and there is no constraint
on the words seen in the gaps between the positions. More precisely, in the case of a
subshift X with a binary alphabet A = {0, 1}, an independence set is a set N ⊆ N such that
X|N = {0, 1}N . It turns out that the existence of an independence set of positive lower
asymptotic density does capture positive entropy, see [2,3] for a proof in this binary subshift
case, and [4–6] for analogous results in more general settings.

The following theorem gives a new proof of this result (see Corollary 1), but it is
stronger, as there is an additional constraint on how the independent choices must be
realized. It also applies in the case of a general alphabet.

Theorem 1. A subshift X ⊆ AN has positive entropy if and only if it contains a steadily branching
binary tree.

We can interpret AN as the boundary of an |A|-ary tree and X a closed subset of this
boundary. A closed subset of the boundary of a tree is determined by finite subpaths in
the tree, and it is in this sense that X contains the binary tree. Steadily branching means
that the embedded binary tree branches at a uniform sequence of times which form a set of
positive lower asymptotic density. A formal definition is given in Section 3.

Positive entropy refers to topological entropy, and in the context of subshifts, means
the exponential growth of the number of words. Countable subshifts can have a growth
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rate arbitrarily close to exponential (see Proposition 2), but clearly contain trees with only
finitely many branchings. Thus, if we weaken the assumption of positive entropy, the
existence of a steadily branching binary tree can fail in a very strong sense.

It is also easy to find examples with positive entropy where it is not possible to find
a tree where branchings happen a syndetic set of times (see Proposition 3). There are
also examples where no individual tree which branches at a uniform sequence of times
“captures” all of the entropy, as can be seen from [1], (Example 2). These remarks show that
we cannot expect to essentially improve the conclusion about the tree under the assumption
of positive entropy.

The proof of Theorem 1 is straightforward using the standard results about the win-
ning shift, which is the set of winning turn orders in a certain word-building game asso-
ciated to X. The winning shift is known to have the same entropy as X. This implies it
has a point with positive density, and this point is the branching structure of a steadily
branching tree in X. This note is simply a self-contained elaboration of this deduction.
I give a combinatorial proof directly from the definitions, and also include an ergodic
theoretic proof.

It is easy to deduce a two-sided version of the result as well. For x ∈ A−N and y ∈ AN,
write x · y ∈ AZ for the configuration with x and y back to back.

Theorem 2. A subshift X ⊆ AZ has positive entropy if and only if for some x ∈ A−N, the set
{y ∈ AN : x · y ∈ X} contains a steadily branching binary tree.

The winning shift was introduced in [7], and has also been studied in [8]. We found out
while working on [8] that a concept equivalent to the winning shift was discovered in the set
systems setting already in 2002 [9] (even if ostensibly only for binary words), and I found
out while working on the present paper that [9] has been applied by dynamicists [2,3]
(this paper is independent from [7], but almost contemporary), and their proof that this
gives large independence sets essentially boils down to the same proof as I give here.
Nevertheless, I feel that though Theorem 1 is an interesting statement about subshifts,
to our knowledge the statement does not appear in the literature, and its proof through
winning shifts is worth making explicit. Furthermore, unlike Theorem 1, the statement
about independence sets does not trivially generalize to non-binary alphabets.

As discussed, I obtain a new proof of the fact entropy implies the existence of certain
types of independence sets in the case of a binary alphabet.

Corollary 1. Let X ⊆ {0, 1}N be a subshift. Then, X has positive entropy if and only if it has an
independence set of positive lower asymptotic density.

Again, I mention that this result is proved in [2,3], and that generalizations appear
in [4–6]. To our knowledge, the first reference where the Sauer-Shelah lemma appears in a
dynamics context is [4]. The most naive generalization of Corollary 1, the existence of a high
density set N with X|N = AN , fails for a non-binary alphabet A (even for trivial reasons,
by artificially increasing the alphabet of the subshift). However, one can state an equivalent
condition for having higher entropy in this way [10], (Theorem 8.3), [3], (Theorem 2). (The
non-trivial direction of this equivalence also appears in [7], (Proposition 5.9)).

As I show in this note, winning shifts say something stronger than Corollary 1 in
the case of one-dimensional subshifts, but it is not clear how to generalize them to other
settings, at least in a way that allows seeing them naturally as a dynamical system.

Question 1. Does every expansive system of positive entropy contain a steadily branching binary
tree (and what does that even mean)? More generally, can the notion of winning shift be extended
to general (expansive) systems? Group/monoid actions?

The webpage www.theproofistrivial.com (accessed on 28 November 2016) is an online
resource that suggests high-level proof strategies in a variety of mathematical domains.

www.theproofistrivial.com
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The present note was inspired by the following quote from this webpage: “The proof is
trivial! Just view it as a rational metric space whose elements are countable combinatorial
games.” The page was accessed during the Combinatorics, Automata and Number Theory
conference that took place between 28 November 2016 and 2 December 2016.

2. Definitions

Let N 3 0 be the natural numbers. An alphabet is a finite set A. Words are elements of
the free monoid generated by A, denoted by A∗. Elements of A are seen as belonging to A∗

when convenient, u · v denotes the multiplication in the free monoid (formal concatenation).
The length |w| of a word is defined in the obvious way. Write An = {w ∈ A∗ : |w| = n}.

The set AN, for a finite alphabet A (or later AZ), always carries the product topology,
and it is homeomorphic to Cantor space if |A| ≥ 2. A subshift is a closed subset of AN for a
finite alphabet A (or later AZ) satisfying σ(X) ⊆ X where σ is the shift σ(x)i = xi+1. The
words of a subshift X ⊆ AN are the words w ∈ A∗ such that x|[0,|w|−1] = w for some x ∈ X.
The words of a subshift form its language. Writing Ln for the intersection of the language
of X with An, the (topological) entropy of a subshift X is the exponential growth rate of the
number of words, h(X) = limn→∞

log |Ln |
n (which exists by the subadditivity of log |Ln|).

The lower asymptotic density of N ⊆ N is lim infk
|N∩[0,k−1]|

k .
Two subshifts X ⊂ AN, Y ⊂ BN are topologically conjugate if there is a shift-commuting

homeomorphism φ : X → Y. A subshift is countable if it countably has many points. A set
N ⊆ N is syndetic if N ⊆ N + [−n, n] where + denotes the Minkowski sum.

3. The Winning Shift

For z, b ∈ NN, denote z ≤ b ⇐⇒ ∀i : zi ≤ bi.

Definition 1. Let A be a finite alphabet and let X ⊆ AN. A tree in X with branching structure
b ∈ NN is a set of sequences (xz)NN3z≤b where each xz is an element of X, and:

xz
[0,i) = xz′

[0,i) ⇐⇒ z[0,i) = z′ [0,i).

A steadily branching binary tree is a tree with branching structure b ∈ {0, 1}N satisfying

lim infi→∞
∑i−1

j=0 bj

i > 0.

In other words, for distinct sequences z, z′ ∈ NN, the first position where xz and xz′

differ is the same as the first position where z and z′ differ. For binary b, this means that
the nonzero positions in b are the positions where our tree must branch in two, and more
generally, bi = n means the tree must branch n times in position i, explaining why we call
this sequence a branching structure. Note also that if X ⊆ AN and X contain a tree with
branching structure b ∈ NN, then necessarily bi ≤ |A| − 1 for all i ∈ N.

Definition 2. Let X ⊆ AN be a subshift. Let W(X), the winning shift of X, be the set of all
branching structures of trees in X.

This is defined in a game-theoretic framework in [7]: a tree in X with branching
structure z can be interpreted as a winning strategy for the first player in a word-building
game where on the ith turn, the first player picks a set of zi + 1 symbols, then the second
picks one of them, and the first player wins if the word obtained in the limit is in X.

It is shown in [7] that the winning shift is indeed a subshift. A subshift Y ⊆ NN is
hereditary [6] if for all y′ ∈ NN we have:

(y ∈ Y ∧ ∀i : y′i ≤ yi) =⇒ y′ ∈ Y.
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The following fact is Proposition 5.7 of [7] (the hereditarity claim is trivial). The
notation differs slightly, in the reference W̃(X) is used for what we call W(X), and their
W(X) is the same as ours in the binary case, but differs in general.

Lemma 1. The subshift W(X) is hereditary and has the same number of words of each length as X.

Proof sketch. The hereditarity claim is trivial. For the claim about words, one can define
W(L) for L ⊆ An analogously to the subshift case (using finite trees). Letting L ⊆ An be
the language of X intersected with An, W(L) is the language of W(X) intersected with An.
Now, we write L = 0L0 t 1L1 t · · · t (k− 1)Lk−1 and exchange a suitable sum:

|W(L)| =
∣∣{i · w : |{j : w ∈W(Lj)}| > i}

∣∣
= ∑

i
∑

w∈An−1
|{j : w∈W(Lj)}|>i

1

= ∑
w∈An−1

|{j : w∈W(Lj)}|−1

∑
i=0

1

= ∑
w∈An−1

|{j : w ∈W(Lj)}|

= ∑
j
|W(Lj)| = ∑

j
|Lj| = |L|.

The first equality is true by definition, and the penultimate one by induction.

For a finite word w ∈ N∗, write ∑ w = ∑i wi for the sum of the symbols in w, and |w|
for the length of w as a word. The key to finding steadily branching trees is to study the
density ∑ w/|w| of a word w. If Y ⊆ {0, 1}N is a subshift, by Yk we mean the Cartesian
power with the diagonal action, interpreted in an obvious way as an alphabet over the
alphabet {0, 1}k.

We observe a simple combinatorial lemma.

Lemma 2. If a subshift Y has positive entropy and is hereditary, then for some β > 0 there exist
arbitrarily long words w of Y ∩ {0, 1}N with ∑ w/|w| ≥ β.

Proof. Let {0, 1, ..., k− 1} be the alphabet of Y. Let:

b(Y) = {x ∈ {0, 1}N : ∃y ∈ Y : ∀i : yi 6= 0 ⇐⇒ xi 6= 0}.

Since Y is hereditary, it is easy to see that the number of words in Y of length n is at most
the number of words in b(Y)k of length n. Thus, if Y has positive entropy, so does b(Y)k,
and thus so does b(Y). Suppose thus that the number of words in b(Y) of every length n is
at least αn for some α > 0, as is clearly implied by positive entropy.

The number of words of length n with at most k many 1s is at most:(
n
k

)
2k <

(n · e
k

)k
2k.

Setting k = βn, this becomes (( n·e
βn )

β2β)n and we observe that as β → 0, we have

2β → 1 and ( n·e
βn )

β = ( e
β )

β → 1, so for small enough β > 0, we have ( n·e
βn )

β2β < α, and thus
there must be words of length n in b(Y) with at least βn many 1s, for arbitrarily large n.
These are words of Y ∩ {0, 1}N since Y is hereditary.

This argument appears also in [11] (Theorem 4.8) (this theorem already includes the
statement about lower asymptotic density, which we deduce in the next section).
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4. The Proofs

Proof of Theorem 1. Obviously, a steadily branching tree implies positive entropy.
For the other direction, let A ⊆ N be a finite alphabet and Y ⊆ AN a subshift. Write sn

for the maximal sum ∑ w of a word w of length n in Y. This sequence is clearly subadditive,
so limn→∞ sn/n exists, say limn sn/n = α.

We outline the usual addendum that there must be a configuration y ∈ Y such that
every prefix w of y satisfies ∑ w/|w| ≥ α. Supposing that this is not the case, then every
point X has a prefix w such that ∑ w/|w| < α, and this must happen after a bounded
number of steps by compactness, thus there exists ε > 0 such that for some m, we always
find a prefix w of length at most m in any point y ∈ Y, such that ∑ w/|w| < α− ε. Now,
given any long word w of Y, we can split it as w = w0w1 · · ·wk (where i in wi denotes a
superscript, not a power) with |wk| ≤ m and ∑ wi/|wi| < α− ε for all i < k. If w is long
enough, then since ∑ uv/|uv| ≤ max(∑ u/|u|, ∑ v/|v|) for all words u, v, we have:

∑ w/|w| < α− ε/2

for all long enough words, a contradiction to limn sn/n = α.
Now, we set Y = W(X) and apply Lemma 2. The lemma implies that α > 0 in the

above. The point y ∈W(X) whose density stays above α gives the branching structure of a
steadily branching tree in X.

The “usual addendum” is well known. The author learned it from [12,13] and P.
Guillon; Jeandel attributes it to [14,15], and it also appears in [3,11] where it is attributed
to [16,17].

The point of this note was to provide a combinatorial proof of Theorem 1 from the
first principles, as this is easy to do. However, I have included also the proof using ergodic
theory (see [18] for a basic reference).

Ergodic theoretic proof of Theorem 1. Obviously a steadily branching tree implies posi-
tive entropy. For the other direction, since the winning shift has positive entropy, it admits
an invariant measure µ with positive entropy, thus µ([a]) > 0 for some a > 0. By the
ergodic decomposition there exists such an ergodic measure, and by the pointwise ergodic
theorem, there is a point y ∈ W(X) where the lower asymptotic density of as is positive,
giving the result.

We conclude with the proofs of Theorem 2 and Corollary 1.

Proof of Theorem 2. Let XR ⊆ AN be the subshift of the right tails of points in X and
apply Theorem 1. Let y ∈ {0, 1}N be the branching structure of some steadily branching
tree and α the lower asymptotic density. It is easy to see that for any n, we can find a finite
prefix w of y = wx of a length of at least n such that for all prefixes u of x of length at most
n, ∑ u/|u| ≥ α. Otherwise, by cutting long words into ones of length at most n, as in the
previous argument, we see that the lower asymptotic density is less than α.

The fact we can find such wx as a branching structure implies that the tree corre-
sponding to x can follow at least one word of length |w|. Letting n tend to infinity, by
compactness, we obtain a steadily branching tree that can follow some left tail.

Proof of Corollary 1. Supposing X has positive entropy, let y ∈ W(X) ∩ {0, 1}N have
positive lower asymptotic density. The set N = {n : yn = 1} is an independence set
(which by assumption has positive lower asymptotic density): Suppose (xz)NN3z≤y form a
tree with branching structure y, i.e., we have:

xz
[0,i) = xz′

[0,i) ⇐⇒ z[0,i) = z′ [0,i).
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Supposing that (mi)i∈N enumerates N in order, let Nn = {m0, ..., mn−1}, and for w ∈ {0, 1}n

let zw ∈ {0, 1}N be the characteristic sequence of {mi : i < |w|, wi = 1}. Clearly zw ≤ y
for all w ∈ {0, 1}n. The map:

φ : 2n → {xz|Nn : z ≤ b}

defined by φ(w) = xzw |Nn is injective, because φ(u0v)m|u| 6= φ(u1v)m|u| . Thus, this map is
surjective, giving X|Nn = {0, 1}Nn . By compactness, we have X|N = {0, 1}N .

5. Proofs of Supplementary Claims

In this section, I provide brief proofs for the claims made in the introduction.

Proposition 1. There exists a subshift X ⊂ {0, 1}N with positive entropy, such that every
topologically conjugate subshift Y ∼= X has zero independence entropy.

Proof. By a compactness argument, any subshift X with positive independence entropy
must contain two points which differ in only one position, i.e., ∃x, y ∈ X : x0 6= y0 ∧ ∀i 6=
0 : xi = yi. Positive entropy does not imply the existence of a pair of points with finitely
many differences, see [19], (Theorem 1.3), and clearly this property is preserved under
conjugacy.

Proposition 2. For any function f : N→ N satisfying f (n) = o(an) for all a > 1, there exists a
countable subshift X ⊂ {0, 1}N such that for all large enough n, the number of words of length n
in X is at least f (n).

Proof. The forbidden patterns of X are described as follows: if a finite subword contains n
many 1s, they must be pairwise separated by a distance of at least mn. Here, (mn)n is some
nondecreasing sequence. The number of words of X of length n is at least 2bn/mnc, and if
mn grows slowly enough this stays above f . By the assumption on f we can have mn → ∞,
and it is easy to see that X is then countable, since all its points have finite sum and finite
subsets of N form a countable set.

Proposition 3. There exists a subshift X ⊂ {0, 1}N with positive entropy such that every point in
W(X) contains arbitrarily long subwords of the form 0n.

Proof. If X itself is hereditary, then W(W(X)) = W(X), so it suffices to find a hereditary
X with positive entropy such that every point x ∈ X contains arbitrarily long subwords
of the form 0n. For this, it clearly suffices to find a binary subshift Y where every point
contains the subword 0n for arbitrarily large n, but some configuration contains 1s with
positive lower asymptotic density, as the smallest hereditary subshift containing Y then
has the claimed property: entropy comes from independently flipping the positive density
sequence of 1s, and taking the hereditary closure can clearly only add 0n-subwords to
points. The existence of such Y is folklore, see e.g. [20], (Example 7.3), for an explicit
construction.
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