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Abstract: Automated reasoning is becoming crucial for information systems. Building one uniform
decision support system has become too complicated. The natural approach is to divide the task and
combine the results from different subsystems into one uniform answer. It is the basic idea behind
the system approach, where one solution is a composition of multiple subsystems. In this paper,
the main emphasis is on establishing the theoretical framework that combines various reasoning
methods into a collective system. The system’s formal abstraction uses graph theory and provides
a discussion on possible aggregation function definitions. The proposed framework is a tool for
building and testing specific approaches rather than the solution itself.

Keywords: collective intelligence; inference system; aggregation function; butterfly effect; reasoning
stop condition

MSC: 68T42; 68T05

1. Introduction

There are various types of problems that modern expert systems aim to solve. Some
of them are simple enough that one approach is sufficient to provide adequate solutions.
However, there are a number of problems for which a combination of algorithms or
methods is needed. In such a case, we employ a complex system that either chooses an
appropriate approach based on the insights or combines the outcomes of various methods
into a uniform one. In this paper, we focus on the latter, i.e., systems fitting into the category
of collective intelligence. Among many definitions of collective intelligence, some of the
most often used are “the capacity of human collectives to engage in intellectual cooperation
in order to create, innovate and invent” [1] and “groups of individuals acting collectively in
ways that seem intelligent” [2]. The most common definition comprises deductive systems
as: “A set of rules R and axioms. Since axioms can be viewed as rules without premises,
we assume that a deductive system is a set of rules and a procedure for derivation such
that Γ `L A if and only if A can be derived from Γ by rules R” [3].

The goal of collective intelligence is to provide either decision support or decision
making systems. The difference between those two approaches is slight and relates to the
reliability of the system. If the ultimate goal is to eliminate the human factor, then one of
the options is to employ deductive systems. In that case, the reliability of the system is
derived from the proper configuration of the system and the accuracy of the data provided
to it. Since there is no single system that could produce an output to all types of problems,
commonly, a set of systems is used. In such a case, we might consider a complex system
built from individual subsystems or a multi-agent system. However, utilising multiple
deductive systems may lead to the situation where two or more of them return conflicting
results. Such a situation is not unusual, since most deductive systems use sets of predefined
rules to generate outputs. Those sets may not only have different numbers of elements but
also differ in spite of individual rule definitions; thus, the systems lead to heterogeneous
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outputs. Another reason for the diversity of outputs is the fact that any human involvement
creates the possibility for error to appear. In addition, the deductive systems are most
commonly configured by humans. The number of rules relies on the time the designer can
spend on their definition and the general aim of the system. In the case of a multitude of
deductive systems, they will inevitably differ in details. Thus, for the sake of uniformity, a
collective approach is introduced in this paper. The proposed solution utilises the model
defined in [4], assuming each of the deductive systems as a collective member.

The remainder of the paper comprises, first, a background section that presents state
of the art in the field of deductive systems and collective intelligence. The next section
introduces the formal definition of the collective structure for the deductive systems to
utilise. Further, the properties of such combinations are distinguished and analysed. Then,
we present a discussion on the proposed framework and conclude the paper.

2. Background

This paper is the first work strictly addressing the collectives built from multiple
deductive systems to the best of our knowledge. It has to be stressed out that the authors
are aware of the multi-agent systems. However, they do not consider using deductive
methods for agent definition in most cases. Since our work connects both the collective
intelligence field and deductive systems, we discuss related research in both areas.

2.1. Collective Study

Many authors have proven that approaches based on collectives are an effective
method for forming accurate judgements in an uncertain environment [5–7]. However, it
is hard to find a straightforward answer to the question “why does collective intelligence
work?”. One of the most popular is the Surowiecki explanation [8]. In his work, he
proposed the following properties of a wise crowd [8]:

Diversity: each agent should have some private information, even if it is just an eccentric
interpretation of the known facts.
Independence: the opinions of those around them do not determine agents’ opinions.
Decentralisation of opinion: an agent can specialise on and draw on local knowledge.
Aggregation: some mechanism exists for turning private judgements into a collective
decision.

A multitude of research seems to confirm Surowiecki’s work. Due to Surowiecki’s
background as a journalist, in his work, he mainly focused on human crowds. Nevertheless,
collective intelligence has proven its effectiveness for various types of agents, even artificial
ones [9]. Therefore it is used in many disciplines—e.g., in deep learning where it is called
ensembling [10]. The use of collectives allows us to achieve far more accurate results with
the use of simple solutions.

For the sake of uniformity, Jodłowiec et al. [4] proposed the universal definition of
collective suitable for the identification of its features regardless of the implementation
area. They assumed the collective to be a graph defined as a tuple:

C = (M, E, t) (1)

where

M is a set of collective members;
E is a set of edges;
t is collective target, which can be understood as either a pursued value or a quality.

There exist other approaches to the definition of collectives, such as [11–13]. However,
they lack the flexibility of the aforementioned model. Thus, we decided to rely on the
approach presented in [4].

The model used allows the distinction of the following measure types describing the
collective properties:
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• Distribution metrics (DM)—used to assess the one-dimensional distribution of at-
tribute values among collective members.

• Clustering metrics (CM)—used to analyse multidimensional aspects of attribute
value distribution in the member society.

• Collective’s structure metrics (CSM)—used to analyse the structure of collective
connections.

• Members’ social relations metrics (MSRM)—used to analyse social connections
among members of the crowd.

• Collective information flow metrics (CIF)—used to determine the information flow
(propagation) among members of the collective.

• Collective aggregation function (CAF)—used to transform answers (opinions or
recommendations) given by members of the collective into one unified response.

Each of those metrics is important and provides information crucial for the collective
analysis. However, in the authors’ opinion, the aggregation function is highly underesti-
mated for its role in the study of collective intelligence phenomena.

The diversity of collective structures and aims forces the creation of a variety of
aggregation function types. Inputs and outputs can be distinguished for the functions [14]:

• Aggregation functions whose inputs are of the same types as the outputs;
• Aggregation functions whose inputs are of different types to their outputs.

Beliakov et al. [15] proposed another approach to the aggregation function classifica-
tion, where we can distinguish the following types:

• Averaging—aggregation function f has an averaging behaviour (or is averaging) if for
every x it is bounded by:

min(x) ≤ f (x) ≤ max(x) (2)

• Conjunctive—aggregation function f has conjunctive behaviour (or is conjunctive) if
for every x it is bounded by:

f (x) ≤ min(x) (3)

• Disjunctive—aggregation function f has disjunctive behaviour (or is disjunctive) if for
every x it is bounded by:

f (x) ≥ max(x) (4)

• Mixed—aggregation function f is mixed if it does not belong to any of the above classes,
i.e., it exhibits different types of behaviour on different parts of the domain [15].

If we consider the aggregation function in terms of the mathematical formulas used,
the following families can be distinguished [15]:

1. Minimum and maximum;
2. Means;
3. Medians;
4. Ordered weighted averaging;
5. Choquet and Sugeno integrals;
6. Conjunctive and disjunctive functions;
7. Mixed aggregation functions.

Minimum and maximum are the main aggregation functions used in fuzzy set theory
and fuzzy logic [16]. That comes from the fact that they are the only two operations
consistent with several theoretical set properties, i.e., mutual distribution. The standard
definition of minimum and maximum is as follows:

min(x) = mini=1,...,nxi (5)

max(x) = maxi=1,...,nxi (6)

where xi is a property of a collective member.
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The next type of aggregation function is mean and median, with the arithmetic mean
being the most popular one to use.

J =
1
N

N

∑
i=1

mi (7)

where:

J is the collective judgement;
mi is a judgement of a collective member i;
N is a number of collective members.

It is a baseline for most of the other methods [17]. Research proved that the un-
weighted average guarantees the outcome to be more accurate than the typical individual
judgement [18,19]. Nevertheless, various authors have proposed enhancements, mainly
by adding a weight to each opinion, whose value usually represents the certainty or
trustworthiness of collective member’s opinion.

Thus, another type of aggregation function that is worth mentioning is ordered
weighted averaging (OWA) functions [20]. OWA are also averaging aggregation functions,
which associate weights not with a particular input, but rather with its value. They were
introduced by Yager [20], and since then have become very popular in the fuzzy sets
community. OWA could be defined based on vector xsorted as:

OWAw(x) =
n

∑
i=1

wixi (8)

where,

xi is a subsequent value from the vector xsorted containing individuals judgements in
non-increasing order x1 ≥ x2 ≥ ... ≥ xn;

wi is a subsequent value from the vector of weights w.

Choquet and Sugeno integrals are considered another aggregation function
category [21–23]. They are mainly used in a situation when we can convert the prob-
lem of estimation by the use of fuzzy sets and scale it to become the Choquet and Sugeno
problem [24]. The standard definition of this function defined for vector xsorted is as follows:

Cv(x) =
n

∑
i=1

xi[v({j|xj ≥ xi})− v({j|xj ≥ xi+1})] (9)

where:

xi and xj are subsequent values from the vector xsorted containing individuals’ judgements
in non-increasing order x1 ≥ x2 ≥ ... ≥ xn,

v is a fuzzy measure.

Conjunctive and disjunctive functions are so-called triangular norms and conorms,
respectively (t-norms and t-conorms) [25]. An example of a conjunctive extended aggrega-
tion function could be:

TP(x) =
n

∏
i=1

xi (10)

where:

xi is a i-th collective member judgement;
n is a number of collective members.

Last, but not least important, is the mixed aggregation function. An example of such
a function is 3−∏ function defined after [26]:

f (x) = ∏n
i=1 xi

∏n
i=1 xi + ∏n

i=1(1− xi)
(11)
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where:

xi is a i-th collective member judgement;
n is a number of collective members.

One of the ideas is the approach that takes the assumption that outliers may affect the
result too heavily [27]. Therefore, those methods aim at removing appropriate (unneeded)
individual values. Let us take the median absolute deviation (MAD) filtering method as an
example, where each judgement is considered an unneeded outlier, iff:

mi −median(mj)/mdev > t (12)

mdev = median({|mk −median({mh})|}) (13)

where,

t is a parameter that controls the sensitivity of the trimming;
k, h are dummy variables,

and is removed from the set. Following the filtering, usually one of the above-mentioned
methods is applied, e.g., the average aggregation function. However, the potential draw-
back of any filtering is the potential to ignore strong dissenting voices. It proved to be a
problem in situations of group thinking, where the process of forming a collective judge-
ment neglects well-justified outlier opinions and is biased towards a consensus judgement,
irrespective of the evidence for that judgement [14].

2.2. Deductive Systems

Automated reasoning is one of the most promising research fields in computer science.
The multitude of approaches available are aimed at solving a straightforward issue, i.e.,
how to conclude according to the information and data available at the moment. One class
of solutions uses a black box architecture, where the exact execution rules are independent
and often unknown to the operator. This approach is widespread in such tasks as automated
classification systems, and screening or prediction in image, text, sound or video processing.
In general, the black-box approach is a mixture of artificial neural networks and genetic
algorithms and other nondeterministic techniques. In most cases, a black-box system needs
a short time to employ. However, there is a need for sufficient training data or periodical
fine-tuning. While they prove efficient in computational aspects, they nearly never reach
complete reliability.

Contrary to the nondeterministic approach, some systems aim at reliability in the first
place. They utilise, among others, parts of the classical mathematical apparatus, i.e., deduc-
tion and induction. In this paper, we focus on the latter approach, with particular emphasis
on the deductive systems, since they are one of the primary solutions for many problems,
e.g., program synthesis problems [28]. The most basic definition sets the deductive system
as “a set of rules R and axioms. Since axioms can be viewed as rules without premises, we
assume that a deductive system is a set of rules and a procedure for derivation such that
Γ `L A if and only if A can be derived from Γ by rules R” [3].

The definition mentioned above allows the creation of multiple systems with the same
set of premises. Thus, we may assume that when having a bunch of solutions defined
with the same set of assumptions but with an orthogonal set of rules, we will receive
heterogeneous outcomes. That raises a new problem, i.e., how to measure the reliability or
accuracy of the outcome. Since we are focused on deductive systems, it is safe to assume
that the accuracy of such a system relies on its complexity. In perfect conditions, the
complexity is irrelevant, but in real-life, we need to take into account the constraints—
maximum answer time expectancy, minimum accuracy, etc. Thus, having the accuracy as
the primary evaluation function, we will aim at producing such a system which provides an
accurate output with adequate resource (time) consumption. Sets of rules used in deductive
systems are mainly defined by human operators, rather than automatically generated. With
complex tasks, it is virtually impossible to test the system against all possible situations
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(inputs). Thus, we need to assume that even if the system returns the correct value, it might
not be the most accurate one. Instead of solving the accuracy issue by introducing more
rules into the system, in this article, we will focus on the approach that solves the problem
by combining responses from various deductive systems into a uniform one. Our solution
uses a collective intelligence approach, in particular, a model defined in [4] that utilises
graph theory to describe the complexity of the collective structure.

3. Method

In this research, we have focused on two main steps needed to adopt the model
defined in [4]. At first, we checked if the node definition is suitable to represent individual
deductive systems. Since the framework is flexible, we are not limited to any specific
system, either deductive or not. Secondly, we have defined the aggregation principles to
use with multiple systems and combined them into a uniform system. In the following
sections, we present those steps in detail.

3.1. A Deductive System as a Collective Member

The definition of the collective member presented in [4] is a complex one. First of all,
we need to make sure that a set of members, e.g., deductive systems, is a collective. That
means all of its members should share the same target, as defined in Equations (14) and (15).
The target might be understood as either the pursued value or a quality of any sort. It is
only crucial we can evaluate reaching it.

target : M→ t (14)

∀i ∈ {1, 2, . . . , n} (target(mi) = t) (15)

where

M is a set of collective members;
mi is a subsequent collective member;
t is a target;
i is a collective member number;
n is a number of collective members.

Once we ensure that the set of deductive systems is a collective, we may investigate
their characteristics. Each collective member has a type assigned, which is defined in (16)
as a tuple σ(M).

σ(M) = (a1, a2, . . . , aman) (16)

a = (name, type) (17)

MA = {a1, a2, . . . , aman} (18)

where

a is an attribute characterised by name and type;
i is an index of an attribute;
man is number of attributes;
MA is a set of all attributes.

Each collective member m ∈ M can be thus understood as a tuple of values v defined
in (19). Each value v ∈ V of collective member m ∈ M corresponds to appropriate attribute
a ∈ MA of σ(M).

m = (v1, v2, . . . , vman) (19)

MemberValue : M×MA→ V (20)

Considering a collective built from deductive systems, we identify the minimum set
of attributes characterising them. In our study, we assumed that it is sufficient to define:

• A set of input values input;
• Output value output;
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• Confidence factor CF.

Depending on the approach taken, input can be defined as one attribute a or repre-
sented by several attributes a1, . . . , an. We believe that the internal member’s rules should
not be part of its description in the collective definition, since they are part of the deduc-
tive system configuration. The presented approach does not focus on the reasoning of
individual members but rather on their aggregated outcome.

The common target is not the only special thing about the collective. It is the set of
relationships among members that makes it unique. If we had only a set of unrelated
members, we could investigate any kind of aggregation but only look for their outcomes’
statistical significance. Following to the model from [4], the authors use the definition of
relations between collective members as graph edges.

E = {e1, e2, . . . , een} (21)

e = (mx, my, rel, in f l, ep) (22)

where

e ∈ E is the edge connecting members mx, my ∈ M;
en = |E| is number of edges;
rel ∈ REL is relation kind and REL is a set of kinds of relations;
in f l ∈ [0, 1] is a level of influence member mx has on member my;
ep is a edge property for which ep ∈ EP.

The definitions mentioned above apply to all possible collectives, but for the sake
of this article, we will narrow them down. The first and most obvious move is to put a
constraint on the member set to only allow it to contain deductive systems.

m ∈ DS (23)

where

DS is a set of deductive systems.

Limiting the collective members set does not change the obligation to have a common
target. In the case of a system built up from deductive systems, we assume this target to
be providing a uniform answer to the query. As for the attributes, we take into account
only those that might give any insight into the creation of a shared collective response. It
might be wise to focus on the input each member uses for generating the response. Each
deductive system is independent in its decision making. However, it can take into account
the outcome from other connected systems. It is not yet the aggregation, but rather part
of the individual decision making process of each member. Probably the most important
aspect of collective building is the possibility to define aggregation function based on
the relations between members. As stated in (21) and (22), each edge representing the
connection between two members has information on the level of influence and type of
relationship. That information is crucial for the setting up of the whole system. It not
only affects the analysis of individual outcomes but also allows better definition of the
aggregation function.

3.2. Collective Decision Making

The goal of the presented framework is to deliver a way for solving problems when
several deductive systems infer a heterogeneous outcome. We have proved that the model
we chose is capable of describing the complexity of the collective structure. The next step
is to define the proper aggregation approach. Let us define the aggregation function y.

y = f (x) (24)

x = [x1, x2, ..., xn] (25)
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where

y is the collective decision for a given vector of members’ decisions x;
x is a vector of members’ decisions.

In the proposal, the authors strive to present a universal solution. Thus there will be
no universal aggregation function shown, but rather an approach on how to define one for
a specific case. The authors focus on three baseline families of functions, i.e.,

• Average aggregation function;
• Weighed average aggregation function;
• Combined measure.

3.2.1. Average Aggregation Function

The first type of aggregation neglects any connections between collective members.
So each deduction equally influences the general outcome. We will follow the arithmetic
average function defined as (7).

Since this function does not use any information concerning relationships, we might
assume it is not a full-fledged aggregation. However, it is a good idea to use simplification
for the sake of, e.g., prototyping or processing time. It is particularly essential in the case of
highly complex systems, where the proper definition of more sophisticated methods might
be time demanding. There is no simple guide to use this simplest approach. However,
we can assume that a large number of members, a dense relationship network and low
centralisation are pre-requirements.

3.2.2. Weighed Average Aggregation Function

Another approach involves distinguishing member opinions by a chosen factor. Unlike
the simple arithmetic average, the weighted one (26) assumes that the outcome of every
member has a measurable and diverse impact on the final decision of collective.

J =
n

∑
i=1

wixi (26)

where

xi is the decision of the i-th member;
n is the number of members;
wi is the weight for i-th deductive system.

This method is quite simple once we know how to obtain the vector of weights.
However, the definition of the latter is a fundamental difficulty. Values of the vector can be
calculated based on the members’ attributes or the properties of relationships, e.g.,

• Confidence in the inferred answer,
• Influences of interconnected deductive systems—a calculation is based on the incom-

ing and outgoing edges to/from the node;
• With respect to other deductive systems—calculated as an average of the weights

assigned by the deductive systems to the output generated by a given system.

Generation of the weight vector might be tedious work involving many repetitions
and fine-tuning. The standard procedure would include setting the initial vector and chal-
lenging results obtained from aggregating collective members’ opinions with the expected
outcome. The process might rely on expert knowledge and on any automated technique.

3.2.3. Combined Aggregation Function

The proposed framework introduces a sophisticated solution, namely, the combined
aggregation function. The idea is simple and relies on the usage of various measures
to create a single collective response. The functions and properties to combine include
averages, centralisation measure, distributions of properties or members, etc. An example
of combined aggregation is:
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J =

{
∑n

i=1 wixi for C(x) > f
1
n ∑n

i=1 xi for C(x) ≤ f
(27)

where

xi is the decision of a i-th member;
wi is the weight for i-th deductive system;
n is the number of collective members;
C(x) is a centralisation measure [29] calculated as Equation (28):

C =

{
n > 2 n(Smax−Savg)

(n−1)(n−2)

otherwise 0;
(28)

Smax is the maximum number of edges connected to any of nodes in G;
Savg is the average number of edges connected to nodes in G;
f is centralisation value for a given collective; in a case where centralisation is low

(lover than given value f ), each node could be treated equally, and otherwise some
weight should be introduced.

It is not only possible to use a centralisation function, but we can also rely on the
collective prediction as below.

J = ∑n
i=1 C(i)mi

∑n
i=1 C(i)

(29)

where

C(xi) is a the centralisation value for i-th collective member;
mi is the decision of a i-th member.

The aforementioned centralisation measures are not the only possible solutions to
use. Having the complexity of collective description, we can choose from a variety of
functions either to define the weight system or to introduce a discrimination factor for the
aggregation. Those functions can rely on members’ attributes or properties of the collective
as such.

One of the critical factors that we need to take into account is the idea of joint answer
creation in the collective of deductive systems. At one point, we could stop at a simple
calculation of the answer using any arithmetic aggregation function. However, we assume
that each member of the collective can use the responses of interconnected systems as an
input for their calculations. Thus, we will seek the state in which the collective stabilises
and provides a countable output. What we need to take into account is so-called “butterfly
effect” when a small change in one system could influence significantly on the response
of other [30]. With infinite repetitions, this effect might be even more disastrous, causing
an inability to reach consensus. To cease such a situation in the proposed framework, the
authors introduce a method based on two conditions along with parameters that allow for
its customisation, namely:

q a quantified value representing the smallest change in response accepted by the
system;

m a quantified value representing the number of iterations resulting in the same outcome.

The method aims at stopping the concluding process before it gets out of the balance [31].
The first condition uses the individual deductive system outcome and checks if subse-
quent repetitions alter their values. The iteration of the procedure seeking the collective’s
consensus should stop once it meets the condition (30).

∀x : |mi −mi−1| < q (30)

where

x is collective member;
mi is the decision of a member x in an iteration i;
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q is the value of the stop condition.

With this definition, it is easy to connect the value of q with the overall accuracy of the
collective. The accuracy of the system returning numerical outcomes is defined as:

A = |J − J∗| (31)

A is the accuracy of the system;
J is a value concluded by the collective (collective’s prediction);
J∗ is the real value of the target information.

The second condition takes into consideration the outcome of the system as a whole.
The parameter m limits the iteration based on the value of the aggregation function. At
first, when the process of estimating the collective outcome starts, there is no simple way of
stopping the iteration. One approach would be to stop it after a fixed number of repetitions.
However, this number might be different for various systems. In the proposed method, the
authors recommend relying on more sophisticated conditions. The idea is to investigate
the subsequent outcomes of the aggregation function and count those that return the same
value. If this number reaches the limit set by m, then it is assumed that the system reached
the consensus. The only tricky part lies in checking the equality of outcomes. In this
case, we can use the parameter q. It sets the margin of error and defines the accuracy of
the system.

For the sake of uniformity, the proposed solution applies not only to systems focused
on numeric operations. In the case of quality-based aggregation, we can omit the first
condition and rely only on the second one.

3.2.4. Example

Let us consider the example shown in Figure 1 to clarify aforementioned idea. The ex-
ample comprises three deductive systems, D1, D2 and D3; and four sources of information
S1, S2, S3 and S4. Each deductive system has access to exactly two information sources.
However, the sources differ for each of them. Moreover, D1 has access to the output of D3,
and D3 uses the output of D1. At first, D1 and D3 use only information provided by the
sources. In the next iterations, both deductive systems take each other’s predictions into
account. The systems return numeric value v1 6= v2 6= v3 by D1, D2 and D3 respectively.
Such a configuration makes systems have an orthogonal view of the current state. Since
D1 and D3 might return unequal values and use each other output for computation, there
is a need for repetition until they reach consensus. Thus, the system conducts multiple
iterations for the D1 and D3 to stabilise, and one of the stopping conditions defined in
Section 3.2.3 is triggered. Meeting the stopping conditions does not guarantee that values
returned by deductive systems are the same. Nevertheless, the system is expected to return
one value. Thus, the framework introduces the use of the aggregation functions. With
one of them, we can determine the response r. In this example, we use a simple average
aggregation function, so response r of the whole system equals:

r =
v1 + v2 + v3

3
(32)

Depending on the application, the aggregation function might vary; thus, the result
value r could also be different. Additionally, the introduction of an additional information
source may lead to a different response from any system. Therefore, even deterministic
solutions such as deductive systems finally may not act deterministically at all.
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Figure 1. An example of a collective built from deductive systems.

4. Discussion

The authors proposed a theoretical framework introduced in the previous section
based on a collective model from [4]. It enables working on strong foundations and presents
a universal model for the complex expert system. The approach is holistic, with a minimal
number of constraints in case of implementation. Therefore, universality and flexibility are
the most significant advantages of the proposed solution. The authors also elaborated on
“the butterfly effect”, suggesting an appropriate answer to it. The proposed approach is
fully decentralised. Therefore, it does not have problems that may occur with centralised
solutions, e.g., difficulties with resource allocation planning that quickly reach a point
where the design of satisfying solutions becomes too complicated. Another advantage of
the proposed approach is easy scaling.

At first glance, the proposed approach is similar to the well-known multi-agent
method. In a multi-agent system (MAS) [32] agents are computational abstractions encap-
sulating control along with a criterion to drive control (task, goal). The MAS collects agents
interacting (communicating, coordinating, competing, cooperating) in a computational
system. In a multi-agent system, individual agents contribute to some part of the system
through their private actions. Since part of the core conception of multi-agent systems
is competing, there is a risk that agents in the system work at cross-purposes. For exam-
ple, agents can reach sub-optimal solutions by competing for scarce resources or having
inefficient task distribution, as they only consider their own goals. The most significant
difference between the proposed solution and multi-agents systems is that each collective
member solves the whole problem, not only a small part of it. The collective intelligence
framework aims to promote the agent’s actions that lead to increasingly influential emer-
gent behaviour of the collective while discouraging agents from working at cross-purposes.
This is an enormous advantage possessed by the proposed solution.

The universal character of the system is derived from the possibility to model various
types of systems. A solution designer has to undertake two crucial decisions. The first one
relates to the communication among the deductive systems defined, whether it is possible
or not. A further step is only valid if the systems can exchange information, especially
regarding answers. If the deductive systems are to communicate, the designer has to
define the degree and types of this communication. The second one is the choice of the
aggregation function and later its thorough definition. The flexibility of the framework
also lies in the fact that the aggregation can be another deductive system. The use of
graph theory makes the solution intuitive; thus, it allows the creation of complex structures
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comprising many individual systems that are still easy to comprehend. The authors are
aware that their universal approach and such flexibility as described might be a source of
undiscovered issues. Therefore, further research involving the implementation of various
design patterns is needed.

5. Conclusions

The paper introduces a novel approach towards the definition of collectives comprising
deductive systems. The theoretical framework presents the solution to collaborative decision
making, mainly in the case when individual peers give heterogeneous answers. Small
constraints allow the flexible and universal design of the collective. However, it is essential to
intentionally and reasonably define the degree of individual system communication and the
type of aggregation function. Since the design promotes the exchange of information among
peers that any of them can use as an input for their operation, the authors introduced a
sophisticated stop mechanism. The proposed solution mainly aims to simplify the compound
solution description; thus, it allows for better interchangeability.

The future work mainly will focus on providing various design patterns for collective
systems utilising the proposed framework, and proving its effectiveness.
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