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Abstract: This paper deals with non-perturbed and perturbed systems of nonlinear differential
systems of first order with multiple time-varying delays. Here, for the considered systems, easily
verifiable and applicable uniformly asymptotic stability, integrability, and boundedness criteria are
obtained via defining an appropriate Lyapunov–Krasovskiı̆ functional (LKF) and using the Lyapunov–
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illustrate the novelty of the stability theorem and show new contributions to the qualitative theory of
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1. Introduction

The research of systems of delay differential equations (DDEs) with multiple constant
and time-varying delays is always a challenging field of study. This is due to the fact that
the system of DDEs can be frequently found in many fields such as mechanics, artificial
neural networks power systems, medicine, physics, biology, population ecology, engi-
neering, and so forth. For example, the books of Burton [1], Hale and Verduyn Lunel [2],
Kiri and Ueda [3], Kolmanovskii and Myshkis [4], Kuang [5], Lakshmikantham et al. [6],
and Smith [7] are very important reference books for various fundamental and qualitative
results of stability and periodic solutions of functional differential equations of the first and
second order. These books also include numerous methods, techniques, their theoretical
and real applications in science, engineering, and technology. Indeed, a large number of ap-
plications in the theory of artificial neural networks, numerous models for some population
dynamics, and ecology problems, etc., can be represented by DDEs with multiple delays,
(see, in particular, Berezansky et al. [8], Gil [9], Smith [7], and the bibliography therein).
Accordingly, the study of qualitative properties of solutions of scalar DDEs and systems
of DDEs with multiple time-varying delays has an important significance in sciences and
engineering, and it deserves the attention of researchers.

In recent years, numerous interesting and fruitful results on the qualitative analyses
for various differential equations of first and second order both with and without delay
have been obtained by applying a linear matrix inequality (LMI) approach, the second
Lyapunov method, the LKM, fixed point method, and so on. In particular, some related
works on the subject can be summarized briefly as the following.

Berezansky et al. [8] considered a non-autonomous system of first order with time-
varying delays. Via the M-matrix method, easily verifiable sufficient stability conditions
for the system and its linear version are obtained in [8].
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In Berezansky et al. [10], uniform exponential stability of linear systems of first order
with time varying coefficients is studied. In [10], a new explicit result is derived with
the proof based on the Bohl–Perron theorem. The resulting criterion has advantages over
some previous ones.

In Gil [9], the author presents exponential stability results for a nonlinear system
of differential equations of first order. Here, the author obtains sharp bounds for the so-
lutions of the system and thus exponential stability can be determined without the use
of Lyapunov functions.

Gözen and Tunç [11] investigate an exponential stabilization problem for a class of linear
systems of first order with two variable delays. Via a suitable Lyapunov–Krasovskiı̆ func-
tional, Leibniz–Newton’s formula and linear matrix inequalities, the authors derive some
new sufficient conditions for the exponential stability of the zero solution of the system.

Liu [12] studies a class of systems of non-autonomous differential equations of first
order with multiple delays. In [12], under proper conditions, several criteria of global
stability of a positive equilibrium are obtained.

In Matsunaga [13], for a linear delay differential system of the first order with two
coefficients and one delay, some necessary and sufficient conditions on the asymptotic
stability of a zero solution, which are composed of delay-dependent and delay-independent
stability criteria, are established and the range of the delay is explicitly given.

In Ngoc [14], general nonlinear time-varying differential systems of a first order with
two variable delays are considered. Several explicit criteria for exponential stability are
given. A discussion of the obtained results and two illustrative examples are presented.

In Petruşel et al. [15], existence, stability, and localization results for a general system
of operator equations in complete metric spaces are presented. The approach is based on
the application of some fixed point theorems for orbital contractions in a complete metric
space.

In Rebenda and Šmarda [16], asymptotic properties of a real two-dimensional differen-
tial system with unbounded non-constant delays are investigated. The sufficient conditions
for the stability and asymptotic stability of solutions are given. Asymptotic properties
of solutions are also studied by means of a Lyapunov–Krasovskiı̆ functional.

Shu [17] considers the linear delay system:

ẋ(t) = Ax(t) + Bx(t− r).

The author gives sufficient conditions for the asymptotic stability of the zero solution
of this system by deriving a pair of one dimensional delay differential equations from the sys-
tem and comparing the Lyapunov exponents of the corresponding fundamental solution.

Slyn’ko and Tunç [18] discusses the instability of set differential equations by using
some geometric inequalities.

In Tunç [19–21] and Tunç and Tunç [22–25], stability, boundedness, and some other
properties of solutions of various non-linear differential systems of second order without
or with delay are investigated by the second Lyapunov method and integration techniques.

In Tunç and Golmankhaneh [26], the stability of fractal differentials in the sense of Lya-
punov is defined. Sufficient conditions for the stability, uniform boundedness, and conver-
gence of solutions for the suggested fractal differential equations are presented and proven.

Yskak [27] considers a class of linear systems of differential equations of first order with
distributed delay and periodic coefficients. The author established sufficient conditions
for the asymptotic stability of solutions to this system, obtain estimates of solutions, and
study robust stability. On the basis of the obtained results, the author proves an analogue
of the Krein’s theorem on stability of solutions to the linear system of differential equations
with distributed delay.

In Zhang and Jiang [28], by constructing a suitable Lyapunov functional and using
some analytical techniques, the authors obtain sufficient conditions for the global expo-
nential stability of zero solution to a class of differential systems of first order with delay.
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The results show a relation between the delay time and the coefficients of the equations.
In [28], two examples also are given to illustrate the validity of the results.

In Zhang and Wu [29], the authors develop a new technique to study the stability
of the delay differential system of first order. In this way, the construction of suitable
functionals for a given system with finite delay is easier. The conditions obtained are
less restrictive. The main results are three theorems on the stability of the zero solution
of the system with finite delay. We also refer readers to the papers of Petruşel and Rus [30],
Kien et al. [31], Chadli et al. [32] and the bibliographies of the mentioned sources.

However, to the best of our knowledge, the LKM is the most effective method to
investigate various properties of systems of delay DDEs with multiple time-varying delays
provided that construct or define a suitable LKF. In fact, from this point of view, construct-
ing, defining, or finding a suitable LKF for a problem under study is a difficult task and
an unsolved problem in the literature until this time.

In 2020, Ren and Tian [33] considered the following system of linear DDEs with
time-varying delay,

ẋ(t) = Ax(t) + Bx(t− h(t)), (1)

x(t) = φ(t), t ∈ [−h2, 0],

where x(t) ∈ Rn is the system state, A, B ∈ Rn×n, and h(t) ∈ C1(R+, (0, ∞)) is the time-
varying delay and satisfies the following conditions:

0 ≤ h1 ≤ h(t) ≤ h2, h21 = h2 − h1, 0 ≤ h′(t) ≤ h0 < 1.

Ren and Tian [33] defined a LKF for the system of DDEs (1). Then, based upon the de-
fined LKF, Ren and Tian [33] proved a theorem, ([33], Theorem 1), on the asymptotically
stability of the system of DDEs (1).

The motivation of the results of this paper has been inspired from the paper of Ren and
Tian ([33], Theorem 1) and those in the bibliography of this paper. In this paper, we take
into consideration a perturbed nonlinear system of DDEs with three multiple time-varying
delays as given below:

ẋ(t) = A(t)x(t) + BF(x(t− h1(t))) + CG(x(t− h2(t))) + P(t, x(t), x(t− h3(t))), (2)

where x ∈ Rn, t ∈ R+ = [0, ∞), hk(t) ∈ C1(R+, (0, ∞)), k = 1, 2, and h3(t) ∈ C(R+, (0, ∞))
are the time-varying delays, A(t) ∈ C(R+,Rn×n), B, C ∈ Rn×n, F, G ∈ C(Rn,Rn),
F(0) = G(0) = 0 and P ∈ C(R+ ×Rn ×Rn,Rn). We assume that the given time-varying
delays h1(t) and h2(t) satisfy the following conditions:

0 ≤ h1 ≤ h1(t) ≤ h2, 0 ≤ h3 ≤ h2(t) ≤ h4,

0 ≤ h′1(t) ≤ h5 < 1, 0 ≤ h′2(t) ≤ h6 < 1,

h = max{h2, h4}, h0 = max{h5, h6}. (3)

We now outline the aim of this paper by the following items, respectively:

(1) We study the uniformly asymptotic stability of zero solution and the integrability
of the norm of solutions of the following unperturbed nonlinear system of DDEs via
Theorem 3 and Theorem 4, respectively:

ẋ(t) = A(t)x(t) + BF(x(t− h1(t))) + CG(x(t− h2(t))). (4)

To investigate these problems, we define a very different LKF from that in Ren and
Tian [16];

(2) We investigate the boundedness of solutions of the perturbed system of nonlinear
DDEs (2), see Theorem 5’
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(3) In particular cases, two new examples with graphs of their solutions are provided to
show applications of Theorems 3–5.

The rest of this paper is organized as follows. Some basic information related to
a general functional differential system and a necessary auxiliary theorem, Burton ([1],
Theorem 4.2.9), are given in Section 2. A reference theorem of this paper, Ren and Tian
([33], Theorem 1), concerning asymptotic stability of the system of linear DDEs (1) is given
in Section 3. Two new results and an example concerning uniformly asymptotic stability
and integrability for the unperturbed system (4) are presented in Section 4, while a result
and an example for the boundedness of solutions of the perturbed system of DDEs (2) are
given in Section 5. Finally, some discussions, contributions, and a conclusion are given
in Sections 6 and 7, respectively.

2. Background and Motivation

Consider the system of DDEs:

dx
dt

= H(t, xt), (5)

where H ∈ C(R×C0,Rn), H(t, 0) = 0 and takes bounded sets into bounded sets. For some
τ > 0, C0 = C0([−τ, 0], Rn) denotes the space of continuous functions φ : [−τ, 0] → Rn.
For any a ≥ 0, ∀t0 ≥ 0 and x ∈ C0([t0 − τ, t0 + a], Rn), we have xt = x(t + θ) for −τ ≤
θ ≤ 0 and t ≥ t0.

Let x ∈ Rn. The norm ‖.‖ is defined by ‖x‖ =
n
∑

i=1
|xi|. Next, let A ∈ Rn×n. For this

case, the matrix norm, ‖A‖, is defined by ‖A‖ = max
1≤j≤n

(
n
∑

i=1

∣∣aij
∣∣).

In this article, without loss of generality, sometimes instead of x(t), we will simply
write x.

For any φ ∈ C0, let:

‖φ‖C0
= sup

θ∈[−r,0]
‖φ(θ)‖ = ‖φ(θ)‖[−r,0]

and
CH = {φ : φ ∈ C0 and ‖φ‖C0

≤ H < ∞}.

We suppose that the function H satisfies the conditions of the uniqueness of solutions
of the system of DDEs (5). We note that the system of DDEs (2) is a particular case
of the system of DDEs (5).

Let x(t) = x(t, t0, φ) be a solution of the system of DDEs (5) such that x(t) = φ(t) on
[t0 − τ, t0], where φ ∈ C([t0 − τ, t0],Rn) is an initial function.

Let,
V1(t, φ) : R+ × CH → R+,R+ = [0, ∞),

be a continuous functional in t and φ with V1(t, 0) = 0. Further, let d
dt V1(t, x) denote

the derivative of V1(t, x) on the right through any solution x(t) of the system of DDEs (5).

Theorem 1 (Burton ([1], Theorem 4.2.9). Assume that:

(A1) The function V1(t, x) satisfies the locally Lipschitz in x, i.e., for every compact S ⊂ Rn and
γ > t0, there exists a Kγs ∈ R with Kγs > 0 such that:

|V1(t, x)−V1(t, y)| ≤ Kγs‖x− y‖[t0−τ,t]

for all t ∈ [t0, γ] and x, y ∈ C0([t0 − τ, t0], S);
(A2) Let Z(t, φ) be a functional such that it satisfies the one-side locally Lipschitz in t:

Z(t2, φ)− Z(t1, φ) ≤ K(t2 − t1), 0 < t1 < t2 < ∞, K > 0, K ∈ R,
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whenever φ ∈ CH , where Z : R+ × CH → R+ is continuous;
(A3) There are four strictly increasing functions ω, ω1, ω2, ω3 : R+ → R+ with value 0 at 0 such

that:
ω(‖φ(0)‖) + Z(t, φ) ≤ V1(t, φ) ≤ ω1(‖φ(0)‖) + Z(t, φ),

Z(t, φ) ≤ ω2(‖φ‖C)

and
d
dt

V1(t, x(.)) ≤ −ω3(‖x(t)‖)

whenever t ∈ R+ and x ∈ CH . Then, the solution x(t) = 0 of the system of DDEs (5) is
uniformly asymptotically stable.

3. Asymptotic Stability

Firstly, we state the main result of Ren and Tian ([33], Theorem 1).

Theorem 2 (Ren and Tian [33], Theorem 1). For given scalars h1 and h2 , the system (1) with
time-varying delays satisfying the condition 0 ≤ h1 ≤ h1(t) ≤ h2 is asymptotically stable if there
exist matrices P ∈ S5n

+ , Q1, Q2, Q3,
Q4 ∈ Sn

+, N1, N2 ∈ R13n×4n , such that the LMI:

Ψ(α) =

Φ(α)− ΓT<(α)Γ− He(ΓT
[
(1− α)NT

1
αNT

2

]
) ∗

αNT
1 + (1− α)NT

2 −Q

 < 0

holds for α = {0, 1}, where:

Φ(α) =He(ΣT
1 PΣ2) + εT

1 Q1ε1 − εT
2 Q1ε2 + εT

2 Q2ε2 − εT
4 Q2ε4 + h2

1εT
0 Q3ε0

+ h2
12εT

0 Q4ε0 − ΣT
3 Q3Σ3 − 3ΣT

4 Q3Σ4 − 5ΣT
5 Q3Σ5 − 7ΣT

6 Q3Σ6,

Σ1 =[εT
1 h1εT

5 αh12εT
6 + (1− α)h12εT

7 h2
1εT

8 h3
1εT

11]
T

,

Σ2 =

[
εT

0 εT
1 − εT

2 εT
2 − εT

4 h1εT
1 − h1εT

5
h2

1
2

εT
1 − h2

1εT
8

]T

,

Σ3 =ε1 − ε2,

Σ4 =ε1 + ε2 − 2ε5,

Σ5 =ε1 − ε2 + 6ε5 − 12ε8,

Σ6 =ε1 − ε2 − 12ε5 + 60ε8 − 120ε11,

Σ7 =ε2 − ε3,

Σ8 =ε2 + ε3 − 2ε6,

Σ9 =ε2 − ε3 + 6ε6 − 12ε9,

Σ10 =ε2 + ε3 − 12ε6 + 60ε9 − 120ε12,

Σ11 =ε3 − ε4,

Σ12 =ε3 + ε4 − 2ε7,

Σ13 =ε3 − ε4 + 6ε7 − 12ε10,

Σ14 =ε3 + ε4 − 12ε7 + 60ε10 − 120ε13,

ε0 =Aε1 + Bε3,

Γ =
[
ΣT

7 ΣT
8 ΣT

9 ΣT
10 ΣT

11 ΣT
12 ΣT

13 ΣT
14

]T
,

Q =diag(Q4, 3Q4, 5Q4, 7Q4),
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and
εi ∈ Rn×13n

is defined as:
εi =

[
0n×(i−1)n In 0n×(13−i)n

]
for i = 1, 2, ..., 13.

4. Uniformly Asymptotic Stability and Integrability

We now deal with the non-perturbed system of DDEs (4). Here, we first extend
and optimize the asymptotic stability result of Ren and Tian ([33], Theorem 1) under very
weaker conditions. Next, we give an integrability result for the solutions of the unperturbed
non-linear system of DDEs (4). The technique of the proofs is based upon the LKM.

The first main result of this paper is given by Theorem 3.

Theorem 3. We assume that the following conditions (C1) and (C2) hold:

(C1) There exist positive constants a0, f0, and g0 such that:

aii(t) +
n

∑
j=1,j 6=i

∣∣aji(t)
∣∣ ≤ −a0 for all t ∈ R+,

F(0) = 0, ‖F(u)− F(v)‖ ≤ f0‖u− v‖ for all u, v ∈ Rn

and
G(0) = 0, ‖G(υ)− G(ω)‖ ≤ g0‖υ−ω‖| for all υ, ω ∈ Rn;

(C2) There exist constants a0, f0, g0 and h0 from (C1) and (2), respectively, and δ0 such that:

a0(1− h0)− f0‖B‖ − g0‖C‖ ≥ δ0.

Then zero solution of the unperturbed system of DDEs (4) is uniformly asymptotically stable.

Proof. We define a new LKF W1 := W1(t, xt) by:

W1(t, xt) := ‖x(t)‖+
2

∑
i=1

λi

t∫
t−hi(t)

‖x(s)‖ds, (6)

where λi > 0, λi ∈ R such that these arbitrary constants will be chosen in the proof later.
The LKF (6) can be expanded as the following:

W1(t, xt) :=|x1(t)|+ ... + |xn(t)|+ λ1

t∫
t−h1(t)

‖x(s)‖ds + λ2

t∫
t−h2(t)

‖x(s)‖ds

=|x1(t)|+ ... + |xn(t)|+ λ1

t∫
t−h1(t)

|x1(s)|ds + ... + λ1

t∫
t−h1(t)

|xn(s)|ds

+ λ2

t∫
t−h2(t)

|x1(s)|ds + ... + λ2

t∫
t−h2(t)

|xn(s)|ds.

From (6), it follows that the LKF W1(t, xt) satisfies:

W1(t, 0) = 0, γ1‖x‖ ≤W1(t, xt), γ1 ∈ (0, 1), γ1 ∈ R .

Let,
γ2 ≥ 1, γ2 ∈ R
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and

Z(t, x) :=
2

∑
i=1

λi

t∫
t−hi(t)

‖x(s)‖ds.

Hence, it is clear that:

γ1‖x‖+ Z(t, x) ≤W1(t, xt) ≤ γ2‖x‖+ Z(t, x).

As for the next step, by some elementary calculations, we derive:

|W1(t, xt)−W1(t, yt)| ≤| ‖x(t)‖ − ‖y(t)‖ |+
2

∑
i=1

λi

t∫
t−hi(t)

| ‖x(s)‖ − ‖y(s)‖ |ds

≤‖x(t)− y(t)‖+
2

∑
i=1

λi

t∫
t−hi(t)

‖x(s)− y(s)‖ds

≤‖x(t)− y(t)‖+
2

∑
i=1

λihi(t) sup
t−hi(t)≤s≤t

‖x(s)− y(s))‖

≤‖x(t)− y(t)‖+ λ1h2 sup
t−h1(t)≤s≤t

‖x(s)− y(s))‖

+ λ2h4 sup
t−h2(t)≤s≤t

‖x(s)− y(s))‖.

From this point of view, we have:

|W1(t, xt)−W1(t, yt)| ≤(1 + λ1h2 + λ2h4)

×max

{
sup

t−h1(t)≤s≤t
‖x(s)− y(s)‖, sup

t−h2(t)≤s≤t
‖x(s)− y(s)‖

}

=D1 max

{
sup

t−h1(t)≤s≤t
‖x(s)− y(s)‖, sup

t−h2(t)≤s≤t
‖x(s)− y(s)‖

}
,

where:
D1 := 1 + λ1h2 + λ2h4.

Thus, we can conclude that:

|W1(t, xt)−W1(t, yt)| ≤ D1 max
{
‖x(s)− y(s)‖[t−h1(t),t], ‖x(s)− y(s)‖[t−h2(t),t]

}
.

The last inequality shows that the LKF W1(t, xt) satisfies the locally Lipschitz condition.
Hence, the satisfaction of the condition (A1) of Burton ([1], Theorem 4. 2.9) was shown.

For the next step, from the definition of Z(t, x), it follows that:

Z(t, x) =
2

∑
i=1

λi

t∫
t−hi(t)

‖x(s)‖ds ≤ λ1h1(t) sup
t−h1(t)≤s≤t

‖x(s)‖+ λ2h2(t) sup
t−h2(t)≤s≤t

‖x(s)‖

≤ λ2h2 sup
t−h1(t)≤s≤t

‖x(s)‖+ λ2h4 sup
t−h2(t)≤s≤t

‖x(s)‖.

Thus, we get:

Z(t, x) ≤ λ1h2‖x(s)‖[t−h1(t),t] + λ2h4‖x(s)‖[t−h2(t),t].
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As for the next step, using some simple calculations, we find:

Z(t2, x)− Z(t1, x) =
2

∑
i=1

λi

t2∫
t2−hi(t2)

‖x(s)‖ds−
2

∑
i=1

λi

t1∫
t1−hi(t1)

‖x(s)‖ds

=
2

∑
i=1

λi

t2∫
t2−hi(t2)

‖x(s)‖ds−
2

∑
i=1

λi

t1∫
t1−hi(t1)

‖x(s)‖ds

+
2

∑
i=1

λi

t2−hi(t2)∫
t1−hi(t1)

‖x(s)‖ds−
2

∑
i=1

λi

t2−hi(t2)∫
t1−hi(t1)

‖x(s)‖ds

=
2

∑
i=1

λi

t2∫
t1

‖x(s)‖ds−
2

∑
i=1

λi

∫ t2−hi(t2)

t1−hi(t1)
‖x(s)‖ds

≤
2

∑
i=1

λi

t2∫
t1

‖x(s)‖ds

≤(λ1 + λ2) sup
t1≤s≤t2

‖x(s)‖(t2 − t1) = M(t2 − t1),

where:
M = (λ1 + λ2) sup

t1≤s≤t2

‖x(s)‖, 0 < t1 < t2 < ∞.

Thus, the satisfaction of the condition (A2) of Burton ([1], Theorem 4. 2.9) was proven.
As for the next step, we calculate the time derivative of the LKF W1(t, xt) in (6) along

the system of DDEs (4). Then, we can obtain that:

d
dt

W1(t, xt) =
n

∑
i=1

x′ i(t)xi(t + 0) + λ1‖x(t)‖ − λ1‖x(t− h1(t))‖ × (1− h′1(t))

+ λ2‖x(t)‖ − λ2‖x(t− h2(t))‖ × (1− h′2(t)). (7)

We now consider the first term of the equality (7). Via the condition (C1) and some
elementary calculations, we have that:

n

∑
i=1

xi(t + 0)x′ i(t) ≤
n

∑
i=1

aii|xi(t)|+
n

∑
i=1

n

∑
j=1,j 6=i

∣∣aji
∣∣ |xi(t)|

+
n

∑
i=1

n

∑
j=1

∣∣bij
∣∣ ∣∣Fj(x(t− h1(t)))

∣∣

+
n

∑
i=1

n

∑
j=1

∣∣cij
∣∣ ∣∣Gj(x(t− h2(t)))

∣∣
=

n

∑
i=1

(
aii(t) +

n

∑
j=1,j 6=i

∣∣aji(t)
∣∣)|xi(t)|

+ ‖B‖ ‖F(x(t− h1(t)))‖+ ‖C‖ ‖G(x(t− h2(t)))‖
≤− a0‖x(t)‖+ ‖B‖ ‖F(x(t− h1(t)))‖+ ‖C‖ ‖G(x(t− h2(t)))‖. (8)
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From this point of view, combining (7) and (8) and using the conditions of (3), it
follows that:

d
dt

W1(t, xt) ≤− a0‖x(t)‖+ ‖B‖ ‖F(x(t− h1(t)))‖+ ‖C‖ ‖G(x(t− h2(t)))‖

+ λ1‖x(t)‖ − λ1‖x(t− h1(t))‖ × (1− h′1(t))

+ λ2‖x(t)‖ − λ2‖x(t− h2(t))‖ × (1− h′2(t))

≤− a0‖x(t)‖+ ‖B‖ ‖F(x(t− h1(t)))‖+ ‖C‖ ‖G(x(t− h2(t)))‖
+ λ1‖x(t)‖ − λ1‖x(t− h1(t))‖ × (1− h5)

+ λ2‖x(t)‖ − λ2‖x(t− h2(t))‖ × (1− h6)

≤− a0‖x(t)‖+ ‖B‖ ‖F(x(t− h1(t)))‖+ ‖C‖ ‖G(x(t− h2(t)))‖
+ λ1‖x(t)‖ − λ1(1− h0)‖x(t− h1(t))‖
+ λ2‖x(t)‖ − λ2(1− h0)‖x(t− h2(t))‖
≤− a0‖x(t)‖+ f0‖B‖ ‖x(t− h1(t))‖+ g0‖C‖ ‖x(t− h2(t))‖
+ λ1‖x(t)‖ − λ1(1− h0)‖x(t− h1(t))‖
+ λ2‖x(t)‖ − λ2(1− h0)‖x(t− h2(t))‖.

Since λ1 and λ2 are arbitrary positive constants, let λ1 = f0‖B‖
1−h0

and λ2 = g0‖C‖
1−h0

. Then,
keeping in the mind the condition (C2), we conclude that:

d
dt

W1(t, xt) ≤ −
[

a0 −
f0‖B‖
1− h0

− g0‖C‖
1− h0

]
‖x(t)‖

= − 1
1− h0

[a0(1− h0)− f0‖B‖ − g0‖C‖]‖x(t)‖

≤ −K0‖x(t)‖, (9)

where:
K0 = δ0(1− h0)

−1.

Hence, from (9), it is seen that the derivative d
dt W1(t, xt) is negative definite. Thus,

the condition (A3) of Burton ([1], Theorem 4. 2.9) was satisfied. Hence, all the conditions
of (A1)–(A3) of Burton ([1], Theorem 4. 2.9) were satisfied. The whole discussion proves
that the zero solution of the nonlinear unperturbed system of DDEs (4) with two mul-
tiple time-varying delays is uniformly asymptotically stable. This completes the proof
of Theorem 3.

Theorem 4. Let the conditions (C1) and (C2) of Theorem 3 hold. Then the norm of solutions
of the unperturbed system of DDEs (4) with two multiple time-varying delays are integrable
in the sense of Lebesgue on R+ = [0, ∞).

Proof. The proof of this theorem depends upon the LKF W1(t, xt). Via the conditions (C1)
and (C2), as before we obtain the inequality:

d
dt

W1(t, xt) ≤ −K0‖x(t)‖. (10)

Since d
dt W1(t, xt) is negative definite, the LKF W1(t, xt) is decreasing. Keeping in mind

this fact and integrating the inequality (10), we obtain:

K0

t∫
t0

‖x(s)‖ds ≤W1(t0, φ(t0))−W1(t, xt) ≤W1(t0, φ(t0)) ≡ K1 > 0
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for all t ≥ t0. This inequality clearly implies:

∞∫
t0

‖x(s)‖ds ≤ K−1
0 W1(t0, φ(t0)) = K−1

0 K1 < ∞.

Thus, the norm of the solutions of the unperturbed system of DDEs (4) with multiple
two time-varying delays is integrable in the sense of Lebesgue on R+ = [0, ∞). Hence,
the proof of Theorem 4 is completed.

In a particular case of the unperturbed system of DDEs (4) with two multiple time-
varying delays, we now give an example, Example 1, to show that the conditions of (C1)
and (C2) of Theorem 3 and Theorem 4 can hold.

Example 1. Consider the following system of non-linear DDEs with two multiple time-varying
delays: (

x′1
x′2

)
=

(
−25− t

t+1
t

t+1
t

t+1 −25− t
t+1

)(
x1
x2

)

+

(
3 2
2 3

) sin x1

(
t− 1

4 |sin t|
)

sin x2

(
t− 1

4 |sin t|
) 

+

(
2 1
1 2

) sin x1

(
t− 1

2 |sin t|
)

sin x2

(
t− 1

2 |sin t|
) , (11)

where h1(t) = 1
4 |sin t| and h2(t) = 1

2 |sin t| are two multiple time-varying delays, and t ≥ 1.

From this point of view, we compare both the system of DDEs (11) and DDEs (4) with
two multiple time-varying delays. Hence, we derive that:

A(t) =
(
−25− t

t+1
t

t+1
t

t+1 −25− t
t+1

)
,

B =

(
3 2
2 3

)
, C =

(
2 1
1 2

)
,

F(x(t− h1(t))) = F(x(t− t
4
|sin t|)) =

 sin x1

(
t− 1

4 |sin t|
)

sin x2

(
t− 1

4 |sin t|
) ,

F(0) = 0, x = (x1, x2)
T ,

G(x(t− h2(t))) = G(x(t− 1
2
|sin t|)) =

 sin x1

(
t− 1

2 |sin t|
)

sin x2

(
t− 1

2 |sin t|
) ,

G(0) = 0, x = (x1, x2)
T .

Let,

u = x(t− 1
4
|sin t|), u1 = x1(t−

1
4
|sin t|), u2 = x2(t−

1
4
|sin t|),

v = y(t− 1
4
|sin t|, v1 = y1(t−

1
4
|sin t|), v2 = y2(t−

1
4
|sin t|)
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and

υ = x(t− 1
2
|sin t|), υ1 = x1(t−

1
2
|sin t|), υ2 = x2(t−

1
2
|sin t|),

ω = y(t− 1
2
|sin t|, ω1 = y1(t−

1
2
|sin t|), ω2 = y2(t−

1
2
|sin t|).

In view of the matrix A(t), it is clear that:

a11(t) + |a21(t)| = −25− t
t + 1

+
t

t + 1
= −25 < −24 = −a0

a22(t) + |a12(t)| = −25− t
t + 1

+
t

t + 1
= −25 < −24 = −a0.

Then,

aii(t) +
2

∑
j=1,j 6=i

∣∣aji(t)
∣∣ < −24 = −a0 for all t ∈ R+.

Next, by some simple calculations, we obtain:

‖B‖ = 5, ‖C‖ = 3,

and

‖F(u)− F(v)‖ =
∥∥∥∥( sin u1 − sin v1

sin u2 − sin v2

)∥∥∥∥
=|sin u1 − sin v1|+ |sin u2 − sin v2|

=2
∣∣∣∣cos

(
u1 + v1

2

)
sin
(

u1 − v1

2

)∣∣∣∣
≤|u1 − v1|+ |u2 − v2|
=‖u− v‖, f0 = 1.

h1(t) =
1
4
|sin t|,

0 = h1 ≤
1
4
|sin t| ≤ 1

4
= h2,

0 ≤ h′1(t) =
1
4

d
dt
|sin t| = 1

4
sin t
|sin t| × cos t ≤ 1

4
= h5 < 1.

‖G(υ)− G(ω)‖ =
∥∥∥∥( sin υ1 − sin ω1

sin υ2 − sin ω2

)∥∥∥∥ ≤ ‖υ−ω‖, g0 = 1,

h2(t) =
1
2
|sin t|,

0 = h3 ≤
1
2
|sin t| ≤ 1

2
= h4,

0 ≤ h′2(t) =
1
2

d
dt
|sin t| = 1

2
sin t
|sin t| × cos t ≤ 1

2
= h6 < 1.

Assume that:

h0 = max{h5, h6} = max
{

1
4

,
1
2

}
=

1
2

.

Considering the statement of condition (C2) and the above calculations, we have:

a0(1− h0)− f0‖B‖ − g0‖C‖ = 24
(

1− 1
2

)
− 5− 3 = 4 ≥ 4 = δ0.



Axioms 2021, 10, 138 12 of 20

From this point of view, it follows that all the conditions of Theorems 3 and 4,
i.e., the conditions (C1) and (C2) hold. For this reason, the zero solution of the system
of DDEs (11) with two multiple time-varying delays is uniformly asymptotic stable as well
as the norm of solutions of the same system are integrable.

Here, Example 1 was solved using MATLAB software. Indeed, the given example was
solved using the 4th order Runge–Kutta method in MATLAB. The graphs of Figures 1 and 2
show the behaviors of paths of the solutions x1(t), x2(t) of Example 1, respectively,
for h1(t) = 1

4 |sin t|, h2(t) = 1
2 |sin t|, t ≥ 1, and different initial values.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
1

(t
)

x1(1)=1

x1(1)=0.5

x1(1)=-1

Figure 1. This figure shows that the solution x1(t) of the system of DDEs (11) with two multiple
time-varying delays is uniformly asymptotically stable and the norm of this solution is integrable
for h1(t) = 1

4 |sin t|, h2(t) = 1
2 |sin t|, t ≥ 1, and different initial values.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
2
(t

)

x2(1)=1

x2(1)=0.5

x2(1)=-1

Figure 2. This figure shows that the solution x2(t) of the system of DDEs (11) with two multiple
time-varying delays is uniformly asymptotically stable and the norm of this solution is integrable
for h1(t) = 1

4 |sin t|, h2(t) = 1
2 |sin t|, t ≥ 1 , and different initial values.
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We now present our third main result of this paper related to the boundedness
of solutions of the perturbed nonlinear system of DDEs (2) with three multiple time-varying
delays.

5. Boundedness of Solutions

For the boundedness of solutions of the perturbed system of DDEs (2) with three multi-
ple time-varying delays, in addition to the conditions (C1) and (C2), we need the following
condition:

(C3) There exist positive constants a0, f0, g0, h0, δ0 from (C1) and (C2), L and a continuous
function p0 ∈ C(R,R) such that:

‖P(t, x(t), x(t− h3(t)))‖ ≤ |p0(t)| ‖x(t)‖ for all t ∈ R+, x, x(t− h3(t)) ∈ Rn,

where:
∞∫

0

|p0(s)|ds ≤ L.

Theorem 5. Let conditions (C1)–(C3) hold. Then the solutions of the perturbed system of DDEs
(2) with three multiple time-varying delays are bounded as t→ +∞.

Proof. As in the previous theorems, the proof of this theorem also depends upon the LKF
W1(t, xt). From the conditions (C1)–(C3), we can derive:

d
dt

W1(t, xt) ≤ −K0‖x(t)‖+ ‖P(t, x(t), x(t− h3(t)))‖

≤ |p0(t)| ‖x(t)‖
≤ |p0(t)|W1(t, xt). (12)

Integrating the inequality (12) and using the condition (C3), we obtain that:

W1(t, xt) ≤W1(0, φ(0)) exp(
t∫

0

|p0(s)|ds).

≤W1(0, φ(0)) exp(
∞∫

0

|p0(s)|ds)

≤W1(0, φ(0)) exp(L).

Let,
M = W1(0, φ(0)) exp(L) > 0. (13)

Using (13) and the definition of the LKF W1(t, xt), we have:

‖x(t)‖ ≤ ‖x(t)‖+
2

∑
i=1

λi

t∫
t−hi(t)

‖x(s)‖ds = W1(t, xt) ≤ M,

i.e.,
‖x(t)‖ ≤ M for all t ≥ t0 ≥ 0.

By calculating the limit of this inequality as t→ +∞, it is derived that:

lim
t→+∞

‖|x(t)|‖ ≤ lim
t→+∞

M = M.
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Then, we can conclude that the solutions of the perturbed system of nonlinear DDEs
(2) with three multiple time-varying delays are bounded as t → +∞. Thus, Theorem 5 is
proven.

In a particular case of the perturbed system of DDEs (2) with three multiple time-
varying delays, we now give Example 2, to show that the conditions of (C1)–(C3) of Theo-
rem 5 can be provided.

Here, Example 2 was solved using MATLAB software. Indeed, the given example was
solved using the 4th order Runge–Kutta method in MATLAB. The graphs of Figures 3 and 4
show the behaviors of paths of the solutions x1(t), x2(t) of Examples 2, respectively,
for h1(t) = 1

4 |sin t|, h2(t) = 1
2 |sin t|, t ≥ 1, and different initial values.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
1
(t

)

x1(1)=1

x1(1)=0.5

x1(1)=-1

Figure 3. This figure shows that the solution x1(t) of the perturbed nonlinear system of DDEs (14)
with three time-varying delays is bounded for h1(t) = 1

4 |sin t|, h2(t) = 1
2 |sin t|, h3(t) = 1

6 |sin t|,
t ≥ 1, and different initial values.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
2

(t
)

x2(1)=1

x2(1)=0.5

x2(1)=-1

Figure 4. This figure shows that the solution x2(t) of the perturbed nonlinear system of DDEs (14)
with three time-varying delays is bounded for h1(t) = 1

4 |sin t|, h2(t) = 1
2 |sin t|, h3(t) = 1

6 |sin t|,
t ≥ 1, and different initial values.
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Example 2. Consider the following nonlinear system of DDEs with three multiple time-varying
delays: (

x′1
x′2

)
=

(
−25− t

t+1
t

t+1
t

t+1 −25− t
t+1

)(
x1
x2

)

+

(
3 2
2 3

) sin x1

(
t− 1

4 |sin t|
)

sin x2

(
t− 1

4 |sin t|
) 

+

(
2 1
1 2

) sin x1

(
t− 1

2 |sin t|
)

sin x2

(
t− 1

2 |sin t|
) 

+

 x1 exp(t)
1+exp(2t)+x2

1(t−
1
6 |sin t|)

x2 exp(t)
1+exp(2t)+x2

2(t−
1
6 |sin t|)

, (14)

where h1(t) = 1
4 |sin t|, h2(t) = 1

2 |sin t|, and h3(t) = 1
6 |sin t| are three multiple time-varying

delays, and t ≥ 1.

If nonlinear system of DDEs (14) and the perturbed system of DDEs (2) with three
multiple time-varying delays are compared, then the condition (C1) and (C2) are satisfied,
since they were shown in Example 1. As for the condition (C3), it is clear that:

P(t, x(t), x(t− h3(t))) = P(t, x(t), x(t− 1
6
|sin t|)) =

 x1 exp(t)
1+exp(2t)+x2

1(t−
1
6 |sin t|)

x2 exp(t)
1+exp(2t)+x2

2(t−
1
6 |sin t|)

.

From this point of view, we derive that:

‖P(t, x(t), x(t− 1
6
|sin t|))‖ =

∥∥∥∥∥∥
 x1 exp(t)

1+exp(2t)+x2
1(t−

1
6 |sin t|)

x2 exp(t)
1+exp(2t)+x2

2(t−
1
6 |sin t|)

∥∥∥∥∥∥
=

|x1| exp(t)
1 + exp(2t) + x2

1(t−
1
6 |sin t|)

+
|x2| exp(t)

1 + exp(2t) + x2
2(t−

1
6 |sin t|)

≤ |x1| exp(t)
1 + exp(2t)

+
|x2| exp(t)
1 + exp(2t)

≤ exp(t)
1 + exp(2t)

[|x1|+ |x2|] = |p0(t)|‖x‖,

where:

|p0(t)| =
exp(t)

1 + exp(2t)
, ‖x‖ = |x1|+ |x2|.

Hence, we obtain:

∞∫
0

|p0(s)|ds =
∞∫

0

exp(s)
1 + exp(2s)

ds =
π

4
= L.

The obtained results shows that the conditions of (C1)–(C3) of Theorem 5 can hold.
Thus, all the solutions of the nonlinear system of DDEs (14) with three multiple time-
varying delays are bounded as t→ ∞.

In Figures 3 and 4, the system of DDEs (14) was solved by MATLAB software and
the trajectories of the solutions were drawn for when h1(t) = 1

4 |sin t|, h2(t) = 1
2 |sin t|,

h3(t) = 1
6 |sin t|, t ≥ 1, and different initial values.
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6. Discussion and Contribution

We first compare the conditions Theorems 3 with those of the main result of Ren
and Tian ([33], Theorem 1). We also explain the contributions of the next two results,
Theorems 4 and 5, of this paper to the relevant literature by the following items, respec-
tively.

(1) The nonlinear perturbed system of DDEs (2) extend and improve the linear system
of DDEs (1) (see Tian and Ren [33], Theorem 1) from a linear system of the DDEs with
a time-varying delay to the a class of non-linear systems of DDEs with three multiple
time-varying delays. Next, in the main result of Tian and Ren ([33], Theorem 1), see
the above Theorem 2, the satisfaction of the following LMI is very difficult:

Ψ(α) =

Φ(α)− ΓT<(α)Γ− He(ΓT
[
(1− α)NT

1
αNT

2

]
) ∗

αNT
1 + (1− α)NT

2 −Q

 < 0

since the matrix Ψ(α) has numerous terms. This fact can be seen clearly, when we look at
([33], Theorem 1) and the above Theorem 2. Hence, it is clear that this condition can lead
conservatism, computational complexity, and difficulty in application fields. However,
here, we have very simple conditions, (C1) and (C2) for our stronger result of uniformly
asymptotically stability, Theorem 3, instead of asymptotically stability result in ([33],
Theorem 1). For sake of brevity, there is no need for more information

(2) To prove Theorem 1, the following LKF V(xt),

V(xt) =ηT(t)Pη(t) +
t∫

t−h1

xT(s)Q1x(s)ds +
t−h1∫

t−h2

xT(s)Q2x(s)ds

+ h1

t∫
t−h1

t∫
u

ẋT(s)Q3 ẋ(s)dsdu + h12

t−h1∫
t−h2

t∫
u

ẋT(s)Q4 ẋ(s)dsdu (15)

with

η(t) =

[
xT(t)

t∫
t−h2

xT(s)ds
t−h1∫

t−h2

xT(s)ds
t∫

t−h1

t∫
u

xT(s)dsdu
t∫

t−h1

t∫
u

t∫
s

xT(r)drdsdu

]T

is defined by Ren and Tian ([33], Theorem 1). Instead of the LKF (15), we defined
the following LKF:

W1(t, xt) := ‖x(t)‖+
2

∑
i=1

λi

t∫
t−hi(t)

‖x(s)‖ds. (16)

In spite of the non-linear unperturbed system of DDEs (2) having three multiple
time-varying delays, the LKF (16) is very simple and more convenient and effective.
For the particular case of our theorem, Theorem 3, to get the main result of Ren and
Tian ([33], Theorem 1) under very less conservative and optimal conditions, we need
the following LKF:

W0(t, xt) := ‖x(t)‖+ λ

t∫
t−h(t)

‖x(s)‖ds, (17)

which is a particular case of the LKF (16).
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(3) In Ren and Tian ([33], Theorem 1), differentiating the LKF (15) and using the system
of DDEs (1), it was derived that:

V̇(xt) =2ηT(t)Pη̇(t) + xT(t)Q1x(t)− xT(t− h1)Q1x(t− h1)

+ xT(t− h1)Q2x(t− h1)− xT(t− h2)Q2x(t− h2) + h2
1 ẋT(t)Q3 ẋ(t)

+ h2
12 ẋT(t)Q4 ẋ(t)− h1

t∫
t−h1

ẋT(s)Q3 ẋ(s)ds− h12

t−h1∫
t−h2

ẋT(s)Q4 ẋ(s)ds

=ξT(t){He(ΣT
1 PΣ2) + εT

1 Q1ε1 − εT
2 Q1ε2 + εT

2 Q2ε2

− εT
4 Q2ε4 + h2

1εT
0 Q3ε0 + h2

12εT
0 Q4ε0}ξ(t)}

−h1

t∫
t−h1

ẋT(s)Q3 ẋ(s)ds− h12

t−h1∫
t−h2

ẋT(s)Q4 ẋ(s)ds (18)

with
ξ(t) =

[
xT(t) xT(t− h1) xT(t− h(t)) xT(t− h2) ϕT

1 (t) ϕT
2 (t) ϕT

3 (t)
]T ,

ϕ1(t) =

[
1
h1

t∫
t−h1

xT(s)ds 1
h(t)−h1

t−h1∫
t−h(t)

xT(s)ds 1
h2−h(t)

t−h(t)∫
t−h2

xT(s)ds

]T

,

ϕ2(t) =

[
1
h2

1

t∫
t−h1

t∫
u

xT(s)dsdu 1
(h(t)−h1)

2

t−h1∫
t−h(t)

t−h1∫
u

xT(s)dsdu 1
(h2−h(t))2

t−h(t)∫
t−h2

t−h(t)∫
u

xT(s)ds

]T

,

ϕ3(t) =

[
1
h3

1

t∫
t−h1

t∫
u

t∫
v

xT(s)dsdudv 1
(h(t)−h1)

3

t−h1∫
t−h(t)

t−h1∫
u

t−h1∫
v

xT(s)dsdudv

1

(h2 − h(t))3

t−h(t)∫
t−h2

t−h(t)∫
u

t−h(t)∫
v

xT(s)dsdvdu


T

. (19)

However, let h1(t) = h(t). It is interesting that calculating the time derivative
of the LKF given by (17) and using the system of DDEs (1), we obtain:

d
dt

W0(t, xt) =
n

∑
i=1

x′ i(t)xi(t + 0) + λ1‖x(t)‖ − λ1‖x(t− h(t))‖ × (1− h′(t)). (20)

The equality (20) has a very simple form than those given by (18) and (19). Indeed,
the inequality (20) leads very to less conservative conditions for the negative defi-
niteness of the time derivative d

dt W0(t, xt) than those given by Ren and Tian ([33],
Theorem 1) for the negative definiteness of d

dt V(xt). Here, we would not like to give
the details of the discussions for the sake of brevity. The less restrictive conditions
of Theorem 3 can be followed with a comparison made between the conditions of Ren
and Tian ([33], Theorem 1) and our Theorem 3.

(4) To prove Theorem 2, which is given above, firstly, three lemmas, Lemmas 1–3, are
given by Ren and Tian [33]. Then, based upon the integral and matrix inequalities
therein, a new delay-dependent stability criterion via Theorem 2 is proven in terms
of a linear matrix inequality, see Ren and Tian [33], Theorem 1.
In this paper, we define a more suitable LKF (6) and depend upon Burton [1], (Theo-
rem 4. 2.9), to prove Theorems 3–5. From this point of view, Ren and Tian ([33], Theo-
rem 1) investigated the asymptotic stability of the linear system of DDEs (1). Here,
we investigate the uniformly asymptotically stability of the zero solution and integra-
bility of the norm of solutions of an unperturbed system of DDEs (4) as well as the
boundedness of solutions of the perturbed system of DDEs (2). The result of Theorem
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3, the uniformly asymptotically stability includes and implies the asymptotic stability
of the linear system of DDEs (1), i.e., but the converse is not true.
As a brief summary, here, we extend and improve the result of Ren and Tian ([33],
Theorem 1), and obtain this result under very less conservative conditions and make
it more optimal than before. Next, we also obtain two new results on the qualitative
properties of the nonlinear unperturbed system of DDEs (4) and as well as the nonlin-
ear perturbed system of DDEs (2), (see Theorems 4 and 5). The applicability of our
results can be done easily because of the form of the new less restrictive conditions
of Theorems 3–5.

(5) In this particular case, two nonlinear Examples 1 and 2 with two and three time-
varying delays, respectively, are given. These examples satisfy the conditions of Theo-
rems 3–5 and they were solved depending upon the 4th order Runge–Kutta method.
The trajectories of these examples are plotted by MATLAB software. The stability,
integrability, and boundedness of the solutions can be followed clearly.

(6) An advantage of the new and optimal LKF (6) used in the proof of Theorem 5 is to
eliminate using Gronwall’s inequality for the boundedness of solutions at infinity.
A comparison of Theorems 3–5 and those in the literature also shows that the condi-
tions of Theorems 3–5 are more general, simple, and convenient for applications.

7. Conclusions

In this paper, the unperturbed system of DDEs (4) with two multiple time-varying
delays and the perturbed system of DDEs (2) with three multiple time-varying delays are
taken into consideration. To the best of the authors’ knowledge, the qualitative properties
of the systems of DDEs (2) and (4) with multiple time-varying delays were not investigated
in the relevant literature until this time and the results of this article are new, original, and
have scientific novelty.

Indeed, this paper is comprised of three new results, Theorems 3–5, and two new
examples, Examples 1 and 2. Theorems 3–5 are related to the uniformly asymptotically
stability of zero solution and the integrability of solutions of the non-perturbed system
of DDEs (4) as well as the boundedness of solutions of the perturbed system of the DDEs
(2), respectively. The technique used to prove Theorems 3–5 depends upon a new LKF and
the LKF method. In fact, the real advantage of the new LKF is that it can pioneer to more
optimal, general, and less conservative new qualitative results and also eliminate the use
of Gronwall’s inequality for the boundedness of solutions.

The established sufficient conditions of Theorems 3–5 are more general, simple, less
conservative, and more convenient to apply than those available from the literature.

The results of this paper also improve and extend the result of Ren and Tian ([33],
Theorem 1) and add two new results on the qualitative properties of solutions and con-
tributes to the topic and relevant literature. The given examples illustrate the particular
applications of the new results of this paper.
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