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1. Introduction

Given a compact space K, it is well known that the homeomorphism group Homeo(K)
is a topological group with the compact-open topology [1]. If X is assumed to be only
Tychonoff, then for every compact subset K ⊆ X, the group HomeoK(X) of homeomor-
phisms supported in K (i.e., identity on X\K) is a topological group with the compact-open
topology; however, the full homeomorphism group Homeo(X) equipped with the compact-
open topology need not be a topological group [2]. Nevertheless, Homeo(X) can be turned
into a topological group by embedding it into Homeo(βX), the homeomorphism group of
the Stone-Čech compactification of X. The latter topology has also been studied under the
name of zero-cozero topology [3,4].

For a Tychonoff space X, let K (X) denote the family of compact subsets of X. In light
of the foregoing, the group Homeocpt(X) :=

⋃
K∈K (X)

HomeoK(X) of the compactly sup-

ported homeomorphisms of X admits three seemingly different topologies, listed from the
finest to the coarsest:

(a) the finest topology making all inclusions HomeoK(X) // Homeocpt(X) continuous
(i.e., the colimit in the category of topological spaces and continuous functions);

(b) the finest group topology making all inclusions HomeoK(X) // Homeocpt(X) con-
tinuous (i.e., the colimit in the category of topological groups and continuous homo-
morphisms); and

(c) the topology induced by Homeo(βX).

Recall that the groups {HomeoK(X)}K∈K (X) are said to have the Algebraic Colimit
Property (ACP) if the first and the second topologies coincide [5,6]. Recall further that a
space X is said to have the Compactly Supported Homeomorphism Property (CSHP) if the first
and the last topologies coincide [5]), in which case all three topologies are equal.

In a previous work, the authors gave sufficient conditions for a finite product of
ordinals to have CSHP ([5], Theorem D(c)).The main result of this paper is that the same
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conditions are also necessary, thereby providing a complete characterization of CSHP
among such spaces.

Theorem A. Let X = λ1 × · · · λk × µ1 × · · · × µl equipped with the product topology, where
λ1, . . . , λk are infinite limit ordinals and µ1, . . . , µk are successor ordinals. The space X has CSHP
if and only if there is an uncountable regular cardinal κ such that λ1 = · · · = λk = κ and µi ≤ κ
for every i = 1, . . . , l.

Example 1. By Theorem A, the spaces ω1 ×ω2 and ω1 × (ω1 + 1) (with the product topology)
and ω2 + ω1 (sum of ordinals with the order topology) do not have CSHP. Furthermore, the disjoint
union (coproduct) ω1 qω2 does not have CSHP either (see Corollary 2).

The proof of Theorem A is based on results of general applicability about CSHP of
products and coproducts of spaces. For an infinite cardinal τ, a subset S of a space X is
said to be τ-discrete in X if every subset of S of cardinality less than τ is closed in X. If S is
τ-discrete in X, then every subset of S of cardinality less than τ is discrete. Being τ-discrete
in X is equivalent to being closed and discrete in a certain finer topology (Proposition 1).
Recall that the cofinality cf(I,≤) of a partially ordered set (I,≤) is the smallest cardinal of a
cofinal set contained in I.

Theorem B. Let Y be a compact Hausdorff space, Z be a zero-dimensional locally compact Haus-
dorff pseudocompact space that is not compact, and τ := cf(K (Z),⊆). If Homeo(Y) contains a
τ-discrete subset of cardinality τ that is not closed, then the product Y× Z does not have CSHP.

Recall that the support of a homeomorphism h of a space X is

supp h := clX{x ∈ X | h(x) 6= x}.

Theorem C. Let Y be a compact Hausdorff space, Z a locally compact Hausdorff space, and
{Kα}α<τ a cofinal family in K (Z), where τ is an infinite cardinal. Suppose further that

(I) Homeo(Y) contains a τ-discrete subset of cardinality τ that is not closed; and
(II) Homeocpt(Z) contains a net (gβ)β<τ of distinct elements such that lim gβ = idZ and

supp gβ * Kα whenever α < β.

Then the coproduct (disjoint union) Y q Z does not have CSHP.

In order to invoke Theorems B and C, one needs to ensure that Homeo(Y) contains a
τ-discrete subset of cardinality τ that is not closed. For spaces that are of interest to us in
this paper, this is guaranteed by the next theorem.

Theorem D. Let α be an infinite limit ordinal with τ := cf(α), and put Y = α + 1 with the order
topology. Then Homeo(Y) contains a τ-discrete subset of cardinality τ that is not closed.

The paper is structured as follows. In Section 2, we provide some preliminary results
that are used throughout the paper. In Section 3, we prove Theorems B and C, while the
proof of Theorem D is presented in Section 4. Lastly, Theorem A is proven in Section 5.

2. Preliminaries

Let τ be an infinite cardinal. For a topological space (X, T ), the subsets of X of
cardinality less than τ form a directed system with respect to inclusion. We put

(X, T<τ) := colim{Y | Y ⊆ X, |Y| < τ},

where the colimit is formed in the category Top of topological spaces and their continu-
ous maps.

Proposition 1. Let τ be an infinite cardinal and (X, T ) a topological space. A subset S ⊆ X is
τ-discrete in X if and only if S is closed and discrete in (X, T<τ).
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Proof. Suppose that S ⊆ X is τ-discrete. Then |S ∩Y| < τ for every Y ⊆ X with |Y| < τ,
and thus S ∩ Y is closed in X; in particular, S ∩ Y is closed Y. Therefore, S is closed in
(X, T<τ). Let s0 ∈ S. Then S\{s0} is also τ-discrete, and consequently, by the previous
argument, closed in (X, T<τ). Hence, the singleton {s0} is open in S in the topology
induced by (X, T<τ). This shows that S is discrete in (X, T<τ).

Conversely, suppose that S ⊆ X is closed and discrete in (X, T<τ). Let A ⊆ S be such
that |A| < τ. We show that A is closed in (X, T ). Let y0 ∈ X\A, and put Y := A ∪ {y0}.
Then |Y| < τ, and so S ∩Y is closed and discrete in Y. If y0 ∈ S, then S ∩Y = Y is discrete,
and so A = Y\{y0} is closed in Y. If y0 /∈ S, then S ∩ Y = A is closed in Y. In both cases,
y0 /∈ clY A, and therefore y0 /∈ clX A. This shows that A is closed in X, as desired.

Proposition 2. Let τ be an infinite cardinal, f : (X, T )→ (Y, T ′) be a continuous map between
Hausdorff spaces, and S a subset of X such that f|S is injective. If f (S) is τ-discrete in Y, then S is
τ-discrete in X.

Proof. By Proposition 1, it suffices to show that S is closed and discrete in (S, T<τ).
Put S′ := f (S). Since the < τ-topology is functorial, f : (X, T<τ)→ (Y, T ′<τ) is continuous,
and in particular, f|S : (S, T<τ)→ (S′, T ′<τ) is continuous and bijective. By Proposition 1,
(S′, T ′<τ) is discrete and S′ is closed in (Y, T ′<τ). Thus, (S, T<τ) is discrete, and furthermore

f (cl(X,T<τ) S) ⊆ cl(Y,T ′<τ)
S′ = S′. (1)

To show that S is closed in (X, T<τ), let s0 ∈ cl(X,T<τ) S. Then there is a net (sα) ⊆ S

such that sα
(X,T<τ)−−−−→ s0, and so f (sα)

(Y,T ′<τ)−−−−→ f (s0). By (1), f (s0) ∈ S′. Since S′ is discrete
in (Y, T ′<τ), the net ( f (sα)) is eventually constant. Therefore, (sα) is eventually constant,
because f|S is injective. Hence, s0 ∈ S, because (X, T ) is Hausdorff, and in particular,
(X, T<τ) is Hausdorff.

The next lemma allows one to show that a space does not have CSHP by constructing
a suitable τ-discrete set in its homeomorphism group.

Lemma 1. Let X be a topological space and {Xα}α∈I a directed system of subsets of X such that
X =

⋃
α∈I

Xα. Suppose that there is an infinite cardinal τ and a subset S ⊆ X such that:

(1) S is τ-discrete in X;
(2) |S ∩ Xα| < τ for every α ∈ I; and
(3) S is not closed in X.

Then X 6= colim
α∈I

Xα.

Proof. Let S ⊆ X be a subset with properties (1)–(3). By (1) and (2), S ∩ Xα is closed in X
for every α ∈ I; in particular, S ∩ Xα is closed in Xα for every α ∈ I. Thus, S is closed in
colim

α∈I
Xα. By (3), S is not closed in X. Therefore, the two topologies are distinct.

Lastly, recall that CSHP is inherited by clopen subsets.

Lemma 2 ([5], 5.3(b) and 5.6). Let X be a Tychonoff space.

(a) If A ⊆ X is a clopen subset and X has CSHP, then so does A.
(b) If X contains an infinite discrete clopen subset, then X does not have CSHP.

3. Products and Coproducts with Compact Spaces

In this section, we prove Theorems B and C. Before we prove Theorem B, we need a
technical proposition about the existence of cofinal subsets with small down-sets.

Proposition 3. Let (I,≤) be a poset and put τ := cf(I,≤). Then every cofinal subset of I contains
a cofinal subset J of cardinality τ such that |{b ∈ J | b ≤ a}| < τ for every a ∈ J.
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Proof. Let C ⊆ I be a cofinal subset. Without loss of generality, we may assume that
|C| = τ. Let C = {cα | α < τ} be an enumeration of C. We define {αγ}γ<τ inductively as
follows. We put α0 := 0. For 0 < γ < τ, suppose that αδ has already been defined for all
δ < γ. We observe that {cαβ

}β<γ is not cofinal in I, because its cardinality is smaller than τ.
Thus, {α < τ | (∀β < γ)(cα � cαβ

)} is non-empty. Put

αγ := min{α < τ | (∀β < γ)(cα � cαβ
)}.

Put J := {cαγ | γ < τ}. It follows from the construction of {αγ}γ<τ that

cαγ � cαβ
for every β < γ < τ. (2)

In other words, if cαγ ≤ cαβ
, then γ ≤ β. Therefore, |{b ∈ J | b ≤ a}| < τ for every

a ∈ J.
It remains to show that J is cofinal in I. To that end, let x ∈ I. Since C is cofinal in I,

the set {β < τ | x ≤ cβ} is non-empty. Put δ := min{β < τ | x ≤ cβ}. It follows from the
construction of δ that

cδ � cε for every ε < δ. (3)

It follows from the construction of the {αγ}γ<τ that they are strictly increasing, and in
particular, δ ≤ αδ. Thus, {µ < τ | δ ≤ αµ} is non-empty. Put γ := min{µ < τ | δ ≤ αµ}.
For every β < γ, one has αβ < δ, and thus, by (3), cδ � cαβ

. Consequently,

δ ∈ {α < τ | (∀β < γ)(cα � cαβ
)}.

Therefore,
αγ = min{α < τ | (∀β < γ)(cα � cαβ

)} ≤ δ.

Hence, αγ = δ, and x ≤ cδ = cαγ ∈ J.

Theorem B. Let Y be a compact Hausdorff space, Z be a zero-dimensional locally compact Haus-
dorff pseudocompact space that is not compact, and τ := cf(K (Z),⊆). If Homeo(Y) contains a
τ-discrete subset of cardinality τ that is not closed, then the product Y× Z does not have CSHP.

Proof. Since Y is compact and Z is pseudocompact, the product Y× Z is also pseudocom-
pact ([7], 3.10.27), and by Glicksberg’s Theorem ([8], Theorem 1), β(Y× Z) ∼= Y× βZ.

Let {Cα}α<τ be a cofinal family in (K (Z),⊆). Without loss of generality, we may
assume that each Cα is open in Z, and

⋂
α<τ

Cα 6= ∅. Using Proposition 3, one may pick a

cofinal subfamily {Kα}α<τ of {Cα}α<τ such that

|{β|Kβ ⊆ Kα}| < τ for every α < τ. (4)

Since Y is compact, the family {Y× Kα}α<τ is cofinal in (K (Y× Z),⊆); in particular,
it is directed.

Put G := Homeocpt(Y × Z) and Gα := HomeoY×Kα
(Y × Z). We construct a subset

S ⊆ G that satisfies the conditions of Lemma 1:

(1) S is τ-discrete in G;
(2) |S ∩ Gα| < τ for all α < τ; and
(3) idY×Z ∈ S\S.

This will show that G 6= colim
α<τ

Gα, and thus Y× Z does not have CSHP.
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Let S′ ⊆ Homeo(Y) be a τ-discrete subset such that |S′| = τ and S′ is not closed.
Without loss of generality, we may assume that idY ∈ S′\S′. Let S′ = { fα | α < τ} be an
injective enumeration of S′. For α < τ, put

hα : Y× Z −→ Y× Z

(y, z) 7−→
{
( fα(y), z) z ∈ Kα

(y, z) z /∈ Kα.
(5)

Since hα is a homeomorphism on the clopen set Y× Kα and hα is the identity on the
clopen set Y× (Z\Kα), one has hα ∈ G in for every α < τ.

Put S := {hα | α < τ}. We verify that S satisfies properties (1), (2), and (3).
(1) Let πY : Y× Z → Y and πZ : Y× Z → Z denote the respective projections and put

H := {h ∈ G | πZh = πZ}. (6)

Since H is a closed subgroup of G, it suffices to show that S is τ-discrete in H. Fix
z0 ∈

⋂
α<τ

Kα, and define ι0 : Y → Y× Z by ι0(y) = (y, z0). The composite

C (Y× βZ, Y× βZ)
C (βι0,Y×βZ) //C (Y, Y× βZ)

C (Y,πY) //C (Y, Y) (7)

is continuous ([7], 3.4.2), where the function spaces are equipped with the compact-open
topology. Thus, its restriction to H,

Γ : H −→ Homeo(Y)

h 7−→ πYhι0 (8)

is a continuous group homomorphism. The restriction Γ|S is injective (because Γ(hα) = fα),
and Γ(S) = S′ is τ-discrete in Homeo(Y). Therefore, by Proposition 2, S is τ-discrete in H.

(2) For β < τ, hβ ∈ S ∩ Gα if and only if (supp fβ) × Kβ = supp hβ ⊆ Y × Kα, or
equivalently, Kβ ⊆ Kα (supp fβ 6= ∅ because idY /∈ S). Therefore, by (4),

|S ∩ Gα| = |{β | Kβ ⊆ Kα}| < τ. (9)

(3) Since fα 6= idY for every α < τ, it follows that hα 6= idY×Z, and thus idY×Z /∈ S.
It remains to show that idY×Z ∈ S̄. To that end, let W be an entourage of the diagonal in
(Y× βZ)2. Then

{(u1, v1, u2, v2) | (u1, u2) ∈ U, (v1, v2) ∈ V} ⊆W (10)

for some entourage U of the diagonal in Y×Y and entourage V of the diagonal in βZ× βZ
([7], 8.2.1). Since idY ∈ S′, there is γ < τ such that (y, fγ(y)) ∈ U for every y ∈ Y.
Therefore, (y, z, βhγ(y, z)) ∈W for every (y, z) ∈ Y× βZ. Hence, idY×Z ∈ S̄.

Theorem C. Let Y be a compact Hausdorff space, Z a locally compact Hausdorff space, and
{Kα}α<τ a cofinal family in K (Z), where τ is an infinite cardinal. Suppose further that:

(I) Homeo(Y) contains a τ-discrete subset of cardinality τ that is not closed; and
(II) Homeocpt(Z) contains a net (gβ)β<τ of distinct elements such that lim gβ = idZ and

supp gβ * Kα whenever α < β.

Then the coproduct (disjoint union) Y q Z does not have CSHP.

Proof. Since Y is compact, one has β(Y q Z) = Y q βZ. The family {Y ∪ Kα}α<τ is cofinal
in (K (Y q Z),⊆); in particular, it is directed.

Put G := Homeocpt(Y q Z) and Gα := HomeoY∪Kα
(Y q Z). We construct a subset

S ⊆ G that satisfies the conditions of Lemma 1:
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(1) S is τ-discrete in G;
(2) |S ∩ Gα| < τ for all α < τ; and
(3) idYqZ ∈ S\S.

This will show that G 6= colim
α<τ

Gα, and thus Y q Z does not have CSHP.

Let S′ ⊆ Homeo(Y) be a τ-discrete subset such that |S′| = τ and S′ is not closed.
Without loss of generality, we may assume that idY ∈ S′\S′. Let S′ = { fα | α < τ} be an
injective enumeration of S′. For α < τ, put hα := fα q gα. Clearly, hα ∈ G, because Y and Z
are clopen subsets of Y q Z.

Put S := {hα | α < τ}. We verify that S satisfies properties (1), (2), and (3).
(1) Put H := {h ∈ G | h(Y) = Y}. Since Y is a compact-open subset of Y q Z,

the subgroup H is open (and in particular, closed) in G, and so it suffices to show that S is
τ-discrete in H. Let ιY : Y → Y q Z denote the canonical embedding. The composite

C (Y q βZ, Y q βZ)
C (βιY ,YqβZ) //C (Y, Y q βZ) (11)

is continuous, where the function spaces are equipped with the compact-open topology.
Thus, its restriction to H and corestriction to Homeo(Y) ⊆ C (Y, Y q βZ),

Γ : H −→ Homeo(Y)

h 7−→ h|Y (12)

is a continuous group homomorphism. The restriction Γ|S is injective (because Γ(hα) = fα),
and Γ(S) = S′ is τ-discrete in Homeo(Y). Therefore, by Proposition 2, S is τ-discrete in H.

(2) For β < τ, hβ ∈ S ∩ Gα if and only if (supp fβ) ∪ (supp gβ) = supp hβ ⊆ Y ∪ Kα,
or equivalently, supp gβ ⊆ Kα. By the assumptions on (gβ)β<τ , the latter is possible only if
β ≤ α. Therefore,

|S ∩ Gα| = |{β | supp gβ ⊆ Kα}| ≤ |α| < τ. (13)

(3) Since fα 6= idY for every α < τ, it follows that hα 6= idYqZ, and thus idYqZ /∈ S.
It remains to show that idYqZ ∈ S̄. To that end, let W be an entourage of the diagonal in
(Y q βZ)2. Then there is an entourage U of the diagonal in Y×Y and an entourage V of
the diagonal in βZ× βZ such that U ∪ V ⊆ W. Since lim gβ = idZ, there is α0 < τ such
that for (βgα(z), z) ∈ V for every z ∈ βZ and α ≥ α0. One has

|{ fα | α < α0}| ≤ |α0| < τ, (14)

and thus { fα | α < α0} is closed, because S′ is τ-discrete. Therefore,

idY ∈ S′\{ fα | α < α0} = { fα | α ≥ α0}. (15)

In particular, there is α1 ≥ α0 such that ( fα1(y), y) ∈ U for every y ∈ Y. Hence,

(βhα1(x), x) = (( fα1 q gα1)(x), x) ∈ U ∪V ⊆W (16)

for every x ∈ Y q βZ, as desired.

4. Construction of τ-Discrete Subsets

Theorem D. Let α be an infinite limit ordinal with τ := cf(α) and put Y := α + 1 with the order
topology. Then Homeo(Y) contains a τ-discrete subset of cardinality τ that is not closed.

The proof of Theorem D is broken down into several lemmas. First, the special case
where the ordinal has countable cofinality is proven. Then, the theorem is reduced to
the case where α = ωβ for an infinite limit ordinal β. (Here, and throughout this paper,
ωβ means ordinal exponentiation, not cardinal exponentiation.)
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Proposition 4. Let α be an infinite limit ordinal and put Y := α + 1 with the order topology.
Suppose that { f j}j∈J ⊆ Homeo(Y) is a net satisfying that for every ξ < α there is j0 ∈ J such
that f j|[0,ξ] = id[0,ξ] for every j ≥ j0. Then lim f j = idY in Homeo(Y).

Proof. Let U be an entourage of the diagonal ∆Y in Y× Y. Then U is a neighborhood of
the point (α, α) ∈ U, and so there is ξ < α such that (ξ, α]× (ξ, α] ⊆ U. Let j0 ∈ J be such
that f j|[0,ξ] = id[0,ξ] for every j ≥ j0. Then, for every j ≥ j0 and x ∈ Y,

( f j(x), x) ∈ ∆Y ∪ ((ξ, α]× (ξ, α]) ⊆ U, (17)

as desired.

Lemma 3. Let α be an infinite limit ordinal with countable cofinality and put Y := α + 1 with the
order topology. Then Homeo(Y) contains a countable subset that is not closed.

Proof. Let {αn}n<ω be a strictly increasing cofinal sequence in α. Let fn : Y → Y denote
the transposition

fn(x) :=


αn + 2 x = αn + 1
αn + 1 x = αn + 2
x otherwise.

(18)

Since fn is the identity for all but two isolated points, it is a homeomorphism of Y.
Furthermore, lim fn = idY in Homeo(Y) by Proposition 4, because the {αn}n<ω are cofinal
and increasing. Therefore, S := { fn | n < ω} is a countable subset that is not closed.

Lemma 4. Let β be an infinite limit ordinal with a strictly increasing cofinal family {βδ}δ<τ ,
put α := ωβ, and put Y := α + 1 with the order topology. Then Homeo(Y) contains a family of
non-trivial homeomorphisms { fδ}δ<τ such that

(a) fδ([ω
βδ+1, α]) ⊆ [ωβδ+1, α] for every δ < τ, and

(b) for every γ < τ and distinct δ1, δ2 ≤ γ,

fδ1(ω
βγ+1 + 1) 6= fδ2(ω

βγ+1 + 1). (19)

Proof. Fix an ordinal δ < τ. Since βδ < β, there is an ordinal ρδ such that β = βδ + 1 + ρδ.
Then α = ωβ = ωβδ+1ωρδ , and every x < α may be uniquely represented in the form

x = ωβδ+1ε + ωβδ m + η, (20)

where ε < ωρδ , m < ω, and η < ωβδ . Indeed, let

x = ων1 k1 + · · ·+ ωνn kn (21)

be the Cantor’s normal form of x, that is, x ≥ ν1 > · · · > νn and k1, · · · , kn are non-zero
natural numbers ([9], 2.26). Put η := ∑

νi<βδ

ωνi ki, where the sums are formed in the same

order as in the Cantor’s normal form. Clearly, η < ωβδ . For every i such that νi > βδ, there
is an ordinal µi such that νi := βδ + 1 + µi. Thus,
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x = ων1 k1 + · · ·+ ωνn kn

= ∑
νi>βδ

ωνi ki + ωβδ m + ∑
νi<βδ

ωνi ki︸ ︷︷ ︸
η

= ∑
νi>βδ

ωβδ+1+µi ki + ωβδ m + η

= ωβδ+1 ∑
νi>βδ

ωµi ki︸ ︷︷ ︸
ε

+ωβδ m + η

= ωβδ+1ε + ωβδ m + η, (22)

where m = 0 if νi 6= βδ for any i and m = ki0 if νi0 = βδ. (The uniqueness of this
representation follows from the uniqueness of the Cantor’s normal form.)

We construct now fδ. Let ϕδ : ω → ω be a bijection such that ϕδ(0) 6= 0. Put

fδ(ω
βδ+1ε + ωβδ m + η) :=


ωβδ+1ε + ωβδ ϕδ(m) + η η > 0
ωβδ+1ε + ωβδ(ϕδ(m− 1) + 1) η = 0, m > 0
ωβδ+1ε η = m = 0
α x = α.

(23)

It is clear that fδ 6= idY. We show that fδ ∈ Homeo(Y). First, we note that fδ is a
bijection, whose inverse is of the same form with ϕδ replaced with ϕ−1

δ . Thus, it suffices to
show that fδ is continuous. Let x ∈ Y be an infinite limit ordinal, and let {xj} ⊆ Y be a net
converging to x. Without loss of generality, we may assume that xj < x for every j and that
the {xj} are non-decreasing. We distinguish the cases used to define fδ.

Case 1. If x = ωβδ+1ε + ωβδ m + η, where η > 0, then without loss of generality,
we may assume that xj > ωβδ+1ε + ωβδ m, and thus xj = ωβδ+1ε + ωβδ m + ηj, where
0 < ηj and {ηj} converges to η. Therefore,

fδ(xj) = ωβδ+1ε + ωβδ ϕδ(m) + ηj −→ ωβδ+1ε + ωβδ ϕδ(m) + η = fδ(x). (24)

Case 2. If x = ωβδ+1ε + ωβδ m, where m > 0, then without loss of generality, we may
assume that xj > ωβδ+1ε + ωβδ(m− 1), and thus xj = ωβδ+1ε + ωβδ(m− 1) + ηj, where
0 < ηj and {ηj} converges to ωβδ . Therefore,

fδ(xj) = ωβδ+1ε + ωβδ ϕδ(m− 1) + ηj −→ ωβδ+1ε + ωβδ (ϕδ(m− 1)) + ωβδ = fδ(x). (25)

Cases 3 and 4. If x = ωβδ+1ε where ε ≤ ωρδ , then xj = ωβδ+1ε j + ωβδ mj + ηj where
ε j < ε. Since {xj} are non-decreasing, the {ε j} are non-decreasing. Put ε0 := sup ε j. Clearly,
ε0 ≤ ε. If ε0 = ε, then ωβδ+1ε j −→ ωβδ+1ε = x, and ωβδ+1ε j ≤ fδ(xj) ≤ ωβδ+1ε = x; hence,
fδ(xj) −→ x = fδ(x). If ε0 < ε, then

ωβδ+1(ε0 + 1) ≥ ωβδ+1(ε j + 1) ≥ xj −→ ωβδ+1ε, (26)

and thus ε0 + 1 = ε. Since xj > ωβδ+1ε0 eventually, without loss of generality, we may
assume that ε j = ε0 for all j, and 0 < mj and mj → ω. Since ϕδ is a bijection, it follows that
ϕδ(mj) −→ ω and ϕδ(mj − 1) −→ ω. Therefore,

f (xj) ≥ ωβδ+1ε0 + ωβδ min{ϕδ(mj − 1), ϕδ(mj)} −→ ωβδ+1ε0 + ωβδ ω = ωβδ+1ε = fδ(x). (27)

This shows that fδ and f−1
δ are continuous, and therefore fδ ∈ Homeo(Y).

Property (a) follows directly from the definition and the more general property of fδ

that for every ε ≤ ωρδ , if x ≥ ωβδ+1ε, then fδ(x) ≥ ωβδ+1ε.
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Lastly, we prove property (b). Let γ < τ and δ1, δ2 ≤ γ be distinct. There are ordinals
ζi such that βγ + 1 = βδi + 1 + ζi (for i = 1, 2). By the definition,

fδi (ω
βγ+1 + 1) = fδi (ω

βδi
+1+ζi + 1) = fδi (ω

βδi
+1ωζi + 1) (28)

= ωβδi
+1ωζi + ωβδi

+1 ϕδi (0) + 1 = ωβγ+1 + ωβδi
+1 ϕδi (0) + 1. (29)

Since δ1 6= δ2 and ϕδi (0) 6= 0, it follows that ωβδ1
+1 ϕδ1(0) 6= ωβδ2

+1 ϕδ2(0). Therefore,
one obtains fδ1(ω

βγ+1 + 1) 6= fδ2(ω
βγ+1 + 1), as desired.

Lemma 5. Let β be an infinite limit ordinal with a strictly increasing cofinal family {βδ}δ<τ ,
put α := ωβ, and put Y := α + 1 with the order topology. Let ψδ : [0, α] → [ωβδ + 1, α] denote
the homeomorphism defined by ψδ(x) := ωβδ + 1 + x. For f ∈ Homeo(Y), define Ψδ( f ) by

Ψδ( f ) : [0, α] −→ [0, α]

x 7−→
{

x x ∈ [0, ωβδ ]

ψδ f ψ−1
δ (x) x > ωβδ .

(30)

(a) Ψδ( f ) ∈ Homeo(Y) for every f ∈ Homeo(Y) and δ < τ.
(b) If f ∈ Homeo(Y) and δ < τ are such that f ([ωβδ+1, α])⊆ [ωβδ+1, α], then Ψδ( f )(x)= f (x)

for every x ∈ [ωβδ+1, α].
(c) For every family { fδ}δ<τ ⊆ Homeo(Y), the net {Ψδ( fδ)}δ<τ converges to idY in Homeo(Y).

Proof. (a) Let f ∈ Homeo(Y). Since Ψ( f ) is continuous on the clopen sets [0, ωβδ + 1)
and (ωβδ , α], it is continuous on Y. Furthermore, it is easily seen that Ψ( f )−1 = Ψ( f−1),
and thus Ψδ( f ) ∈ Homeo(Y).

(b) Let x ∈ [ωβδ+1, α]. Then x = ωβδ+1 + y for some y ∈ [0, α], and so

ψδ(x) = ψδ(ω
βδ+1 + y) = ωβδ + 1 + ωβδ+1 + y = ωβδ+1 + y = x. (31)

Thus, ψ−1
δ (x) = x, and f ψ−1

δ (x) = f (x). Therefore, ψδ f ψ−1
δ (x) = f (x), because

f (x) ∈ [ωβδ+1, α] by our assumption.
(c) Since {ωβδ}δ<τ is a strictly increasing cofinal family in α and Ψδ( fδ) is the identity

on [0, ωβδ ], it follows by Proposition 4 that lim Ψδ( fδ) = idY.

Proof of Theorem D. By Lemma 3, we may assume that τ > ω. Let

α = ωβ1 k1 + · · ·+ ωβn kn (32)

be the Cantor’s normal form of α, that is, α ≥ β1 > · · · > βn and k1, · · · , kn are non-zero
natural numbers ([9], 2.26). Since τ > ω, it follows that cf(βn) 6= 1, and so

cf(βn) = cf(ωβn) = τ.

The space ωβn + 1 embeds as a clopen subset into Y, and so Homeo(ωβn + 1) embeds as a
closed subgroup into Homeo(Y). Therefore, without loss of generality, we may assume
that α = ωβ, where β is an ordinal of uncountable cofinality.

Let {βδ}δ<τ be a strictly increasing cofinal family in β, and let { fδ}δ<τ be a family in
Homeo(Y) as provided by Lemma 4. Put hδ := Ψδ( fδ), where Ψδ is as in Lemma 5, and set
S := {hδ | δ < τ}. By Lemma 4(a), fδ([ω

βδ+1, α]) ⊆ [ωβδ+1, α] for every δ < τ, and thus by
Lemma 5(b),

hδ(x) = Ψδ( fδ)(x) = fδ(x) for every x ∈ [ωβδ+1, α]. (33)

We show that S is τ-discrete but not closed. (Since |S| ≤ τ by the construction, |S| = τ
follows from these two.) By Lemma 5(c), hδ = Ψδ( fδ) converges to idY. Since fδ 6= idY,
it follows that Ψδ( fδ) 6= idY. Thus, S is not closed.



Axioms 2021, 10, 155 10 of 12

Let C ⊆ τ be a subset such that |C| < τ. Put γ := sup C. Since τ itself is a regular cardi-
nal, γ < τ. Suppose that {hδj}j∈J is a net in {hδ | δ ∈ C} that converges to h ∈ Homeo(Y).
Then, in particular, lim hδj(ω

βγ+1 + 1) = h(ωβγ+1 + 1). Thus, by (33),

lim hδj(ω
βγ+1 + 1) = lim fδj(ω

βγ+1 + 1) = h(ωβγ+1 + 1). (34)

Since ωβγ+1 + 1 is an isolated point, so is its homeomorphic image h(ωβγ+1 + 1).
Therefore, the net is eventually constant, and so there is j0 ∈ J such that

fδj(ω
βγ+1 + 1) = hδj0

(ωβγ+1 + 1) for j ≥ j0.

Hence, by Lemma 4(b), δj = δj0 for every j ≥ j0. It follows that h = lim hδj = hδj0
∈ S, as

desired.

Corollary 1. Suppose that λ = α + ξ, where α is an ordinal, ξ > 0 is an infinite limit ordinal,
and α ≥ cf(ξ). Then X = λ does not have CSHP.

Proof. Put τ := cf(ξ). Without loss of generality, we may assume that τ > ω. (If τ = ω,
then ξ contains an increasing cofinal sequence {ξn}n<ω, and thus

D := {α + ξn + 1 | n < ω}

is an infinite discrete clopen subset of X, and so by Lemma 2(b), X does not have CSHP.)
Since ξ is an infinite ordinal, 1 + ξ = ξ, and so λ = (α + 1) + ξ. Thus, X ∼= (α + 1)q ξ,

and (τ + 1)q ξ embeds into X as a clopen subset. Therefore, by Lemma 2(a), it suffices to
show that (τ + 1)q ξ does not have CSHP.

Put Y := τ + 1 and Z := ξ. We verify that the conditions of Theorem C are satisfied.
Clearly, Y is compact Hausdorff and Z is locally compact Hausdorff. Let {ξγ | γ < τ} be
cofinal and increasing in ξ. Put Kγ := [0, ξγ] for γ < τ. Then {Kγ}γ<τ is cofinal in K (Z).

(I) By Theorem D, Homeo(Y) contains a τ-discrete subset of cardinality τ that is
not closed.

(II) For γ < τ, let fγ denote the transposition that interchanges ξγ + 1 and ξγ + 2, and
leave every other point fixed. Clearly, fγ ∈ Homeocpt(Z) and supp( fδ)∩ Kγ = ∅ for every
γ < δ < τ. Since τ > ω, one has βZ = ξ + 1 (cf. [10], 5N1). For every δ < ξ, there is γ0 < τ
such that ξγ > δ for every γ ≥ γ0, and so fγ|[0,δ] = id[0,δ]. Therefore, by Proposition 4,
lim fγ = idZ.

5. Products of Ordinals

In this section, we prove Theorem A, which provides necessary and sufficient condi-
tions for a product of ordinals to have CSHP.

Theorem A. Let X := λ1 × · · · λk × µ1 × · · · × µl equipped with the product topology, where
λ1, . . . , λk are infinite limit ordinals and µ1, . . . , µk are successor ordinals. The space X has CSHP
if and only if there is an uncountable regular cardinal κ such that λ1 = · · · = λk = κ and µi ≤ κ
for every i = 1, . . . , l.

Sufficiency was proven in the authors’ previous work ([5], Theorem D(c)), and so it is
only necessity that has to be shown. We first prove a special case of Theorem A.

Theorem 1. Let λ be an infinite limit ordinal, and let X be λ equipped with the order topology. If
the space X has CSHP, then λ is an uncountable regular cardinal.

Proof. If λ had countable cofinality, then it would contain an infinite discrete clopen
subset. It would follow then by Lemma 2(b), that λ does not have CSHP, contrary to our
assumption. Thus, cf(λ) > ω.

Next, we show that λ = ωβ for some ordinal β. Let

λ = ωβ1 k1 + · · ·+ ωβn kn (35)
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be the Cantor’s normal form of λ, that is, λ ≥ β1 > · · · > βn and k1, · · · , kn are non-zero
natural numbers ([9], 2.26). Put α := ωβ1 k1 + · · ·+ ωβn(kn − 1) and ξ = ωβn . It follows
from β1 > · · · > βn that either α ≥ ξ or α = 0. Since λ is an infinite limit ordinal, one has
βn > 0, and so ξ > 0 and ξ is a limit ordinal. Thus, by Corollary 1 applied to λ = α + ξ,
one obtains that α < cf(ξ) ≤ ξ. Therefore, α = 0. In other words, n = 1 and k1 = 1,
and λ = ωβ1 .

We show that λ is a regular cardinal by proving that cf(λ) ≥ λ. Put τ := cf(λ). One has
τ = ωτ (ordinal exponentiation), because τ is an uncountable cardinal, and for every
ordinal θ < τ, one has |ωθ | = max(ω, |θ|) < τ (where ωθ is ordinal exponentiation).

If τ < β1, then ωτ < ωβ1 , and so

τ + λ = ωτ + ωβ1 = ωβ1 = λ, (36)

([11], Theorem 1 from XIV.6 and Theorem 1 from XIV.19). Thus, by Corollary 1, τ + λ = λ
cannot have CSHP, contrary to our assumption. Hence, τ ≥ β1, and

τ = ωτ ≥ ωβ1 = λ, (37)

as desired.

We proceed now to prove Theorem A.

Proof of Theorem A. Suppose that X has CSHP. Without loss of generality, we may assume
that k ≥ 1. Put κ := min λi. Since κ embeds as a clopen subset of X, by Lemma 2(a), κ has
CSHP. Thus, by Theorem 1, κ is an uncountable regular cardinal.

Put Y := κ + 1 and Z := κ with the order topology. By Theorem D, Homeo(Y) contains
a κ-discrete subset of cardinality κ that is not closed. The space Z is zero-dimensional,
locally compact, pseudocompact, and κ := cf(K (Z),⊆). Therefore, by Theorem B, the
product Y× Z does not have CSHP.

Assume that there is an i such that λi > κ or µi > κ. Then κ + 1 ≤ λi or κ + 1 ≤ µi,
respectively, and thus, by Lemma 2(a), (κ + 1)× κ has CSHP, being homeomorphic to a
clopen subset of X. This contradiction shows that all λi are equal and µi ≤ κ for every i.

Corollary 2. Let α ≤ β be infinite ordinals. The disjoint union (coproduct) αq β has CSHP if
and only if one of the following conditions hold:

(a) α and β are successor ordinals, or;
(b) β is an uncountable regular cardinal, and in addition, α = β or α is a successor ordinal.

Proof. Suppose that α q β has CSHP. By Lemma 2(a), α and β both have CSHP. Thus,
by Theorem 1, α and β are either successor ordinals or uncountable regular cardinals.
If α = β, then we are done. On the other hand, if α < β, then α + 1 is a clopen subset of
β, and thus, by Lemma 2(a), αq (α + 1) ∼= (α + 1) + α = α + α has CSHP, being a clopen
subset of αq β. By Theorem 1, α is a successor ordinal, because α + α is not a cardinal.

Conversely, if α and β are successor ordinals, then αq β is compact, and we are done.
So, we confine our attention to case (b). Suppose that β is an uncountable regular cardinal.
If α = β, then αq β ∼= β× 2 has CSHP by Theorem A. If α < β and α is a successor ordinal,
then αq β ∼= α + β = β, which has CSHP by Theorem 1.
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