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Abstract: The paper investigates an algorithm for the numerical solution of a parametric eigenvalue
problem for the Helmholtz equation on the plane specially tailored for the accurate mathematical
modeling of lasing modes of microring lasers. The original problem is reduced to a nonlinear
eigenvalue problem for a system of Muller boundary integral equations. For the numerical solution
of the obtained problem, we use a trigonometric Galerkin method, prove its convergence, and
derive error estimates in the eigenvalue and eigenfunction approximation. Previous numerical
experiments have shown that the method converges exponentially. In the current paper, we prove that
if the generalized eigenfunctions are analytic, then the approximate eigenvalues and eigenfunctions
exponentially converge to the exact ones as the number of basis functions increases. To demonstrate
the practical effectiveness of the algorithm, we find geometrical characteristics of microring lasers
that provide a significant increase in the directivity of lasing emission, while maintaining low lasing
thresholds.

Keywords: nonlinear eigenvalue problem; boundary integral equation; trigonometric Galerkin
method; accuracy estimate; microring laser

1. Introduction

Various two-dimensional (2D) models of microdisk and microring lasers (see, e.g., [1,2])
can be investigated with the aid of a specific electromagnetic eigenvalue problem adapted
to calculate the threshold values of gain, in addition to the emission frequencies, which is
called the lasing eigenvalue problem (LEP) [3–7]. For 2D microcavity lasers with uniform
gain, LEP was reduced in [8] to a nonlinear eigenvalue problem for the system of the Muller
boundary integral equations (BIEs). This system, obtained by Muller in [9], is widely used
in the analysis of electromagnetic-wave scattering from 2D and 3D homogeneous dielectric
objects with smooth boundaries [10,11]. This is because Muller BIEs are the Fredholm
second-kind equations, which guarantee the convergence of their numerical solutions. By
the same reasons, the eigenmodes of fully active [6,8] and passive [12] microcavities can be
calculated using Muller BIEs. Many authors, as in [12], have used a physical model called
the complex-frequency eigenvalue problem (CFEP). It is based on the search for complex-
valued natural frequencies of open passive resonators. To be able to build a general theory
for both LEP and CFEP models, a generalized model was proposed in [8]. It obtained the
following name: generalized complex-frequency eigenvalue problem (GCFEP) [8]. The
reason for reducing GCFEP to the Muller BIEs was to get a system of weakly singular
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integral equations [13] on the boundary of the microcavity laser. However, there is no full
equivalence between GCFEP and the eigenvalue problem for the system of Muller BIEs [14].
Namely, it was proven in [15] that for each eigenfunction of GCFEP there is a corresponding
eigenvector of the system of Muller BIEs. Still, the assertion in the opposite direction is
not true: there is one more problem that is reduced to the Muller BIEs, called “turned
inside out GCFEP” [15]. If GCFEP and the turned inside out GCFEP together have only
the trivial solutions, then the system of Muller BIEs has only the trivial solution [15], and
the resolvent set of the corresponding operator-valued function is not empty. This result
is important for the theoretical investigation of the spectrum of the eigenvalue problem.
Using it and the fundamental results of the theory of projection methods for holomorphic
Fredholm operator-valued functions [16,17], the convergence of a Nystrom method was
proven in [8].

Recently, for numerical simulation of more complicated 2D microcavity lasers, namely,
active cavities with piercing holes [18], a modified version of the Muller BIEs, together with
a trigonometric Galerkin discretization technique, was proposed [19,20]. Mathematically,
this means that there is an additional region (the hole) inside the cavity domain, and hence,
an additional boundary in the integral-equation formulation. This makes the theoretical
analysis more difficult compared with [8,14], as well as [15], where the problems with one
boundary were investigated, as it was done originally by Muller [9]. In [21], the authors
generalized results of [15] and clarified the connection between GCFEP and the eigenvalue
problem for the system of Muller BIEs in this more complicated situation.

In [19,20], the authors investigated the directivities, spectra, and thresholds of the
on-threshold modes of eccentric microring lasers. For such circular microcavity lasers with
non-concentric circular air holes, explicit expressions for the matrix elements were obtained
in [19,20]. Together with an account of the symmetry, this made the calculations much
faster and more stable. Additionally, the analysis of the numerical experiments in [19,20]
demonstrated the exponential convergence of the Galerkin method.

The main idea of the present work is to provide, using results of [21], a rigorous proof
of convergence of the Galerkin method proposed previously in [19,20] for the numerical
modeling of lasers with piercing holes, and to derive the accuracy estimates for the approx-
imate eigenvalues and eigenfunctions. Our consideration, similar to [8], is based on the
fundamental results of the theory of holomorphic operator-valued functions. Using the
Galerkin method, we build a sequence of finite-dimensional holomorphic operator-valued
functions that regularly approximate the original holomorphic Fredholm operator-valued
function. This enables us to apply the results of the general theory to the numerical analysis
of the proposed method. Particularly, we prove that if the generalized eigenfunctions
are 2π-periodic and analytic in a strip of the complex plane about the real axis, then the
approximate eigenvalues and eigenfunctions exponentially converge to the exact ones
as the number of the basis functions increases (see Section 3 of the paper, Theorem 4,
estimate ii). Thus, the numerical results of [19,20], where the exponential convergence
of the Galerkin method was observed, now obtain firm mathematical ground, as for the
circular boundaries the generalized eigenfunctions are infinitely smooth.

Preliminarily, in Section 2, we follow [18] and briefly recall the main steps of reducing
of the original problem to the nonlinear eigenvalue problem for the set of Muller BIEs.
Section 3 presents the equations related to the trigonometric Galerkin discretization of the
mentioned BIEs.

To demonstrate the practical efficiency of the algorithm, in Section 4, we show that
an air hole in a circular active cavity located at a certain place and with a suitable radius
can lead to a notable growth in the directivity of the lasing emission together with the
preservation of the low thresholds. This agrees with the physical experiments described
in [22].
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2. GCFEP and Nonlinear Eigenvalue Problem for the Set of Muller BIEs

The formulation of GCFEP for 2D microcavity lasers with piercing holes is given
in [18]. A generic geometry of the analyzed microcavities is shown in Figure 1. The air
hole is domain Ω1, the main body of the resonator is denoted as Ω2, and the environment
of the resonator is Ω3. The boundaries Γ1 and Γ2 separate these regions. We suppose that
the boundaries Γ1 and Γ2 are twice continuously differentiable, and n1 and n2 are the outer
normal unit vectors to them, respectively.
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Figure 1. Geometry of a 2D microcavity laser with a piercing hole.

Material properties of the laser cavity can be characterized using either the dielectric
permittivity or the refractive index. For non-magnetic materials, these two options are
equivalent to each other. We used the latter choice because this is customary in optics and
photonics research.

Thus, we assumed that the positive refractive index νo of the hole Ω1 and the en-
vironment around the resonator Ω3 are given. The complex-valued refractive index of
the domain Ω2 is νi = αi − iγ. We denote the given real part of νi by αi > 0 and the
imaginary part, which is the real-valued parameter of GCFEP, by γ ∈ R. The case of γ = 0
corresponds to the passive cavity (i.e., without material losses), γ < 0 is for the cavity with
lossy material, and if the region Ω2 is filled in with a gain material, then γ > 0. In the latter
case, the imaginary part of νi is called the gain index.

We assumed that the electromagnetic field does not depend on the variable x3 and
depends on the time, as ∼ exp(−ikct). Herein, the speed of light in a vacuum was denoted
by c. We were looking for complex values of k on the Riemann surface L of the function
ln k. Because of the independence of the electromagnetic field on the x3 variable, we are
dealing with the scalar eigenfunctions of GCFEP u ∈ U\{0}, each of which is the third
element of the density vector E or H for the E- and H-polarization, respectively. We use the
notation U for the space of functions, which are complex-valued and continuous on Ω1,
Ω2, and Ω3 and twice continuously differentiable on Ω1, Ω2, and Ω3.

For each γ ∈ R, the eigenvalues k ∈ L and the eigenfunctions u ∈ U\{0} of GCFEP
have to satisfy the Helmholtz equations,

∆u + k2
ou = 0, x ∈ Ω1, (1)

∆u + k2
i u = 0, x ∈ Ω2, (2)

∆u + k2
ou = 0, x ∈ Ω3, (3)

the transmission conditions,

u− = u+, ηo
∂u−

∂n1
= ηi

∂u+

∂n1
, x ∈ Γ1, (4)
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u− = u+, ηi
∂u−

∂n2
= ηo

∂u+

∂n2
, x ∈ Γ2, (5)

and the outgoing Reichardt radiation condition [23],

u(ρ, ϕ) =
∞

∑
l=−∞

al H
(1)
l (koρ) exp(ilϕ), ρ ≥ R0. (6)

Here, the polar coordinates of point x are denoted by (ρ, ϕ), ko = kνo, ki = kνi. In
Equations (4) and (5), we have the dependence of the coefficients on the polarization;
namely, ηo,i = ν−2

o,i and ηo,i = 1 for the H- and E-polarization, respectively. The Hankel

function of the first kind with the index l is denoted by H(1)
l (z). The functions u ∈ U in (4)

and (5), which are related to the boundary conditions, have the following limit values (see,
e.g., [24], p. 68):

∂u±

∂ni
(x) = lim

h→+0
(ni(x), grad u(x± hn(x)), x ∈ Γi, i = 1, 2, (7)

which are expected to exist uniformly on Γ1,2. The series in (6) converges uniformly and
absolutely for any eigenfunction of GCFEP; besides, it is important to note that it is an
infinitely term wise differentiable [8].

We denote the main sheet of L by L0 and suppose that it is branch-cut along the nega-
tive imaginary semi-axis. At this point, we note that three types of GCFEP eigenfunctions
exist, depending on the location of the eigenvalue k ∈ L0. Equation (6) is interchangeable
to the common Sommerfeld radiation condition in the case of Im k = 0,(

∂

∂ρ
− iko

)
u = o

(
1
√

ρ

)
, ρ→ ∞. (8)

The case of Im k > 0 corresponds to the situation when u exponentially decays as
ρ→ ∞ . The alternative case, Im k < 0 entails the eigenfunction u growing exponentially
at infinity. An important note for our consideration is that the following property is
true [8,18,23] for any k ∈ L, γ ∈ R, and u, which satisfies (3) and (6):

∫
ΓR

u−(y)
∂Go(x, y)

∂n(y)
dl(y)−

∫
ΓR

Go(x, y)
∂u−(y)
∂n(y)

dl(y) = 0. (9)

Here, x ∈ Ω3, Go = (i/4)H(1)
0 (ko|x− y|). We denote ΓR as the circle with a big enough

radius R, which center is located at x. This fact helps us explore all the eigenfunction types
within the same framework.

We need to remember about the dependence of the imaginary part of k ∈ L0 on
γ ∈ R [8]. In the case of the passive cavity, where γ ≤ 0, without losses or with them, the
GCFEP statement conforms with the usual statement of CFEP [12]. At this point, Im k < 0
for all the eigenvalues k ∈ L0. The alternative case is the active cavity, where γ > 0, and
the imaginary part of k ∈ L0 can be equal to or greater than zero. The pair (k, γ), where
γ and k are positive, and the corresponding eigenfunction u satisfy all the conditions of
LEP [6]. Particularly, condition (8) holds true.

Following [18], we use the integral representations of the eigenfunctions of the problem
(1)–(6) in the domains Ω1, Ω2, and Ω3, respectively,

u(x) = −
∫

Γ1

∂Go(x, y)
∂n1(y)

u−(y)dl(y) +
∫

Γ1

Go(x, y)
∂u−(y)
∂n1(y)

dl(y), x ∈ Ω1, (10)

u(x) =
∫

Γ1

∂Go(x,y)
∂n1(y)

u+(y)dl(y)−
∫

Γ1
Go(x, y) ∂u+(y)

∂n1(y)
dl(y)−

−
∫

Γ2

∂Gi(x,y)
∂n2(y)

u−(y)dl(y) +
∫

Γ2
Gi(x, y) ∂u−(y)

∂n2(y)
dl(y), x ∈ Ω2,

(11)
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u(x) =
∫

Γ2

∂Go(x, y)
∂n2(y)

u+(y)dl(y)−
∫

Γ2

Go(x, y)
∂u+(y)
∂n2(y)

dl(y), x ∈ Ω3, (12)

where Gi = (i/4)H(1)
0 (ki|x− y|). Equations (10) and (11) are well known (see, e.g., [24],

p. 68). Equation (12) also holds true as we have Equation (9) for each value of parameters
k ∈ L and γ ∈ R (see [8,18]). Now, we introduce the notations,

uj(x) = u+(x) = u−(x), x ∈ Γj, j = 1, 2, (13)

v1 =
ηi + ηo

2ηo

∂u+

∂n1
=

ηi + ηo

2ηi

∂u−

∂n1
, x ∈ Γ1, (14)

v2 =
ηi + ηo

2ηi

∂u+

∂n2
=

ηi + ηo

2ηo

∂u−

∂n2
, x ∈ Γ2, (15)

and denote the space of continuous on Γj, j = 1, 2, functions with the maximum norm by
Cj = C

(
Γj
)
, j = 1, 2, C = C1 × C2, and W = C× C. Furthermore, we denote the identical

operator in the space W by I. Then, any solution of GCFEP (1)–(6) in terms (13)–(15)
satisfies the following nonlinear eigenvalue problem for the set of Muller BIEs [18]:

A(k, γ)w = (I + B(k, γ))w = 0, (16)

B =


B(1,1)

1 B(1,2)
1 B(1,3)

1 B(1,4)
1

B(2,1)
1 B(2,2)

1 B(2,3)
1 B(2,4)

1

B(3,1)
2 B(3,2)

2 B(3,3)
2 B(3,4)

2

B(4,1)
2 B(4,2)

2 B(4,3)
2 B(4,4)

2

, w =


u1
v1
u2
v2


(

Bl,m
j (k, γ)g

)
(x) =

∫
Γj

K(l,m)
j (k, γ; x, y)g(y)dl(y).

Here, we denote uj or vj, j = 1, 2 by the function g. The kernels have the following
forms [18]:

K(1,1)
j = −K(3,3)

j =
∂Go(x, y)− ∂Gi(x, y)

∂nj(y)
, x ∈ Γj, y ∈ Γj, j = 1, 2,

K(1,2)
j = −K(3,4)

j =
2(ηoGi(x, y)− ηiGo(x, y))

ηi + ηo
, x ∈ Γj, y ∈ Γj, j = 1, 2,

K(1,3)
1 =

∂Gi(x, y)
∂n2(y)

, K(1,4)
1 = −2ηo∂Gi(x, y)

ηo + ηi
, x ∈ Γ1, y ∈ Γ2,

K(2,1)
j = −K(4,3)

j =
∂2Go(x, y)

∂nj(x)∂nj(y)
− ∂2Gi(x, y)

∂nj(x)∂nj(y)
, x ∈ Γj, y ∈ Γj, j = 1, 2,

K(2,2)
j = −K(4,4)

j =
2ηo

ηo + ηi

∂Gi(x, y)
∂nj(y)

− 2ηi
ηo + ηi

∂Go(x, y)
∂nj(y)

, x ∈ Γj, y ∈ Γj, j = 1, 2,

K(2,3)
1 =

∂2Gi(x, y)
∂n1(x)∂n2(y)

, K(2,4)
1 = − 2ηo

ηo + ηi

∂Gi(x, y)
∂n1(y)

, x ∈ Γ1, y ∈ Γ2,

K(3,1)
2 = −∂Gi(x, y)

∂n1(y)
, K(3,2)

2 =
2ηoGi(x, y)

ηo + ηi
, x ∈ Γ2, y ∈ Γ1,

K(4,1)
2 = − ∂2Gi(x, y)

∂n1(y)∂n2(x)
, K(4,2)

2 = − 2ηo

ηo + ηi

∂Gi(x, y)
∂n2(y)

, x ∈ Γ2, y ∈ Γ1.

Some of the kernels K(q,s)
j have logarithmic singularities and the others are contin-

uous [13]. Consequently, the operator B(k, γ) : W →W is compact, and the operator
A(k, γ) : W →W is Fredholm with index zero for every k ∈ L and γ ∈ R [13].
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If u ∈ U is an eigenfunction of problem (1)–(6) corresponding to an eigenvalue k ∈ L
for a value of the parameter γ ∈ R, then, defined by (13)–(15), functions uj and vj belong
to the Banach spaces Cj, j = 1, 2, respectively, and form a nontrivial solution w ∈W of (16)
with the same values of k and γ. This was proved in Theorem 3 of [21]. The assertion in
the opposite direction relative to the statement of this theorem is not true, as, as in [18],
we did not substitute representations (10)–(12) into (4) and (5), but added the limit values
of them and their normal derivatives from both sides of the boundaries Γ1 and Γ2 term
by term. However, the following result holds true (see Theorem 4 [21]). For each γ ∈ R
and k ∈ I+ problem (16) has only the trivial solution w = 0, w ∈W. Here, I+ denotes the
strictly positive imaginary semi-axis of L0.

3. Galerkin Method

In the current section, we present a trigonometric Galerkin method for the numerical
solution of problem (16). Assume that each contour Γj has a parameterization ρj(t) =(

ρ1
j (t), ρ2

j (t)
)

, where ρ1
j (t) = f j(t) cos t, ρ2

j (t) = f j(t) sin t, t ∈ [0, 2π], j = 1, 2. Then, for
any given γ ∈ R, we have(

B(l,m)(k)w(m)
)
(t) =

1
2π

∫ 2π

0
K(l,m)(k; t, τ)w(m)(τ)dτ.

Here, l, m = 1, 2, 3, 4, y = y(τ) ∈ Γj, j = 1, 2,

K(l,m)(k; t, τ) = 2πK(l,m)
j (k; x, y), w(m)(τ) = w(m)(y)

∣∣∣ρ′j(τ)∣∣∣.
For the construction and investigation of the Galerkin method, it is convenient to

consider the problem (16) in the Hilbert space H = (L2)
4, where L2 denotes the space of

square integrable functions with the inner product

(u, v) =
1

2π

∫ 2π

0
u(τ)v(τ)dτ, u, v ∈ L2.

By Tn ⊂ L2, we denote the subspace of all trigonometric polynomials of the order no
greater than n with complex coefficients. Then, Hn = (Tn)

4 ⊂ H is the subspace with the
elements of the form,

wn =


w(1)

n

w(2)
n

w(3)
n

w(4)
n

, w(1)
n , w(2)

n , w(3)
n , w(4)

n ∈ Tn.

By pn : H → Hn , we define the following projection operator:

pnw =


Φnw(1)

Φnw(2)

Φnw(3)

Φnw(4)

, w(1), w(2), w(3), w(4) ∈ L2.

Here, Φn : L2 → Tn is the Fourier operator,

(
Φnw(m)

)
(t) =

n

∑
q=−n

cq

(
w(m)

)
ϕq(t), m = 1, 2, 3, 4.
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For q = −n, . . . , n, the vectors ϕq(t) = exp(iqt) form the orthonormal basis in the space Tn.
We rewrite Equation (16) as follows

w(l) +
4

∑
m=1

B(l,m)(k)w(m) = 0, l = 1, 2, 3, 4. (17)

We look for approximate solutions w(1)
n , w(2)

n , w(3)
n , w(4)

n ∈ Tn of the system of
Equation (17) in the form

w(m)
n (t) =

n

∑
q=−n

α
(m)
q ϕq(t), n ∈ N, m = 1, 2, 3, 4.

Therefore, we have

w(l)
n +

4

∑
m=1

B(l,m)(k)w(m)
n = 0, l = 1, 2, 3, 4, n ∈ N.

We calculate the unknowns α
(m)
q using the Galerkin method,

(
w(l)

n , ϕp

)
+

4

∑
m=1

(B(l,m)(k)w(m)
n , ϕp) = 0, p = −n, . . . , n, (18)

where l = 1, 2, 3, 4. As the trigonometric functions are orthonormal, we can rewrite
Equation (18) in the form of the following system of linear algebraic equations:

α
(l)
p +

4

∑
m=1

n

∑
q=−n

h(l,m)
pq (k)α(m)

q = 0, p = −n, . . . , n, (19)

where l = 1, 2, 3, 4,

h(l,m)
pq (k) =

1
4π2

∫ 2π

0

∫ 2π

0
K(l,m)(k; t, τ) exp(−ipt) exp(iqτ)dtdτ.

The system of linear algebraic Equation (19) is equivalent to the finite-dimensional
linear operator equation

An(k)wn ≡ pn A(k)wn ≡ (I + pnB(k))wn ≡ (I + Bn(k))wn = 0. (20)

Here, k ∈ L, An : Hn → Hn, I is the unitary operator in the space Hn. As usual, we
denote by ρ(An) and by σ(An), the regular and the characteristic sets of the operator-valued
function An(k), respectively. Let also N′, N′′ , N′′′ , . . . be infinite sequences of the set of all
natural numbers N.

Theorem 1. For any given γ ∈ R, the following statements are true:

1. If k0 is an eigenvalue of A(k), then for each n ∈ N there exists an eigenvalue kn of An(k)
such that kn → k0 (n ∈ N).

2. If for each n ∈ N there exists an eigenvalue kn of An(k), such that kn → k0 ∈ L (n ∈ N),
and wn is a normalized eigenfunction of An(kn), then

(i) k0 is an eigenvalue of A(k),
(ii) {wn}n∈N is a discretely compact sequence and its cluster points are normalized

eigenfunctions of A(k0).

3. For every compact L0 ⊂ ρ(A), the sequence {An(k)}n∈N is stable on L0, i.e., there exist
n(L0) and c(L0), such that L0 ⊂ ρ(An), An(k)

−1 ≤ c(L0) for all k ∈ L0 and n ≥ n(L0).
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The proof of this theorem is based on the general results of the discrete convergence
theory [25] applied for the investigation of approximate methods in the eigenvalue problem,
where the parameter appears non-linearly [16]. Therefore, let us preface it with some
definitions from [16].

As it is said, the sequence {wn}n∈N′ of vectors from the space Hn discretely converges
to the limit w ∈ H if ‖wn − pnw‖ → 0 as n→ ∞, n ∈ N′ . Discrete convergence of the
vectors will be denoted as wn → w(n ∈ N′) . The sequence of elements {wn}n∈N′ is called
discretely compact if, for each subsequence {wn}n∈N′′ , N′′ ⊆ N′, there exists a subset
N′′′ ⊆ N′′ and a vector w ∈ H, such that wn → w(n ∈ N′′′ ) .

Consider a bounded linear operator A ∈ L(H, H) and a sequence of finite-dimensional
bounded linear operators {An}n∈N . It is said that the sequence of operators {An}n∈N ap-
proximate the operator A, if for any vector w ∈ H we have

‖An pnw− pn Aw‖ → 0(n→ ∞)

If the discrete convergence of vectors wn → w(n ∈ N) implies the discrete conver-
gence of their images, Anwn → Aw(n ∈ N) , then the sequence of operators {An}n∈N is
said to converge discretely to A.

The sequence of operators {An}n∈N is regular if from the boundedness of the sequence
of vectors {wn}n∈N (thanks to the estimate ‖wn‖ ≤ const(n ∈ N)) and from the discrete
compactness of the sequence of their operator images {Anwn}n∈N follows the discrete
compactness of the sequence of the vectors {wn}n∈N . If a sequence of operators {An}n∈N
is regular and wherein approximates the operator A, then it is said that it regularly ap-
proximates A. The regular convergence of a sequence of operators is defined in similar
way.

It is said that a sequence of operator-valued functions {An(k)}n∈N regularly converges
on L to an operator-valued function A(k), if for each converging numerical sequence
kn → k0 ∈ L(n→ ∞) , the operator sequence {An(kn)}n∈N regularly converges to the
operator A(k0).

Proof. Let us verify, that in the case under consideration, all conditions (b1)–(b5) of
Theorem 2 of [16] are satisfied. Then, all the assertions of Theorem 1 hold true.

(b1) The operator-valued function A(k) : H → H is holomorphic and Fredholm on
L, and its regular set is not empty. The holomorphicity and the Fredholm property of
A(k) : W →W were proved in Theorem 2 in [18]. For A(k) : H → H , these properties
are established similarly with the replacement of estimates for all norms in the space of
continuous functions W on the corresponding estimates in the space of functions integrable
with the square H.

In Theorem 4 from [21], it was established that, for any k ∈ I+, Equation (16) has
only a trivial solution in the space W. The operator B(k) is weakly singular, therefore, any
solution of Equation (16) from H must belong to the space W and can only be trivial for
k ∈ I+. The operator-valued function A(k) : H → H is a Fredholm one, so for it we have
I+ ⊂ ρ(A).

(b2) For any n ∈ N, the operator-valued function An(k) : Hn → Hn is holomorphic
and Fredholm on L. Indeed, A(k) : H → H is holomorphic on L. As the operator pn is lin-
ear and bounded, An(k) = pn A(k) : Hn → Hn has the same property. The Fredholm prop-
erty of the operator-valued function An(k) is obvious because of its finite-dimensionality.

(b3) On each compact set L0 ⊂ L, the norms ‖An(k)‖ are bounded uniformly in the
parameters n ∈ N and k ∈ L0. Indeed, from the definition of the operator An(k) and the
equality

‖pn‖ = 1, (21)

It follows that
‖An(k)‖ ≤ ‖A(k)‖, n ∈ N, k ∈ L,
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However, because of

‖B(l,m)(k)‖2 ≤ 1
4π2

∫ 2π

0

∫ 2π

0

∣∣∣K(l,m)(k; t, τ)
∣∣∣2dtdτ, l, m = 1, 2, 3, 4,

The following estimate is correct:

‖A(k)‖ ≤ c(k), k ∈ L, (22)

where c(k) is a continuous function on L:

c(k) = 1 +
1

2π

4

∑
l,m=1

(∫ 2π

0

∫ 2π

0

∣∣∣K(l,m)(k; t, τ)
∣∣∣2dtdτ

)1/2

.

It is easy to see that to complete the verification of the required property, it suffices to
compute the maximum of the function c(k) on the given compact set L0 ⊂ L.

(b4) For each fixed value k ∈ L, the operator sequence {An(k)}n∈N approximates the
operator A(k). Indeed, by the definition of the operators A(k) : H → H and pn : H → Hn ,
for any vector w ∈ H we have

‖An(k)pnw− pn A(k)w‖ = ‖pn A(k)pnw− pn A(k)w‖ ≤ ‖pn‖‖A(k)‖‖pnw− w‖ → 0(n ∈ N).

The tendency to zero is a consequence of the tendency to zero of the norm of the
remainder term of the segment of the Fourier series for any function from L2, estimate (22),
and equality (21).

(b5) For each fixed value k ∈ L, the operator sequence {An(k)}n∈N is regular. Indeed,
the discrete compactness of the sequence of vectors {An(k)wn}n∈N means that for any
N′ ⊆ N, there exist N′′ ⊆ N′, such that the sequence {An(k)wn = wn + Bn(k)wn}, n ∈ N′′
converges discretely to some z ∈ H. If the sequence {wn}n∈N′′ is bounded, then there
is a weakly convergent subsequence {wn}n∈N′′′ , N′′′ ⊂ N′′ . As it is known, the compact
operator B(k), takes it to a strongly converging one to some vector u ∈ H:

‖B(k)wn − u‖ → 0, n ∈ N′′′

Hence, by virtue of the inequality

‖Bn(k)wn − pnu‖ ≤ ‖pn‖‖B(k)wn − u‖

and equality (21), it follows that the sequence {Bnwn}n∈N′′′ converges discretely to u ∈ H.
Thus, {wn}n∈N′′′ converges discretely to the vector w = z− u ∈ H, and the definition of
the regularity of the sequence {An(k)}n∈N is satisfied. �

As usual, we denote various positive constants that do not depend on n by the same
letter c. Let k0 be an eigenvalue of A(k). We denote by G(A, k0) the generalized eigenspace,
i.e., the closed linear hull of all the generalized eigenfunctions of A(k) corresponding to k0.
As the operator pn is linear, the next theorem follows from [17].

Theorem 2. Assume that γ ∈ R is given, k0 is an eigenvalue of A(k), and L0 ⊂ L is a compact
set with the boundary Γ0 ⊂ ρ(A) so that L0 ∩ σ(A) = {k0}. For each n ∈ N, we denote by εn the
maximum of the approximation error over k ∈ Γ0 and w ∈ G(A, k0),

εn = sup‖{An(k)pnw− pn A(k)w‖ : k ∈ Γ0, w ∈ G(A, k0), ‖w‖ = 1}. (23)

Then, εn → 0 (n ∈ N) and the following estimations hold for almost all n ∈ N:

(i) |kn − k0| ≤ cε1/κ
n for all kn ∈ σ(An)∩ L0, where κ = κ(k0, A) is the multiplicity of the pole

k0 of the operator-valued function A−1(k);
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(ii)
∣∣∣kn − k0

∣∣∣ ≤ cεn, where kn is the weighted (proportionally to their algebraic multiplicities)

mean of all the eigenvalues of An(k) in L0, kn = ∑k∈σ(An)∩L0
µk · k, µk = ν(k, An)/ν(k, A),

where ν(·, ·) is the algebraic multiplicity of the corresponding eigenvalue k;
(iii) max{|kn − k0| : kn ∈ σ(An) ∩ L0} ≤ cε1/ln

n , where ln is the number of the different eigen-
values of An in L0.

The next theorem follows from [26].

Theorem 3. Suppose that the conditions of Theorem 2 are fulfilled, εn is defined in (23), G0(A, k0)
is the eigenspace of A(k) corresponding to the eigenvalue k0 ∈ L, {kn}n∈N and {wn}n∈N are
some sequences of eigenvalues kn of An(k) and normalized eigenfunctions wn of An(k), such that
kn → k0 (n ∈ N), and δn is defined by the equality

δn = max‖{An(k0)pnw0 − pn A(k0)w0‖ : w0 ∈ G0(A, k0), ‖w0‖ = 1}. (24)

Then, for each eigenfunction wn there exists an eigenfunction w0 = w0(wn) ∈ G0(A, k0),
such that the following error estimate holds for almost alln ∈ N:

‖wn − w0‖ ≤ c
(

ε1/κ
n + δn

)
.

Using the results from [27,28], pp. 270, 271, we derive the following approximation
error estimates.

Theorem 4. Suppose that the conditions of Theorem 2 are fulfilled, εn is defined in (23),
δn is defined in (24), and Gη,m(0, 2π) is the Gevrey space [28], p. 271. Then, the following
error estimates are valid:

(i) max{εn, δn} ≤ cn−m, when diw/dxi ∈ L2, i = 0, 1, . . . , m, for any generalized eigenfunc-
tion w ∈ G(A, k0);

(ii) max{εn, δn} ≤ cn−me−ηn, when w ∈ Gη,m(0, 2π), η > 0, m ≥ 0, for any generalized
eigenfunction w ∈ G(A, k0).

We solved the nonlinear eigenvalue problem (20) using the residual inverse iteration
algorithm [29]. If the boundaries of the active cavity and the piercing hole were nonconcen-
tric circles, then the entries of the Galerkin’s matrix had the explicit expressions calculated
carefully in [19,20]. We used them in the next section.

4. Numerical Results

Optimization of geometrical parameters of the microring resonator is aimed at finding
such microlaser configurations for which a high value of the directivity D (see exact
definition in [19,20]) and a low value of the threshold γ will be obtained. The modes that
meet these requirements are of primary interest during the design of microlasers.

The studies were carried out for the H-polarization, because, for thin flat 3D laser
cavities, which can be approximated with 2D models, the values of the thresholds for the
H-polarized modes are lower than of the E-polarized modes [5]. This is because such
a reduction dimensionality entails the replacement of the bulk refractive index with its
effective value, which depends on the polarization. The results were obtained, as in [19,20],
for the following parameter values: the refractive index in the domain Ω3 and in the hole
is equal νe = 1, the real part of the refractive index in the active region is αi = 2.63, the
dimensionless quantities are κ = ka2, d = |O1 −O2|/a2, r = a1/a2. Here, the domains Ω1
and Ω2 are circles with centers O1 and O2 and radii a1 and a2, respectively.

In our analysis, we used the same mode classification as in [19,20], with index e and o
denoting the even and odd eigenfunction symmetry, respectively, with respect to the line of
symmetry, which is the x1-axis. We note that, in the ideally circular cavity, the modes with
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small radial indices had their fields compressed to the cavity rim. This feature is reflected
by their specific name as whispering-gallery modes.

Let us first investigate the dependence of the directivity D on the relative distance
d between the center of the cavity and the center of the hole, and the relative radius of
the hole r for the modes (11, 1, e/o). Figure 2 shows the dependence of D on d and r in
the region, where the cavity contours do not cross each other. The value of D practically
does not increase if the values of the parameters (r, d) satisfy the inequality d + 0.8r ≤ 0.4.
Above the straight line described by the equation d = −0.8r + 0.4, an increase in the
directivity coefficient D was observed for both modes. The regions of values (r, d) in which
D is maximal are clearly distinguishable. For the odd mode, this is a vicinity of the point
0.32 and 0.49, for the even mode, this is a vicinity of the point 0.02 and 0.63. We see that
the value of D for the even modes is higher than for the odd modes, in addition, obtaining
quasi-unidirectional emission is impossible for odd modes [19,20]. Therefore, we carried
out further studies for the mode (11, 1, e).
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cavity and the hole and the relative radius r of the hole, (a) odd mode, and (b) even mode.

In addition to obtaining a high value of for directivity D, it was necessary to maintain
low values of the threshold γ. It is more convenient to search for low values of γ by
maximizing the values of the function T = − log10 γ. Figures 3 and 4 show the dependences
of the normalized wavenumber κ and the threshold gain index γ (in short, the threshold)
for the mode (11, 1, e) on the relative distance d between the centers of the cavity and the
hole and the relative radius of the hole r. We see that the normalized wavenumber κ ranges
from 5.85 to 6.3. Mostly, κ takes on values close to 5.85 and increases only when the cavity
contours are close to each other. The values of γ remain low in the region under the straight
line d = −0.7r + 0.5 and in a small rectangle with vertices A = (0.01, 0.5), B = (0.01, 0.8),
C = (0.02, 0.5), and D = (0.02, 0.8). Furthermore, above the straight line d = −0.7r + 0.5, the
values of γ increase.
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We searched for such pairs of values of d and r, for which D took a high value, while
at the same time the value of γ remained low enough. For this, we considered the target
functions of the following forms:

F = TD, (25)

F = T + D, (26)

F = T + 10D, (27)

where T = − log10 γ. It was assumed that among the points of the local maxima of the
target functions (25)–(27), we would find such pairs of values (r, d) for which a high
value of the directivity D and a low value of the threshold γ would be obtained. For the
found points of the local maxima, a check should be performed with a control value. The
value of the target function must be no less than the value obtained if the problem for
the microdisk resonator (without an air hole) is considered. Solving the problem for the
microdisk resonator with the same radius a2, and the same refractive index αi, we have
T = 5.2074, D = 2. This means that, for the target function (25), the control value is
F = 10.4147, for the target function (26), the control value is F = 7.2074, and for the target
function (27), the control value is F = 25.2074.

Figure 5 shows the points of local maxima of the considered target functions. For
function (25), there are nine points of the local maxima; for function (26), there are eight
points of the local maxima; and for target function (27), there are four points of the local
maxima. Observing the results, we see that some points are presented on all three panels
of Figure 5. Next, by intersecting the sets of the local maxima of the considered target
functions, for further research, we chose the following pairs of values (r, d): (0.02 and
0.62), (0.5 and 0.15), and (0.17 and 0.5). For the function (25) in Figure 5a, the points under
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consideration are numbered as 1, 2, and 4, respectively. For functions (26) and (27) in
panels (b) and (c) of Figure 5, the points under consideration are 1, 2, and 3, respectively.
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Tables 1–3 show the values of the numerical characteristics of the cavity, and the lasing
modes corresponding to the points of the local maximum. Here, β is the angle showing the
emission direction, i.e., the target of the main beam in the far-field patterns (see Figure 6).
The points in the tables are numbered in descending order of the value of the corresponding
target function.

Table 1. Local maxima of the function F = TD.

No. r d βradian βdegrees T D F = TD

1 0.0247 0.6296 5.8 × 10−4 0.0334 4.6665 8.3574 39.0007

2 0.5053 0.1498 3.1410 179.9666 4.4007 5.4207 23.8555

3 0.4759 0.1065 1.7217 98.6445 5.0208 3.7432 18.7944

4 0.1766 0.4928 3.1410 179.9666 3.4664 5.3417 18.5169

5 0.0955 0.4045 2.2916 131.3014 4.9353 3.5744 17.6409

6 0.5618 0.1019 1.7217 98.6445 4.8159 3.4912 16.8138

7 0.0763 0.4486 2.8281 162.0373 4.7391 3.4036 16.1303

8 0.2616 0.2518 0.8500 48.6986 4.9647 3.2298 16.0356

9 0.4894 0.2286 3.1410 179.9666 3.4134 4.2434 14.4847
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Table 2. Local maxima of the function F = T + D.

No. r d βradian βdegrees T D F = T + D

1 0.0264 0.6286 5.83 × 10−4 0.0334 4.5927 8.4594 13.0521
2 0.5052 0.1526 3.1410 179.9666 4.3621 5.4639 9.8260
3 0.1737 0.5020 3.1410 179.9666 3.4109 5.4120 8.8229
4 0.4765 0.1054 1.7217 98.6445 5.0289 3.7363 8.7652
5 0.0956 0.4028 2.2916 131.3014 4.9470 3.5644 8.5114
6 0.1326 0.4436 2.7163 155.6340 4.0975 4.1075 8.2050
7 0.2620 0.2471 0.8500 48.6986 4.9940 3.2060 8.1999
8 0.0607 0.4515 2.2916 131.3014 4.9077 3.2713 8.1790

Table 3. Local maxima of the function F = T + 10D.

No. r d βradian βdegrees T D F = T + 10D

1 0.0290 0.6271 5.83 × 10−4 0.0334 4.4824 8.5175 89.6577
2 0.5042 0.1642 3.1410 179.9666 4.1982 5.5524 59.7217
3 0.1689 0.5192 3.1410 179.9666 3.2977 11.4688 58.0176
4 0.4065 0.3040 2.3587 135.1434 3.1912 4.2054 45.2453
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Figure 6 shows the near- and far-field patterns for the points selected by intersecting
the sets of the local maxima of the considered target functions (25)–(27), among which the
pair 0.02 and 0.63 is of the greatest practical interest, because the directivity D is maximal,
and the value of the threshold is the smallest among all three points. As it is known [20], in
the case where the center of the cavity and the center of the hole coincide, the directivity
factor is D = 2.00 and T = 5.2074. This means that if choosing any of the considered pairs of
values (r,d), the directivity D becomes at least 2.5 times higher, while the threshold γ does
not increase significantly.

Thus, in the course of the numerical experiments, we found that a quasi-unidirectional
emission could occur both at a small hole radius and at a relatively large hole radius. In
the case of a small hole radius, the main beam was directed oppositely to the direction of
the hole shift, while in the case of a large hole, the main beam was in the same direction as
the hole shift. The maximum directivity was obtained with a small relative radius of the
piercing hole. These phenomena were studied by physical experiments in [22].

5. Conclusions

We presented the main steps in the reduction of GCFEP for a 2D laser with a piercing
hole to a set of four coupled boundary integral equations of the Muller type. We explained
the discretization of these equations with the Galerkin method and proved its convergence.
We obtained the error estimates for the approximate eigenvalues and eigenfunctions
dependent on the smoothness of the generalized eigenfunctions.

Finally, we calculated the on-threshold characteristics of the lasing modes of a circular
microcavity with a shifted hole. In the numerical experiments, we varied the position of the
piercing hole and the radius of the hole, and computed the changes in the lasing frequencies,
directionalities, and thresholds. Our numerical investigation showed that a hole with a
suitable radius located at a certain place could lead to notable growth of the directivity of
the perturbed whispering-gallery mode emission, together with the preservation of its low
threshold. Hence, a piercing hole radius and position in the 2D eccentric microcavity laser
can be used as an engineering tool to efficiently control the directivity of emission.
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