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Abstract: In this paper, we present some modified relaxed CQ algorithms with different kinds of
step size and perturbation to solve the Multiple-sets Split Feasibility Problem (MSSFP). Under mild
assumptions, we establish weak convergence and prove the bounded perturbation resilience of the
proposed algorithms in Hilbert spaces. Treating appropriate inertial terms as bounded perturbations,
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1. Introduction

In this paper, we focus on the Multiple-sets Split Feasibility Problem (MSSFP), which
is formulated as follows.

Find a point x∗ ∈ C =
t⋂

i=1

Ci such that Ax∗ ∈ Q =
r⋂

j=1

Qj, (1)

where A : H1 → H2 is a bounded and linear operator, Ci ⊂ H1, i = 1, · · · , t, and
Qj ⊂ H2, j = 1, · · · , r are nonempty closed and convex sets, andH1 andH2 are Hilbert
spaces. When t = 1, r = 1, it is the Split Feasibility Problem (SFP). Byrne in [1,2] introduced
the following CQ algorithm to solve the SFP,

xk+1 = PC(xk − αk A∗(I − PQ)Axk), (2)

where αk ∈ (0, 2
‖A‖2 ). It is proven that the iterates {xk} converge to a solution of the SFP.

When PC and PQ have explicit expressions, the CQ algorithm is easy to carry out. However,
PC and PQ have no explicit formulas in general; thus the computation of PC and PQ is itself
an optimization problem.

To avoid the computation of PC and PQ, Yang [3] proposed the relaxed CQ algorithm
in finite dimensional spaces. The algorithm is

xk+1 = PCk (xk − αk A∗(I − PQk )Axk), (3)

where αk ∈ (0, 2
‖A‖2 ), Ck and Qk are sequences of closed half spaces containing C and Q,

respectively.
As for the MSSFP (1), Censor et al. in [4] proposed the following algorithm,
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xk+1 = PΩ(xk − α∇p(xk)), (4)

where Ω is an auxiliary closed subset, and p(x) is a function to measure the distance from
a point to all the sets Ci and Qj,

p(x) =
1
2

t

∑
i=1

λi‖x− PCi (x)‖2 +
1
2

r

∑
j=1

β j‖Ax− PQj(Ax)‖2, (5)

where λi > 0, β j > 0 for every i and j, and ∑t
i=1 λi + ∑r

j=1 β j = 1, 0 < α < 2/L,
L = ∑t

i=1 λi + ‖A‖2 ∑r
j=1 β j. The convergence of the algorithm (4) is proved in finite

dimensional spaces.
Later, He et al. [5] introduced a relaxed self-adaptive CQ algorithm,

xk+1 = τkµ + (1− τk)(xk − αk∇pk(xk)), (6)

where the sequence {τk} ⊂ (0, 1), µ ∈ H, pk(x) = 1
2 ∑t

i=1 λi‖x− PCk
i
(x)‖2 + 1

2 ∑r
j=1 β j‖Ax−

PQk
j
(Ax)‖2, where the closed convex sets Ck

i and Qk
j are level sets of some convex functions

containing Ci and Qj, and self-adaptive step size αk =
ρk pk(xk)
‖∇pk(xk)‖2 , 0 < ρk < 4. They proved

that the sequence {xk} generated by algorithm (6) converges in norm to PS(µ), where S is
the solution set of the MSSFP.

In order to improve the rate of convergence, many scholars have investigated the
choice of the step size of the algorithms. Based on the CQ algorithm (2), Yang [6] proposed
the step size

αk =
ρk

‖∇ f (xk)‖
,

where {ρk} is a sequence of positive real numbers satisfying ∑∞
n=0 ρk = ∞ and ∑∞

n=0 ρ2
k <

+∞, and f (x) = 1
2‖(I − PQ)Ax‖2. Assuming that Q is bounded and A is a matrix with

full column rank, Yang proved the convergence of the underlying algorithm in finite
dimensional spaces. In 2012, López et al. [7] introduced another choice of the step size
sequence {αk} in the algorithm (3) as follows

αk =
ρk fk(xk)

‖∇ fk(xk)‖2 ,

where 0 < ρk < 4, fk(x) = 1
2‖(I− PQk )Ax‖2, and they proved the weak convergence of the

iteration sequence in Hilbert spaces. The advantage of this choice of the step size lies in the
fact that neither prior information about the matrix norm A nor any other conditions on Q
and A are required. Recently, Gibali et al. [8] and Chen et al. [9] used step size determined
by Armijo-line search and proved the convergence of the algorithm. For more information
on the relaxed CQ algorithm and the selection of step size, please refer to references [10–12].

On the other hand, in order to make the algorithms converge faster, specific pertur-
bations have been introduced into the iterative format, since the perturbations guide the
iteration to a lower objective function value without losing the overall convergence. So far,
bounded perturbation recovery has been used in many problems.

Consider the usage of the bounded perturbation for the non-smooth optimization
problems, minx∈H φ(x) = f (x) + g(x), where f and g are proper lower semicontinuous
convex functions in real Hilbert spaces, f is differentiable, g is not necessarily differentiable,
and ∇ f is L-Lipschitz continuous. One of the classic algorithms is the proximal gradient
(PG) algorithm, based on which Guo et al. [13] proposed the following PG algorithm with
perturbations,

xk+1 = proxλk g(I − λkD∇ f + e)(xk). (7)
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Assume that (i) D is a bounded linear operator, (ii) 0 < inf λk ≤ λk ≤ sup λk < 2
L ,

(iii) e(xk) satisfies ∑∞
k=0 ‖e(xk)‖ < +∞, and (iv) θk = ∇ f (xk) − D(xk)∇ f (xk) satisfies

∑∞
k=0 ‖θk‖ < +∞. They asserted that the generated sequence {xk} converges weakly

to a solution. Later, Guo and Cui [14] proposed the modified PG algorithm for solving
this problem,

xk+1 = τkh(xk) + (1− τk)proxλk g(I − λk∇ f )(xk) + e(xk), (8)

where τk ⊂ [0, 1], h is a ρ ∈ (0, 1)-contractive operator. They proved that the sequence {xk}
generated by the algorithm (8) converges strongly to a solution x∗. In 2020, Pakkaranang
et al. [15] considered PG algorithm combined with inertial technique{

yk = xk + θk(xk − xk−1),

xk+1 = τkh(yk) + (1− τk)proxλk g(I − λk∇ f )(yk) + e(yk),
(9)

and they proved its strong convergence under suitable conditions.
For the convex minimization problem, minx∈Ω f (x), where Ω is a nonempty closed

convex subset in finite dimensional space and the objective function f is convex, Jin
et al. [16] presented the following projected scaled gradient (PSG) algorithm with errors

xk+1 = PΩ(xk − λkD(xk)∇ f (xk) + e(xk)). (10)

Assume that (i) {D(xk)}∞
k=0 is a sequence of diagonal scaling matrices, and that (ii)

(iii) (iv) are the same as the conditions in algorithm (7); then the generated sequence {xk}
converges weakly to a solution.

In 2017, Xu [17] applied the superiorization techniques to the relaxed PSG. The iterative
form is

xk+1 = (1− τk)xk + τkPΩ(xk − λkD(xk)∇ f (xk) + e(xk)), (11)

where τk is a sequence in [0, 1], and D(xk) is a diagonal scaling matrix. He established
weak convergence of the above algorithm under appropriate conditions imposed on {τk}
and {λk}.

For the variational inequality problem (VIP for short) 〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ C,
where F is a nonlinear operator, Dong et al. [18] considered the external gradient algorithm
with perturbations {

x̄k = PC(xk − αkF(xk) + e1(xk)),

xk+1 = PC(xk − αkF(x̄k) + e2(xk)).
(12)

where αk = γlmk with mk the smallest non-negative integer such that

αk‖F(xk)− F(x̄k)‖ ≤ µ‖xk − x̄k‖.

Assume that F is monotonous and L-Lipschitz is continuous and that the error se-
quence is summable; the sequence {xk} generated by the algorithm converges weakly to a
solution of the VIP.

For the split variational inclusion problem, Duan and Zheng [19] in 2020 proposed the
following algorithm

xk+1 = τkh(xk) + (1− τk)JB1
γ (I − λk A∗(I − JB2

γ )A)(xk) + e(xk), (13)

where A is a bounded linear operator, B1 and B2 are maximal monotone operators. As-
suming that limk→∞ τk = 0, ∑∞

k=0 τk = ∞, 0 < infk→∞ λk ≤ supk→∞ λk < 2
L , L = ‖A‖2

and ∑∞
k=0 ‖e(xk)‖ < +∞, they proved that the sequence {xk} strongly converges to a
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solution of the split variational inclusion problem, which is also the unique solution of
some variational inequality problem.

For the convex feasibility problem, Censor and Zaslavski [20] considered the pertur-
bation resilience and convergence of dynamic string-averaging projection method.

Adding an inertial term can improve the convergence rate, which is also a perturbation.
Recently, for a common solution of the split minimization problem and the fixed point
problem, Kaewyong and Sitthithakerngkiet [21] combined the proximal algorithm and a
modified Mann’s iterative method with the inertial extrapolation and improved related
results. Shehu et al. [22] and Li et al. [23] added alternated inertial perturbation to the
algorithms for solving the SFP and improved the convergence rate.

At present, the (multiple-sets) split feasibility problem is widely used in application
fields, such as CT tomography, image restoration, and image reconstruction, etc. There
are many related literatures on the iterative algorithms for solving the (multiple-sets)
split feasibility problem. However, there are relatively fewer documents studying the
algorithms of the (multiple-sets) split feasibility problem with perturbations, especially
with self-adaptive step size. In fact, the latter also has a bounded disturbance recovery
property. Motivated by [9,18], we focus on the modified relaxed CQ algorithms to solve
the MSSFP (1) in real Hilbert spaces and assert that the proposed algorithms are also
bounded-perturbation-resilient.

The rest of the paper is arranged as follows. In Section 2, definitions and notions that
will be useful for our analysis are presented. In Section 3, we present our algorithms and
prove their weak convergence. In Section 4, we prove that the proposed algorithms have
bounded perturbation resilience and construct the inertial modification of the algorithms.
Furthermore, finally, in Section 5, we present some numerical simulations to show the
validity of the proposed algorithms.

2. Preliminaries

In this section, we first define some symbols and then review some definitions and
basic results that will be used in this paper.

Throughout this paper,H denotes a real Hilbert space endowed with an inner product
〈·, ·〉 and its deduced norm ‖ · ‖, and I is the identity operator onH. We denote by S the
solution set of the MSSFP (1). Moreover, xk → x (xk ⇀ x) represents that the sequence
{xk} converges strongly (weakly) to x. Finally, we denote by ωω(xk) all the weak cluster
points of {xk}.

An operator T : H → H is said to be nonexpansive if for all x, y ∈ H,

‖Tx− Ty‖ ≤ ‖x− y‖;

T : H → H is said to be firmly nonexpansive if for all x, y ∈ H,

||Tx− Ty||2 ≤ ||x− y||2 − ||(I − T)x− (I − T)y||2,

or equivalently

||Tx− Ty||2 ≤ 〈Tx− Ty, x− y〉.

It is well known that T is firmly nonexpansive if and only if I − T is firmly nonexpan-
sive.

Let C be a nonempty closed convex subset ofH. Then the metric projection PC from
H onto C is defined as

PC(x) = argmin
y∈C

||x− y||2, x ∈ H.

The metric projection PC is a firmly nonexpansive operator.
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Definition 1 ([24]). A function f : H → R is said to be weakly lower semicontinuous at x̂ if xk

converges weakly to x̂ implies

f (x̂) ≤ lim inf
k→∞

f (xk).

Definition 2. If ϕ : H → R is a convex function, the subdifferential of ϕ at x is defined as

∂ϕ(x) = {ξ ∈ H | ϕ(y) ≥ ϕ(x) + 〈ξ, y− x〉, ∀y ∈ H}.

Lemma 1 ([24]). Let C be a nonempty closed and convex subset ofH; then for any x, y ∈ H, z ∈
C, the following assertions hold:
(i) 〈x− PCx, z− PCx〉 ≤ 0;
(ii) ‖PCx− z‖2 ≤ ‖x− z‖2 − ‖PCx− x‖2;
(iii) 2〈x, y〉 ≤ ‖x‖+ ‖x‖‖y‖2;
(iv) 2〈x, y〉 ≤ ‖x‖2 + ‖y‖2.

Lemma 2 ([25]). Assume that {ak}∞
k=0 is a sequence of nonnegative real numbers such that

ak+1 ≤ (1 + σk)ak + δk, ∀k ≥ 0,

where the nonnegative sequences {σk}∞
k=0 and {δk}∞

k=0 satisfies ∑∞
k=0 σk < +∞ and ∑∞

k=0 δk <

+∞, respectively. Then limk→∞ ak exists.

Lemma 3 ([25]). Let S be a nonempty closed and convex subset ofH and {xk} be a sequence inH
that satisfies the following properties:
(i) limk→∞ ‖xk − x‖ exists f or each x ∈ S;
(ii) ωω(xk) ⊂ S.

Then {xk} converges weakly to a point in S.

Definition 3. An algorithmic operator P is said to be bounded perturbations resilient if the iteration
xk+1 = P(xk) and xk+1 = P(xk + λkνk) all converge, where {λk} is a sequence of nonnegative
real numbers, {νk} is a sequence inH, and M ∈ R and satisfies

∞

∑
k=0

λk < +∞, ‖νk‖ ≤ M.

3. Algorithms and Their Convergence

In this section, we introduce two algorithms of the MSSFP (1) and prove their weak
convergence. First assume that the following four assumptions hold.

(A1) The solution set S of the MSSFP (1) is nonempty.
(A2) The level sets of convex functions can be expressed by

Ci = {x ∈ H1 | ci(x) ≤ 0} and Qj = {y ∈ H2 | qj(y) ≤ 0},

where ci : H1 → R (i = 1, · · · , t) and qj : H2 → R (j = 1, · · · , r) are weakly lower
semicontinuous and convex functions.

(A3) For any x ∈ H1 and y ∈ H2, at least one subgradient ξi ∈ ∂ci(x) and ηj ∈ ∂qj(y)
can be calculated. The subdifferential ∂ci and ∂qj are bounded on the bounded sets.

(A4) The sequences of perturbations {ei(xk)}∞
k=0 (i = 1, 2, 3) is summable, i.e.,

∞

∑
k=0
‖ei(xk)‖ < +∞.

Define two sets at point xk by
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Ck
i = {x ∈ H1 | ci(xk) + 〈ξk

i , x− xk〉 ≤ 0},

and

Qk
j = {y ∈ H2 | qj(Axk) + 〈ηk

j , y− Axk〉 ≤ 0},

where ξk
i ∈ ∂ci(xk) and ηk

j ∈ ∂qj(Axk). Define the function fk by

fk(x) =
1
2

r

∑
j=1

β j‖(I − PQk
j
)Ax‖2, (14)

where β j > 0. Then it is easy to verify that the function fk(x) is convex and differentiable
with gradient

∇ fk(x) =
r

∑
j=1

β j A∗(I − PQk
j
)Ax, (15)

and the L-Lipschitz constant of ∇ fk(x) is L = ‖A‖2 ∑r
j=1 β j.

We see that Ck
i (i = 1, · · · , t) and Qk

j (j = 1, · · · , r) are half spaces such that

Ci ⊂ Ck
i , Qj ⊂ Qk

j , for all k ≥ 1. We now present Algorithm 1 with Armijo-line search
step size.

Algorithm 1 (The relaxed CQ algorithm with Armijo-line search and perturbation)

Given constant γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Let x0 be arbitrarily chosen, for k =
0, 1, · · · , compute

x̄k = PCk
[k]
(xk − αk∇ fk(xk) + e1(xk)), (16)

where [k] = k mod t and αk = γlmk with mk the smallest non-negative integer such that

αk‖∇ fk(xk)−∇ fk(x̄k)‖ ≤ µ‖xk − x̄k‖. (17)

Construct the next iterate xk+1 by

xk+1 = PCk
[k]
(xk − αk∇ fk(x̄k) + e2(xk)). (18)

Lemma 4 ([6]). The Armijo-line search terminates after a finite number of steps. In addition,

µl
L

< αk ≤ γ, f or all k ≥ 0. (19)

where L = ‖A‖2 ∑r
j=1 β j.

The weak convergence of Algorithm 1 is established below.

Theorem 1. Let {xk} be the sequence generated by Algorithm 1, and the assumptions (A1)∼(A4)
hold. Then {xk} converges weakly to a solution of the MSSFP (1).

Proof. Let x∗ be a solution of the MSSFP. Note that C ⊂ Ci ⊂ Ck
i , Q ⊂ Qj ⊂ Qk

j , i =

1, · · · , t, j = 1, · · · , r, k = 0, 1, · · · , so x∗ = PC(x∗) = PCi (x∗) = PCk
i
(x∗) and Ax∗ =

PQ(Ax∗) = PQj(Ax∗) = PQk
j
(Ax∗), and thus fk(x∗) = 0 and ∇ fk(x∗) = 0.
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First, we prove that {xk} is bounded. Following Lemma 1 (ii), we have

‖xk+1 − x∗‖2

= ‖PCk
[k]
(xk − αk∇ fk(x̄k) + e2(xk))− x∗‖2

≤ ‖xk − αk∇ fk(x̄k) + e2(xk)− x∗‖2 − ‖xk+1 − xk + αk∇ fk(x̄k)− e2(xk)‖2

= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 − 2〈αk∇ fk(x̄k)− e2(xk), xk − x∗〉
−2〈αk∇ fk(x̄k)− e2(xk), xk+1 − xk〉

= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 − 2〈αk∇ fk(x̄k)− e2(xk), xk+1 − x∗〉
= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 − 2〈αk∇ fk(x̄k), xk+1 − x∗〉

+2〈e2(xk), xk+1 − x∗〉
= ‖xk − x∗‖2 − ‖xk+1 − x̄k‖2 − ‖x̄k − xk‖2 − 2〈xk+1 − x̄k, x̄k − xk〉
−2αk〈∇ fk(x̄k), xk+1 − x∗〉+ 2〈e2(xk), xk+1 − x∗〉

= ‖xk − x∗‖2 − ‖xk+1 − x̄k‖2 − ‖x̄k − xk‖2 − 2〈xk+1 − x̄k, x̄k − xk〉
−2αk〈∇ fk(x̄k), xk+1 − x̄k〉 − 2αk〈∇ fk(x̄k), x̄k − x∗〉+ 2〈e2(xk), xk+1 − x∗〉

= ‖xk − x∗‖2 − ‖xk+1 − x̄k‖2 − ‖x̄k − xk‖2 − 2αk〈∇ fk(x̄k), x̄k − x∗〉
+2〈xk − x̄k − αk∇ fk(x̄k), xk+1 − x̄k〉+ 2〈e2(xk), xk+1 − x∗〉. (20)

From Lemma 1 (iii), we have that

2〈e2(xk), xk+1 − x∗〉 ≤ ‖e2(xk)‖+ ‖e2(xk)‖‖xk+1 − x∗‖2. (21)

Since I − PC is firmly nonexpensive, ∇ fk(x∗) = 0, and Lemma 4, we get that

2αk〈∇ fk(x̄k), x̄k − x∗〉

= 2αk〈
r

∑
j=1

β j A∗(I − PQk
j
)Ax̄k −

r

∑
j=1

β j A∗(I − PQk
j
)Ax∗, x̄k − x∗〉

= 2αk

r

∑
j=1

β j〈(I − PQk
j
)Ax̄k − (I − PQk

j
)Ax∗, Ax̄k − Ax∗〉

≥ 2
µl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2. (22)

Based on the definition of x̄k and Lemma 1 (i), we know that

〈x̄k − xk + αk∇ fk(xk)− e1(xk), xk+1 − x̄k〉 ≥ 0. (23)

Note that (17), (23), and Lemma 1 (iii) yield that

2〈xk − x̄k − αk∇ fk(x̄k), xk+1 − x̄k〉
≤ 2〈−e1(xk) + αk∇ fk(xk)− αk∇ fk(x̄k), xk+1 − x̄k〉
= 2αk〈∇ fk(xk)−∇ fk(x̄k), xk+1 − x̄k〉 − 2〈e1(xk), xk+1 − x̄k〉
≤ 2αk‖∇ fk(xk)−∇ fk(x̄k)‖‖xk+1 − x̄k‖+ 2‖e1(xk)‖‖xk+1 − x̄k‖
≤ 2µ‖xk − x̄k‖‖xk+1 − x̄k‖+ ‖e1(xk)‖+ ‖e1(xk)‖‖xk+1 − x̄k‖2

≤ µ‖xk − x̄k‖2 + µ‖xk+1 − x̄k‖2 + ‖e1(xk)‖+ ‖e1(xk)‖‖xk+1 − x̄k‖2

= µ‖xk − x̄k‖2 + (µ + ‖e1(xk)‖)‖xk+1 − x̄k‖2 + ‖e1(xk)‖. (24)
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From assumption (A4), we know that limk→∞ ‖ei(xk)‖ = 0, i = 1, 2, and thus ∀ε >
0, ∃K, it holds that ‖ei(xk)‖ < ε for k > K. We can therefore assume ‖e1(xk)‖ ∈ [0, 1− µ−
τ) and ‖e2(xk)‖ ∈ [0, 1/2) for k ≥ K, where τ ∈ (0, 1− µ). Hence, from (24), we get that

2〈xk − x̄k − αk∇ fk(x̄k), xk+1 − x̄k〉 ≤ µ‖xk − x̄k‖2 + (1− τ)‖xk+1 − x̄k‖2 + ‖e1(xk)‖. (25)

Substituting (21), (22), and (25) into (20) yields

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− µ)‖xk − x̄k‖2 − τ‖xk+1 − x̄k‖2

+‖e1(xk)‖+ ‖e2(xk)‖+ ‖e2(xk)‖‖xk+1 − x∗‖2

−2
µl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2. (26)

Organizing the above formula we know that

‖xk+1 − x∗‖2 ≤ 1
1− ‖e2(xk)‖

‖xk − x∗‖2 − 1− µ

1− ‖e2(xk)‖
‖xk − x̄k‖2

− τ

1− ‖e2(xk)‖
‖xk+1 − x̄k‖2 +

‖e1(xk)‖+ ‖e2(xk)‖
1− ‖e2(xk)‖

− 2µl
(1− ‖e2(xk)‖)L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2. (27)

Since ‖e2(xk)‖ ∈ [0, 1/2) for k ≥ K, we get

1 ≤ 1
1− ‖e2(xk)‖

≤ 1 + 2‖e2(xk)‖ < 2. (28)

This together with (27) shows that

‖xk+1 − x∗‖2 ≤ (1 + 2‖e2(xk)‖)‖xk − x∗‖2 − (1− µ)‖xk − x̄k‖2 + 2‖e1(xk)‖

+2‖e2(xk)‖ − τ‖xk+1 − x̄k‖2 − 2
µl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2

≤ (1 + 2‖e2(xk)‖)‖xk − x∗‖2 + 2‖e1(xk)‖+ 2‖e2(xk)‖. (29)

Using Lemma 2 and assumption (A4), we know the existence of limk→∞ ‖xk − x∗‖2

and the boundedness of {xk}∞
k=0.

From (29), it follows

(1− µ)‖xk − x̄k‖2 + τ‖xk+1 − x̄k‖2 + 2
µl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2

≤ (1 + 2‖e2(xk)‖)‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 2‖e1(xk)‖+ 2‖e2(xk)‖, (30)

which means that

∞

∑
k=0
‖xk − x̄k‖ < +∞,

∞

∑
k=0
‖xk+1 − x̄k‖ < +∞.

We therefore have

lim
k→∞
‖xk − x̄k‖ = 0, lim

k→∞
‖xk+1 − x̄k‖ = 0. (31)
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Thus, by taking k→ ∞ in the inequality ‖xk+1 − xk‖ ≤ ‖xk+1 − x̄k‖+ ‖x̄k − xk‖, we
have

lim
k→∞
‖xk+1 − xk‖ = 0. (32)

From (30), we also know

lim
k→∞

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖ = 0. (33)

Hence for every j = 1, 2, · · · , r, we have

lim
k→∞
‖(I − PQk

j
)Ax̄k‖ = 0. (34)

Since {xk} is bounded, the set ωω(xk) is nonempty. Let x̂ ∈ ωω(xk); then there exists
a subsequence {xkn} of {xk} such that xkn ⇀ x̂. Next, we show that x̂ is a solution of the
MSSFP (1), which will show that ωω(xk) ⊂ S. In fact, since xkn+1 ∈ Ckn

[kn ]
, then by the

definition of Ckn
[kn ]

, we have

c[kn ](xkn) + 〈ξkn
[kn ]

, xkn+1 − xkn〉 ≤ 0, (35)

where ξkn
[kn ]
∈ ∂c[kn ](xkn). For every i = 1, 2, · · · , t, choose a subsequence {kns} ⊂ {kn}

such that [kns ] = i, then

ci(xkns ) + 〈ξkns
i , xkns+1 − xkns 〉 ≤ 0. (36)

Following the assumption (A3) on the boundedness of ∂ci and (32), there exists M1
such that

ci(xkns ) ≤ 〈ξkns
i , xkns − xkns+1〉

≤ ‖ξkns
i ‖‖x

kns − xkns+1‖
≤ M1‖xkns − xkns+1‖ → 0, s→ ∞. (37)

From the weak lower semicontinuity of the convex function ci, we deduce from (37)
that ci(x̂) ≤ lim infs→∞ ci(xkns ) ≤ 0, i.e., x̂ ∈ C =

⋂t
i=1 Ci.

Noting the fact that I − PQkn
j

is nonexpansive, together with (31), (34), and A being a

bounded and linear operator, we get that

‖(I − PQkn
j
)Axkn‖ ≤ ‖(I − PQkn

j
)Axkn − (I − PQkn

j
)Ax̄kn‖+ ‖(I − PQkn

j
)Ax̄kn‖

≤ ‖Axkn − Ax̄kn‖+ ‖(I − PQkn
j
)Ax̄kn‖

≤ ‖A‖‖xkn − x̄kn‖+ ‖(I − PQkn
j
)Ax̄kn‖ → 0, n→ ∞. (38)

Since PQkn
j
(Axkn) ∈ Qkn

j , we have

qj(Axkn) + 〈ηkn
j , PQkn

j
(Axkn)− Axkn〉 ≤ 0, (39)

where ηkn
j ∈ ∂qj(Axkn). From the boundedness assumption (A3), (38), and (39), there exists

M2 such that
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qj(Axkn) ≤ ‖ηkn
j ‖‖Axkn − PQkn

j
(Axkn)‖

≤ M2‖(I − PQkn
j
)Axkn‖ → 0, n→ ∞. (40)

Then qj(Ax̂) ≤ lim infn→∞ qj(Axkn) ≤ 0, thus Ax̂ ∈ Q =
⋂r

j=1 Qj, and therefore x̂ ∈ S.
Using Lemma 3, we conclude that the sequence {xk} converges weakly to a solution of the
MSSFP (1).

Now, we present Algorithm 2 in which the step size is given by the self-adaptive
method and prove its weak convergence.

Algorithm 2 (The relaxed CQ algorithm with self-adaptive step size and perturbation)

Take arbitrarily the initial guess x0, and calculate

xk+1 = PCk
[k]
(xk − αk∇ fk(xk) + e3(xk)), (41)

where αk = ρk fk(xk)
‖∇ fk(xk)‖2 , 0 < ρk < 4, and Ci, Qj, Ck

i , Qk
j and ∇ fk(x) were defined at the

beginning of this section.

The convergence result of Algorithm 2 is stated in the next theorem.

Theorem 2. Let {xk} be the sequence generated by Algorithm 2. Assumptions (A1)∼(A4) hold
and ρk satisfies infk ρk(4− ρk) > 0. Then {xk} converges weakly to a solution of the MSSFP (1).

Proof. First, we prove {xk} is bounded. Let x∗ ∈ S. Following Lemma 1 (ii), we have

‖xk+1 − x∗‖2

= ‖PCk
[k]
(xk − αk∇ fk(xk) + e3(xk))− x∗‖2

≤ ‖xk − αk∇ fk(xk) + e3(xk)− x∗‖2 − ‖xk+1 − xk + αk∇ fk(xk)− e3(xk)‖2

= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 − 2〈αk∇ fk(xk)− e3(xk), xk − x∗〉
−2〈αk∇ fk(xk)− e3(xk), xk+1 − xk〉

= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 − 2αk〈∇ fk(xk), xk − x∗〉
−2〈αk∇ fk(xk), xk+1 − xk〉+ 2〈e3(xk), xk+1 − x∗〉. (42)

From Lemma 1 (iii), it follows

2〈e3(xk), xk+1 − x∗〉 ≤ ‖e3(xk)‖+ ‖e3(xk)‖‖xk+1 − x∗‖2. (43)

Similar with (22), it holds that

2αk〈∇ fk(xk), xk − x∗〉 ≥ 2αk

r

∑
j=1

β j‖(I − PQk
j
)Axk‖2 = 4αk fk(xk). (44)

From Lemma 1 (iv), one has

−2〈αk∇ fk(xk), xk+1 − xk〉 ≤ α2
k‖∇ fk(xk)‖2 + ‖xk+1 − xk‖2. (45)

Substituting (43)–(45) into (42), we get that
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‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + α2
k‖∇ fk(xk)‖2 − 4αk fk(xk) + ‖e3(xk)‖

+‖e3(xk)‖‖xk+1 − x∗‖2,

= ‖xk − x∗‖2 +
ρ2

k f 2
k (xk)

‖∇ fk(xk)‖4 ‖∇ fk(xk)‖2 − 4
ρk fk(xk)

‖∇ fk(xk)‖2 fk(xk)

+‖e3(xk)‖+ ‖e3(xk)‖‖xk+1 − x∗‖2,

= ‖xk − x∗‖2 − ρk(4− ρk)
f 2
k (xk)

‖∇ fk(xk)‖2 + ‖e3(xk)‖‖xk+1 − x∗‖2

+‖e3(xk)‖. (46)

Organizing the above formula, we obtain that

‖xk+1 − x∗‖2

≤ 1
1− ‖e3(xk)‖

‖xk − x∗‖2 − ρk(4− ρk)

1− ‖e3(xk)‖
f 2
k (xk)

‖∇ fk(xk)‖2 +
‖e3(xk)‖

1− ‖e3(xk)‖
. (47)

From assumption (A4), we know that limk→∞ e3(xk) = 0, so we can assume without
loss of generality that ‖e3(xk)‖ ∈ [0, 1/2), k ≥ 0, then

1 ≤ 1
1− ‖e3(xk)‖

≤ 1 + 2‖e3(xk)‖ < 2. (48)

So (47) can be reduced as

‖xk+1 − x∗‖2 ≤ (1 + 2‖e3(xk)‖)‖xk − x∗‖2 + 2‖e3(xk)‖. (49)

Using Lemma 2, we get the existence of limk→∞ ‖xk − x∗‖2 and the boundedness of
{xk}∞

k=0.
From (47), we know

ρk(4− ρk)

1− ‖e3(xk)‖
f 2
k (xk)

‖∇ fk(xk)‖2

≤ 1
1− ‖e3(xk)‖

‖xk − x∗‖2 − ‖xk+1 − x∗‖2 +
‖e3(xk)‖

1− ‖e3(xk)‖
→ 0, (50)

then the fact that infk ρk(4− ρk) > 0 asserts that f 2
k (xk)

‖∇ fk(xk)‖2 → 0. Since ∇ fk is Lipschitz

continuity and ∇ fk(x∗) = 0, we get that

‖∇ fk(xk)‖2 = ‖∇ fk(xk)−∇ fk(x∗)‖2 ≤ L2‖xk − x∗‖2. (51)

This implies that ∇ fk(xk) is bounded, and thus (50) yields fk(xk) → 0. Hence for
every j = 1, 2, · · · , r, we have

‖(I − PQk
j
)Axk‖ → 0, k→ ∞. (52)

Let {xkn} be a subsequence of {xk} such that xkn ⇀ x̂ ∈ ωω(xk), and {kns} are a
subsequence of {kn} such that [kns ] = i. Similar to the proof of Theorem 1, we know
that ci(x̂) ≤ lim infs→∞ ci(xkns ) ≤ 0, i.e., x̂ ∈ C =

⋂t
i=1 Ci. Since (52) indicates that

qj(Ax̂) ≤ lim infn→∞ qj(Axkn) ≤ 0, Ax̂ ∈ Q =
⋂r

j=1 Qj. Therefore x̂ ∈ S. Using Lemma 3,
we conclude that the sequence {xk} converges weakly to a solution of the MSSFP (1).
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4. The Bounded Perturbation Resilience
4.1. Bounded Perturbation Resilience of the Algorithms

In this subsection, we consider the bounded perturbation algorithms of Algorithms
1 and 2. Based on Definition 3, in Algorithm 1, let ei(xk) = 0, i = 1, 2. The original
algorithm is 

x̄k = PCk
[k]
(xk − αk∇ fk(xk)),

xk+1 = PCk
[k]
(xk − αk∇ fk(x̄k)),

(53)

where αk is obtained by Armijo-line search step size such that αk‖∇ fk(xk)−∇ fk(x̄k)‖ ≤
µ‖xk− x̄k‖, where µ ∈ (0, 1). The generated iteration sequence is weakly convergent, which
is proved as a special case in Section 3. The algorithm with the bounded perturbation
of (53) is that 

x̄k = PCk
[k]
(xk + λkνk − αk∇ fk(xk + λkνk)),

xk+1 = PCk
[k]
(xk + λkνk − αk∇ fk(x̄k)).

(54)

where [k] = k mod t and αk = γlmk with mk the smallest non-negative integer such that

αk‖∇ fk(xk + λkνk)−∇ fk(x̄k)‖ ≤ µ‖xk + λkνk − x̄k‖
≤ µ(‖xk − x̄k‖+ λk‖νk‖). (55)

The following theorem shows that the algorithm (53) is bounded perturbation-resilient.

Theorem 3. Assume that (A1)∼(A3) are true; the sequence {νk}∞
k=0 is bounded and the scalar

sequence {λk}∞
k=0 satisfies λk ≥ 0 and Σ∞

k=0λk < +∞. Then the sequence {xk}∞
k=0 generated by

iterative scheme (54) converges weakly to a solution of the MSSFP (1). Thus, the algorithm (53) is
bounded perturbation-resilient.

Proof. Let x∗ ∈ S. Since Σ∞
k=0λk < +∞ and the sequence {νk}∞

k=0 are bounded, we have

∞

∑
k=0

λk‖νk‖ < +∞, (56)

thus

lim
k→∞

λk‖νk‖ = 0. (57)

So we can assume that λk‖νk‖ ∈ [0, (1− µ− τ)/2), where τ ∈ (0, 1− µ), without loss
of generality. Replacing e2(xk) with λkνk in (20) and using Lemma 1 (iii) show

‖xk+1 − x∗‖2

≤ ‖xk − x∗‖2 − ‖x̄k − xk‖2 − ‖xk+1 − x̄k‖2 − 2αk〈∇ fk(x̄k), x̄k − x∗〉
+2〈xk − x̄k − αk∇ fk(x̄k), xk+1 − x̄k〉+ 2〈λkνk, xk+1 − x∗〉

≤ ‖xk − x∗‖2 − ‖x̄k − xk‖2 − ‖xk+1 − x̄k‖2 − 2αk〈∇ fk(x̄k), x̄k − x∗〉
+2〈xk − x̄k − αk∇ fk(x̄k), xk+1 − x̄k〉+ λk‖νk‖+ λk‖νk‖‖xk+1 − x∗‖2. (58)

Since I − PC is firmly nonexpensive, ∇ fk(x∗) = 0 and Lemma 4, we get that

2αk〈∇ fk(x̄k), x̄k − x∗〉 ≥ 2
µl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2. (59)
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Based on the definition of x̄k and Lemma 1 (i), we know that

〈x̄k − xk + αk∇ fk(xk + λkνk)− λkνk, xk+1 − x̄k〉 ≥ 0. (60)

Based on (55), the following formulas holds

2〈αk∇ fk(xk + λkνk)− αk∇ fk(x̄k), xk+1 − x̄k〉
≤ 2αk‖∇ fk(xk + λkνk)−∇ fk(x̄k)‖‖xk+1 − x̄k‖
≤ 2µ‖xk − x̄k‖‖xk+1 − x̄k‖+ 2µλk‖νk‖‖xk+1 − x̄k‖
= µ‖xk − x̄k‖2 + (µ + λk‖νk‖)‖xk+1 − x̄k‖2 + µ2λk‖νk‖. (61)

Lemma 1 (iii) reads that

−2λk〈νk, xk+1 − x̄k〉 ≤ λk‖νk‖+ λk‖νk‖‖xk+1 − x̄k‖2. (62)

Substituting (60)–(62) into the fifth item of (58), we get

2〈xk − x̄k − αk∇ fk(x̄k), xk+1 − x̄k〉
≤ 2〈xk − x̄k − αk∇ fk(x̄k), xk+1 − x̄k〉

+2〈x̄k − xk + αk∇ fk(xk + λkνk)− λkνk, xk+1 − x̄k〉
= 2〈αk∇ fk(xk + λkνk)− αk∇ fk(x̄k), xk+1 − x̄k〉 − 2λk〈νk, xk+1 − x̄k〉
≤ µ‖xk − x̄k‖2 + (µ + 2λk‖νk‖)‖xk+1 − x̄k‖2 + (1 + µ2)λk‖νk‖
≤ µ‖xk − x̄k‖2 + (1− τ)‖xk+1 − x̄k‖2 + 2λk‖νk‖. (63)

Substituting (59) and (63) into (58) we get

‖xk+1 − x∗‖2 ≤ 1
1− λk‖νk‖

[
‖xk − x∗‖2 + 3λk‖νk‖ − (1− µ)‖x̄k − xk‖2

−τ‖xk+1 − x̄k‖2 − 2
µl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2

]
. (64)

Since λk‖νk‖ ∈ [0, (1− µ− τ)/2), we get

1 ≤ 1
1− λk‖νk‖

≤ 1 + 2λk‖νk‖ < 2. (65)

This, together with (64), shows that

‖xk+1 − x∗‖2 ≤ (1 + 2λk‖νk‖)
[
‖xk − x∗‖2 − (1− µ)‖xk − x̄k‖2 − τ‖xk+1 − x̄k‖2

−2
µl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2

]
+ 6λk‖νk‖

≤ (1 + 2λk‖νk‖)‖xk − x∗‖2 + 6λk‖νk‖. (66)

Using Lemma 2, we know the existence of limk→∞ ‖xk − x∗‖2 and the boundedness
of {xk}∞

k=0.
From (64), it follows that

(1− µ)‖x̄k − xk‖2 + τ‖xk+1 − x̄k‖2 + 2
µl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2

≤ ‖xk − x∗‖2 − (1− λk‖νk‖)‖xk+1 − x∗‖2 + 3λk‖νk‖. (67)
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Thus, we have limk→∞ ‖xk− x̄k‖ = 0, limk→∞ ‖xk+1− x̄k‖ = 0 and limk→∞ ∑r
j=1 β j‖(I−

PQk
j
)Ax̄k‖2 = 0. Hence,

lim
k→∞
‖xk+1 − xk‖ = 0, (68)

and for every j = 1, 2, · · · , r,

lim
k→∞
‖(I − PQk

j
)Ax̄k‖ = 0. (69)

Similarly to with Theorem 1, we conclude that the sequence {xk} converges weakly to
a solution of the MSSFP (1).

Remark 1. When t = 1, r = 1, the MSSFP reduces to the SFP; thus Theorems 1 and 3 guarantee
that algorithm (53) is bounded perturbation-resilient with Armijo-line search step size for the SFP.

Remark 2. Replace fk(x) in algorithm (53) by gk(x), and ∇ fk(x) by ∇gk(x), where gk(x) =
1
2‖(I − PQk

[k]
)Ax‖2, and ∇gk(x) = A∗(I − PQk

[k]
)Ax, [k] = k mod r. The corresponding algo-

rithm is also bounded perturbation-resilient.

Next, we will prove that Algorithm 2 with self-adaptive step size is bounded perturbation-
resilient. Based on Definition 3, let e3(xk) = 0 in Algorithm 2. The original algorithm is

xk+1 = PCk
[k]
(xk − αk∇ fk(xk)), (70)

where αk =
ρk fk(xk)
‖∇ fk(xk)‖2 , 0 < ρk < 4. The iterative sequence converges weakly to a solution

of the MSSFP (1); see [26]. Consider the algorithm with the bounded perturbation

xk+1 = PCk
[k]
(xk + λkνk − α̃k∇ fk(xk + λkνk)), (71)

where α̃k =
ρk fk(xk+λkνk)
‖∇ fk(xk+λkνk)‖2 , 0 < ρk < 4. The following theorem shows that the algorithm (70)

is bounded-perturbation-resilient.

Theorem 4. Suppose that (A1)∼(A3) are true; the sequence {νk}∞
k=0 is bounded and the scalar

sequence {λk}∞
k=0 satisfies λk ≥ 0, Σ∞

k=0λk < +∞, and ρk satisfies infk ρk(4− ρk) > 0. Then the
sequence {xk}∞

k=0 generated by iterative scheme (71) converges weakly to a solution of the MSSFP
(1). Thus, the algorithm (70) is bounded-perturbation-resilient.

Proof. Set e3(xk) = λkνk + αk∇ fk(xk)− α̃k∇ fk(xk + λkνk), then (71) can be rewritten as
xk+1 = PCk

[k]
(xk − αk∇ fk(xk) + e3(xk)), which is the form of Algorithm 2. According to

Theorem 2, it suffices to prove that ∑∞
k=0 e3(xk) < +∞. Since ρk fk(xk+λkνk)

‖∇ fk(xk+λkνk)‖2∇ fk(xk + λkνk)

is continuous, we write

ρk fk(xk + λkνk)

‖∇ fk(xk + λkνk)‖2∇ fk(xk + λkνk) =
ρk fk(xk)

‖∇ fk(xk)‖2∇ fk(xk) + O(λkνk), (72)

where O(λkνk) denotes the infinitesimal of the same order of λkνk. From the expression of
e3(xk), we obtain
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‖e3(xk)‖ ≤ ‖λkνk‖+
∥∥∥αk∇ fk(xk)− α̃k∇ fk(xk + λkνk)

∥∥∥
= ‖λkνk‖+

∥∥∥ ρk fk(xk)

‖∇ fk(xk)‖2∇ fk(xk)− ρk fk(xk + λkνk)

‖∇ fk(xk + λkνk)‖2∇ fk(xk + λkνk)
∥∥∥

= ‖λkνk‖+
∥∥∥ ρk fk(xk)

‖∇ fk(xk)‖2∇ fk(xk)−
( ρk fk(xk)

‖∇ fk(xk)‖2∇ fk(xk) + O(λkνk)
)∥∥∥

= ‖λkνk‖+ ‖O(λkνk)‖. (73)

Since {λkνk} is summable, we know that {e3(xk)} is summable, i.e., ∑∞
k=0 ‖e3(xk)‖ ≤

+∞. Thus, we conclude that the sequence {xk} converges weakly to a solution of the
MSSFP (1); i.e., the algorithm (70) is the bounded-perturbation-resilient.

Remark 3. When t = 1, r = 1, the MSSFP reduces to the SFP; thus Theorems 2 and 4 guarantee
that algorithm (70) is bounded-perturbation-resilient with the self-adaptive step size for the SFP.

4.2. Construction of the Inertial Algorithms by Bounded Perturbation Resilience

In this subsection, we consider algorithms with inertial terms as a special case of
Algorithms 1 and 2. In Algorithm 1, letting ei(xk) = θ

(i)
k (xk − xk−1), i = 1, 2, we obtain

x̄k = PCk
[k]
(xk − αk∇ fk(xk) + θ

(1)
k (xk − xk−1)),

xk+1 = PCk
[k]
(xk − αk∇ fk(x̄k) + θ

(2)
k (xk − xk−1)),

(74)

where the step size αk is obtained by Armijo-line search and

θ
(i)
k =


λ
(i)
k

‖xk − xk−1‖
, ‖xk − xk−1‖ > 1,

λ
(i)
k , ‖xk − xk−1‖ ≤ 1,

i = 1, 2. (75)

Theorem 5. Assume that the assumptions (A1)∼(A3) are true, and the sequence {λk}∞
k=0 satisfies

λk ≥ 0, and Σ∞
k=0λ

(i)
k < +∞, i = 1, 2. Then, the sequence {xk}∞

k=0 generated by iterative
scheme (74) converges weakly to a solution of the MSSFP (1).

Proof. Let ei(xk) = λ
(i)
k νk, i = 1, 2, where

νk =


xk − xk−1

‖xk − xk−1‖
, ‖xk − xk−1‖ > 1,

xk − xk−1, ‖xk − xk−1‖ ≤ 1.

(76)

Thus, we know that ‖νk‖ ≤ 1 and {ei(xk)}∞
k=0 satisfies assumption (A4). According

to Theorem 1, we conclude that the sequence {xk} converges weakly to a solution of the
MSSFP (1).

Considering the algorithm with inertial bounded perturbation
x̄k = PCk

[k]
(xk + θk(xk − xk−1)− αk∇ fk(xk + θk(xk − xk−1))),

xk+1 = PCk
[k]
(xk + θk(xk − xk−1)− αk∇ fk(x̄k)).

(77)

where

θk =


λk

‖xk − xk−1‖
, ‖xk − xk−1‖ > 1,

λk, ‖xk − xk−1‖ ≤ 1.
(78)
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According to Theorem 3, it is easy to know that the sequence {xk} converges weakly
to a solution of the MSSFP (1). More relevant evidence can be found in reference [27].

Similarly, we can get Theorem 6, which asserts that Algorithm 2 with the inertial
perturbation is weakly convergent.

Theorem 6. Assume that (A1)∼(A3) are true; the scalar sequence {λk}∞
k=0 satisfies λk ≥ 0,

and Σ∞
k=0λk < +∞, and ρk satisfies infk ρk(4− ρk) > 0. Then the sequence {xk}∞

k=0 is generated
by each of the following iterative scheme,

xk+1 = PCk
[k]
(xk − αk∇ fk(xk) + θk(xk − xk−1)), (79)

xk+1 = PCk
[k]
(xk − αk∇ fk(xk + θk(xk − xk−1)) + θk(xk − xk−1)), (80)

where θk is the same as (78) and αk is self-adaptive step size which is the same as in Algorithm 2,
converges weakly to a solution of the MSSFP (1).

5. Numerical Experiments

In this section, we compare the asymptotic behavior of algorithms (53) (Chen
et al. [9]), (77) (Algorithm 1), (70) (Wen et al. [26]) and (80) (Algorithm 2), denoted
by NP1, HP1, NP2, and HP2, respectively. For the sake of convenience, we denote
e0 = (0, 0, · · · , 0)T and e1 = (1, 1, · · · , 1)T , respectively. The codes are written in Matlab
2016a and run on Inter(R) Core(TM) i7-8550U CPU @ 1.80 GHz 2.00 GHz, RAM 8.00 GB.
We present two kinds of experiments. One is a real-life problem called LASSO problem,
the other kind is some numerical simulation including three examples of the MSSFP.

5.1. LASSO Problem

Let us consider the following LASSO problem [28]

min
{1

2
‖Ax− b‖2

2 | x ∈ Rn, ‖x‖1 ≤ ε
}

where A ∈ Rm×n, m < n, b ∈ Rm, and ε > 0. The matrix A is generated from a
standard normal distribution with mean zero and unit variance. The true sparse signal x∗

is generated from uniformly distribution in the interval [−2, 2] with random p position
nonzero, while the rest is kept zero. The sample data b = Ax∗. For the considered MSSFP,
let r = t = 1 and C = {x | ‖x‖1 ≤ ε}, Q = {b}. The objective function is defined as

f (x) =
1
2
‖Ax− b‖2

2.
We report the final error between the reconstructed signal and the true signal. Take

‖xk − x∗‖ < 10−4 as the stopping criterion, where x∗ is the true signal. We compare the
algorithms NP1, HP1, NP2 and HP2 with Yang’s algorithm [3]. Let αk = γlmk for all k ≥ 1,

γ = 1, l = 1
2 , µ = 1

2 , θk =
1
4 , ρk = 0.1, and αk = 0.1 ∗ 1

‖A‖2 of Yang’s algorithm [3].

The results are reported in Table 1. Figure 1 shows the objective function value versus
iteration numbers when m = 240, n = 1024, p = 30.

From Table 1 and Figure 1, we know that the inertial perturbation can improve the
convergence of the algorithms and that the algorithms with Armijo-line search or self-
adaptive step size perform better than Yang’s algorithm [3].

We also measure the restoration accuracy by means of the mean squared error,
i.e., MSE= (1/k)‖x∗ − xk‖, where x∗ is an estimated signal of x. Figure 2 shows a compar-
ison of the accuracy of the recovered signals when m = 1440, n = 6144, p = 180. Given
the same number of iterations, the recovered signals generated by algorithms in this pa-
per outperform the one generated by Yang’s algorithm; NP1 needs more CPU time and
presents lower accuracy; algorithms with self-adaptive step size perform better than the
algorithms with step size determined by Armijo-line search in CPU time and imposing
inertial perturbation accelerates the convergence rate and accuracy of signal recovery.
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Table 1. Comparison of algorithms with different step size.

m n p NP1 HP1 NP2 HP2 Yang’s alg.

120 512 15 No. of Iter 1588 1119 10,004 7426 10,944
cpu(time) 0.8560 0.6906 0.6675 0.4991 0.7011

240 1024 30 No. of Iter 1909 1354 10,726 7969 13,443
cpu(time) 2.1224 1.4836 1.6236 1.2011 1.9789

480 2048 60 No. of Iter 2972 2117 17,338 12,897 22,118
cpu(time) 22.5140 14.8782 15.4729 11.1033 19.3376

720 3072 90 No. of Iter 3955 2872 21,853 16,244 28,004
cpu(time) 134.9243 82.6705 79.1640 57.1230 110.0482
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Figure 1. The objective function value versus the iteration number.
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Figure 2. Comparison of signal processing.
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5.2. Three MSSFP Problems

Example 1 ([5]). Take H1 = H2 = R3, r = t = 2, β1 = β2 = 1
2 and αk = γlmk for all k ≥ 1,

γ = 1, l = 1
2 , µ = 1

2 , θk =
1
4 , ρk = 0.1. Define

C1 =
{

x = (x1, x2, x3)
T ∈ R3 | x1 + x2

2 + 2x3 ≤ 0
}

,

C2 =
{

x = (x1, x2, x3)
T ∈ R3 |

x2
1

16
+

x2
2

9
+

x2
3

4
− 1 ≤ 0

}
,

Q1 =
{

x = (x1, x2, x3)
T ∈ R3 | x2

1 + x2 − x3 ≤ 0
}

,

Q2 =
{

x = (x1, x2, x3)
T ∈ R3 |

x2
1

4
+

x2
2

4
+

x2
3

9
− 1 ≤ 0

}
,

and

A =

2 −1 3
4 2 5
2 0 2

.

The underlying MSSFP is to find x∗ ∈ C1
⋂

C2 such that Ax∗ ∈ Q1
⋂

Q2.

We use inertial perturbation to accelerate the convergence of the algorithm. For the
convenience of comparison, the initial values of the two inertial algorithms are set to be
the same. Let x0 = x1. We use Ek = ‖xk+1 − xk‖/‖xk‖ to measure the error of the k-th
iterate. If Ek < 10−5, then the iteration process stops. We compare our proposed iteration
methods HP1 , HP2 with NP1, NP2 and Liu and Tang’s Algorithm 2 in [29]. Algorithm 2 is
of the form xk+1 = U[k](xk − αk ∑r

j=1 β j A∗(I − Tj)Ax), αk ∈ (0, 2
‖A‖2 ). We take U[k] = PCk

[k]
,

Tj = PQk
j

and αk = 0.2 ∗ 1
‖A‖2 , and the algorithm is referred to as LT alg.

The convergence results and the CPU time of the five algorithms are shown in Table 2
and Figure 3. The errors are shown in Figure 4.

The results show that (80) (HP2) outperforms (77) (HP1) for certain initial values.
The main reason may be that the self-adaptive step size is more efficient than the one
determined by the Armijo-line search. Comparison results of five algorithms and the
convergence behavior show that in most cases, the convergence rate of the algorithm can
be improved by adding an appropriate perturbation.

Table 2. Numerical results of five algorithms for Example 1.

Choice NP1 HP1 NP2 HP2 LT alg.

1. x0 = (0.1, 0.1, 0.1)T No. of Iter 60 43 219 162 420
cpu(time) 0.0511 0.0450 0.0362 0.0347 0.0879

2. x0 = (−0.4, 0.555, 0.888)T No. of Iter 139 85 195 143 178
cpu(time) 0.0669 0.0509 0.0342 0.0318 0.0552

3. x0 = (1, 2, 3)T No. of Iter 142 89 195 141 178
cpu(time) 0.0694 0.0490 0.0352 0.0339 0.0551

4. x0 = (0.123, 0.745, 0.789)T No. of Iter 149 85 108 77 526
cpu(time) 0.0590 0.0448 0.0295 0.0268 0.1018
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Figure 3. Comparison of CPU times of the algorithms in Example 1: (a) Comparison for choice 1. (b)
Comparison for choice 2. (c) Comparison for choice 3. (d) Comparison for choice 4.
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Figure 4. Comparison of iterations of the algorithms in Example 1: (a) Comparison for choice 1. (b)
Comparison for choice 2. (c) Comparison for choice 3. (d) Comparison for choice 4.

Example 2. Take H1 = Rn, H2 = Rm, A = (aij)m×n with aij ∈ (0, 1) generated randomly,
Ci = {x ∈ Rn | ‖x − di‖2

2 ≤ r2
i }, i = 1, 2, · · · , t, Qj = {y ∈ Rm | ‖y − lj‖2

1 ≤ h2
j }, j =

1, 2, · · · , r, where di ∈ [e0, 10e1], ri ∈ [40, 60], lj ∈ [e0, e1], hj ∈ [10, 20] are all generated
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randomly. Set β1 = β2 = · · · = βr = 1
r and αk = γlmk for all k ≥ 1, γ = 1, l = 1

2 , µ = 1
2 ,

θk =
1
4 , ρk = 0.001.

We consider using inertial perturbation to accelerate the convergence of the algorithm.
If Ek = ‖xk+1 − xk‖/‖xk‖ < 10−4, then the iteration process stops. Let x0 = x1. We choose
arbitrarily three different initial points and consider iterative steps of the four algorithms
with m, n, r, t being different values. See Table 3 for details.

Table 3. Numerical results of the algorithms with and without perturbation for Example 2.

Initial Point NP1 HP1 NP2 HP2

r = t = 10, m = 15, n = 20
x0 = x1 = 2 ∗ e1 No. of Iter 49 36 1281 999

cpu(time) 0.1031 0.0669 0.1480 1494
x0 = x1 = 50 ∗ e1 No. of Iter 187 121 2297 1669

cpu(time) 0.2485 0.1536 0.2887 0.1868
x0 = x1 = 100 ∗ rand(n, 1) No. of Iter 312 225 2357 1811

cpu(time) 0.4202 0.2908 0.2830 0.2159

r = t = 10, m = n = 40
x0 = x1 = 2 ∗ e1 No. of Iter 89 66 956 732

cpu(time) 0.3140 0.1777 0.1534 0.1318
x0 = x1 = 50 ∗ e1 No. of Iter 1710 1583 1301 1061

cpu(time) 4.0390 4.0357 1860 0.1555
x0 = x1 = 100 ∗ rand(n, 1) No. of Iter 1674 1658 1487 1219

cpu(time) 4.6581 3.7752 0.2065 0.1762

r = t = 30, m = n = 40
x0 = x1 = 2 ∗ e1 No. of Iter 136 103 985 753

cpu(time) 0.6912 0.5174 0.3312 0.2515
x0 = x1 = 50 ∗ e1 No. of Iter 1612 1411 1258 968

cpu(time) 12.3437 11.7164 0.3991 0.3127
x0 = x1 = 100 ∗ rand(n, 1) No. of Iter 1541 1133 1643 1012

cpu(time) 11.8273 7.4646 1.0363 0.2965

In this example, we found that the algorithm with Armijo-line search needs fewer
iteration steps in relatively low-dimensional spaces. In the case of high-dimensional spaces,
the algorithm with self-adaptive step size outperforms in time. Generally, the convergence
is improved by inertial perturbations for both algorithms in our paper.

Example 3 ([30]). Take H1 = Rn, H2 = Rm, A = (aij)m×n with aij ∈ (0, 1) generated
randomly, Ci = {x ∈ Rn | ‖x − di‖2

2 ≤ r2
i }, i = 1, 2, · · · , t, Qj = {y ∈ Rm | yT Bjy +

bjy + cj ≤ 0}, j = 1, 2, · · · , r, where di ∈ (6e0, 16e1), ri ∈ (100, 120), bj ∈ (−30e1,−20e1),
cj ∈ (−50,−60), and all elements of the matrix Bj are all generated randomly in the interval
(2,10). Set β1 = β2 = · · · = βr =

1
r and αk = γlmk for all k ≥ 1, γ = 1, l = 1

2 , µ = 1
2 , θk =

1
4 ,

ρk = 0.1.

We consider using inertial perturbation to accelerate the convergence of the algo-
rithm. The stopping criterion is defined by Ek = 1

2 ∑t
i=1 ‖xk − PCk

i
xk‖2 + 1

2 ∑r
j=1 ‖Axk −

PQk
j
Axk‖2 < 10−4. Let x0 = x1. The details are shown in Table 4.
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Table 4. Results of Armijo-line search and self-adaptive algorithms for Example 3.

Initial Point NP1 HP1 NP2 HP2

r = t = 10, m = n = 20
x0 = x1 = e1 No. of Iter 477 357 2268 1700

cpu(time) 1.2453 0.9267 1.0516 0.8038
x0 = x1 = 50 ∗ e1 No. of Iter 757 564 3291 2470

cpu(time) 1.6205 1.2805 1.5623 1.1023
x0 = x1 = 100 ∗ rand(n, 1) No. of Iter 996 737 4323 3231

cpu(time) 1.9087 1.4396 1.9696 1.4493

r = t = 20, m = 40, n = 50
x0 = x1 = e1 No. of Iter 1256 941 5336 4001

cpu(time) 12.1310 4.0061 5.9165 4.0919
x0 = x1 = 50 ∗ e1 No. of Iter 1492 1105 6917 5221

cpu(time) 12.6430 8.2382 12.9631 9.4880
x0 = x1 = 100 ∗ rand(n, 1) No. of Iter 2101 1835 9936 9226

cpu(time) 16.4070 13.2868 14.9611 12.8079

r = t = 40, m = n = 60
x0 = x1 = e1 No. of Iter 1758 1317 8328 6245

cpu(time) 48.2570 38.0668 30.6759 23.4267
x0 = x1 = 50 ∗ e1 No. of Iter 2503 1777 12,905 8677

cpu(time) 59.2127 44.7915 49.5823 32.6868
x0 = x1 = 100 ∗ rand(n, 1) No. of Iter 2274 1474 18,781 13,952

cpu(time) 58.2569 38.1917 72.6622 54.9814

We can see from Table 4 that the convergence rate is improved by inertial perturbations
for both algorithms. In most cases, the algorithm with step size determined by Armijo-line
search outperforms the one with self-adaptive step size in the number of iterations, whereas
the latter outperforms the former in CPU time.

6. Conclusions

In this paper, for the MSSFP, we present two relaxed CQ algorithms with different
kinds of self-adaptive step size and discuss their bounded perturbation resilience. Treating
appropriate inertial terms as bounded perturbations, we construct the inertial acceleration
versions of the corresponding algorithms. For the real-life LASSO problem and three
experimental examples, we numerically compare the performance with or without inertial
perturbation of the algorithms and also compare the performance of the proposed algo-
rithms with Yang’s algorithm [3], and Liu and Tang’s algorithm [29]. The results show the
efficiency of the proposed algorithms and the validity of the inertial perturbation.
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