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Abstract: There are many kinds of generalizations of Cauchy numbers and polynomials. Recently,
a parametric type of the Bernoulli numbers with level 3 was introduced and studied as a kind of
generalization of Bernoulli polynomials. A parametric type of Cauchy numbers with level 3 is its
analogue. In this paper, as an analogue of a parametric type of Bernoulli polynomials with level
3 and its extension, we introduce a parametric type of Cauchy polynomials with a higher level.
We present their characteristic and combinatorial properties. By using recursions, we show some
determinant expressions.
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1. Introduction

Let r ≥ 1 be an integer. For real numbers p, q, define bivariate Cauchy polynomials
c(r,i)

n (p, q) with higher level (i = 0, 1, . . . , r− 1) as

t f (r,i)
q (t)

(1 + t)p log(1 + t)
=

∞

∑
n=0

c(r,i)
n (p, q)

tn

n!
, (1)

where

f (r,i)
q (t) =

∞

∑
n=0

(−1)n (qt)rn+i

(rn + i)!
. (2)

Their complementary polynomials ĉ(r,i)
n (p, q) (i = 0, 1, . . . , r− 1) are defined as

t f̂ (r,i)
q (t)

(1 + t)p log(1 + t)
=

∞

∑
n=0

ĉ(r,i)
n (p, q)

tn

n!
, (3)

where

f̂ (r,i)
q (t) =

∞

∑
n=0

(qt)rn+i

(rn + i)!
. (4)

When q = i = 0, cn(x) = c(r,0)
n (x, 0) = ĉ(r,0)

n (x, 0) is a Cauchy polynomial, defined by

t
(1 + t)x log(1 + t)

=
∞

∑
n=0

cn(x)
tn

n!

(cf. [1]). When p = q = i = 0, cn = c(r,0)
n (0, 0) = ĉ(r,0)

n (0, 0) is the classical Cauchy number
(cf. [2,3]), defined by

t
log(1 + t)

=
∞

∑
n=0

cn
tn

n!
.
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The numbers cn(1) are often called Cauchy numbers of the second kind. The sum of
products of Cauchy numbers are studied in [4]. Some recurrence relations are studied in [5].
The Cauchy numbers are closely related to the harmonic polynomials, and the Cauchy
polynomials are related to the Nörlund polynomials [1,6,7]. On the other hand, Cauchy
numbers and polynomials are closely related to Bernoulli numbers Bn and polynomials
Bn(x), which are defined by

tetx

et − 1
=

∞

∑
n=0

Bn(x)
tn

n!
,

and Bn = Bn(0). et − 1 and log(1 + t) are inverse functions, and cn/n! are often called
Bernoulli numbers of the second kind [8]. Bernoulli numbers are expressed in terms of
Stirling numbers of the second kind and Cauchy numbers are expressed in terms of Stirling
numbers of the first kind [9].

There are many generalizations of Cauchy numbers, including higher-order
numbers [10], degenerate Cauchy numbers and polynomials [11,12], poly-Cauchy
numbers [9], and hypergeometric Cauchy numbers [13]. They may be analogues of degen-
erate Bernoulli numbers and polynomials [14], poly-Bernoulli numbers [15], and hypergeo-
metric Bernoulli numbers [16–18], respectively. In this paper, we propose still a different
kind of generalization of Cauchy numbers and polynomials.

When r = 1, f (1,0)
q = f (1,0)

q (t) = e−qt and f̂ (1,0)
q = e−qt. When r = 2, f (2,0)

q = cos qt

and f̂ (2,0)
q = cosh qt, f (2,1)

q = sin qt and f̂ (2,1)
q = sinh qt. When r = 3,

f (3,0)
q =

e−qt + e−qωt + e−qω2t

3
, f̂ (3,0)

q =
eqt + eqωt + eqω2t

3
,

f (3,1)
q =

e−qt + ω2e−qωt + ωe−qω2t

3
, f̂ (3,1)

q = − eqt + ω2eqωt + ωeqω2t

3
,

f (3,2)
q =

e−qt + ωe−qωt + ω2e−qω2t

3
, f̂ (3,2)

q =
eqt + ωeqωt + ω2eqω2t

3
,

where ω = −1+
√
−3

2 and ω2 = ω̄ = −1−
√
−3

2 are the primitive cube roots of unity.
In [19], by referring to Osler’s lemma [20], explicit forms of the two bivariate series

involving sin and cos functions are obtained. Then, in [19], a parametric type of Bernoulli
polynomials is introduced and their basic properties are studied [21]. More precisely, two
kinds of bivariate Bernoulli polynomials are introduced as

tept

et − 1
f (2,0)
q =

∞

∑
n=0

B(2,0)
n (p, q)

tn

n!
(5)

and
tept

et − 1
f (2,1)
q =

∞

∑
n=0

B(2,1)
n (p, q)

tn

n!
. (6)

Recently, in [22], three kinds of trivariate Bernoulli polynomials are studied. Such
bivariate and trivariate Bernoulli polynomials are called the parametric type of Bernoulli
polynomials with levels 2 and 3, respectively. In particular, some determinant expressions
of these polynomials are also given.

In [23], two trigonometric extensions of bivariate Euler polynomials were introduced
and several properties related to these extensions were established. In [24], two parametric-
type families of the Fubini-type polynomials were introduced and studied. In [25], a
type of generalized parametric Apostol–Bernoulli, Apostol–Euler, and Apostol–Genocchi
polynomial was introduced and their basic properties were studied. In [26], the real and
imaginary parts of a general set of complex Appell polynomials can be represented in
terms of the Chebyshev polynomials of the first and second kind.
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As an analogous generation of the classical Euler numbers, Lehmer [27] introduced
and studied generalized Euler numbers Wn, defined by the generating function

1

f (3,0)
1

=
∞

∑
n=0

Wn
tn

n!
.

Notice that Wn = 0 unless n ≡ 0 (mod 3). In [28], more general Lehmer’s-type Euler
numbers were considered.

In [29], along with ideas about parametric Bernoulli polynomials mentioned above,
a parametric type of Cauchy numbers with levels 2 and 3 is introduced and studied.
However, such levels can be raised by an extension. In this paper, as an analogue of a
parametric type of Bernoulli polynomials with level 3 and its extension, we introduce a
parametric type of Cauchy polynomials with a higher level. We give their characteristic and
combinatorial properties. By using recursions, we show some determinant expressions.

Since for i = 0, 1, . . . , r− 1

(−1)rn+i =

{
(−1)n+i if r is odd;
(−1)i if r is even ,

we see that

f (r,i)
q (−t) =

{
(−1)i f̂ (r,i)

q (t) if r is odd;

(−1)i f (r,i)
q (t) if r is even ,

(7)

f̂ (r,i)
q (−t) =

{
(−1)i f (r,i)

q (t) if r is odd;

(−1)i f̂ (r,i)
q (t) if r is even .

(8)

It is clear to see the following.

Proposition 1. For n ≥ 0 and i, j = 0, 1, . . . , r− 1,

c(r,i)
n (p, ζ

j
rq) = ζ

ij
r c(r,i)

n (p, q) ,

ĉ(r,i)
n (p, ζ

j
rq) = ζ

ij
r ĉ(r,i)

n (p, q) ,

where ζ is the primitive r-th root of unity.

In the next section, we show several properties of bivariate Cauchy polynomials with
higher level. In particular, Theorem 1 entails fundamental recurrence formulas. By using
these formulas, we give determinant expressions of bivariate Cauchy polynomials with
higher levels. In special cases, we can get determinant expressions of the classical Cauchy
polynomials and numbers.

2. Basic Properties

In this section, we show several properties of bivariate Cauchy polynomials with
higher levels. We introduce the auxiliary polynomials G(r,i)

n (p, q) and Ĝ(r,i)
n (p, q) as

f (r,i)
q (t)

(1 + t)p =
∞

∑
n=0

G(r,i)
n (p, q)

tn

n!
, (9)

f̂ (r,i)
q (t)

(1 + t)p =
∞

∑
n=0

Ĝ(r,i)
n (p, q)

tn

n!
. (10)

respectively.
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Proposition 2. For n ≥ 0 and i = 0, 1, . . . , r− 1,

G(r,i)
n (p, q) =

b n−i
r c

∑
k=0

(−1)k
(

n
rk + i

)
(−p)n−rk−iqrk+i , (11)

Ĝ(r,i)
n (p, q) =

b n−i
r c

∑
k=0

(
n

rk + i

)
(−p)n−rk−iqrk+i , (12)

where (x)` = x(x− 1) · · · (x− `+ 1) (` ≥ 1) denotes the falling factorial with (x)0 = 1.

Proof. From the definition in (9), we have

∞

∑
n=0

G(r,i)
n (p, q)

tn

n!
=

(
∞

∑
l=0

(−p)ltl

l!

)(
∞

∑
k=0

(−1)k (qt)rk+i

(rk + i)!

)

=
∞

∑
n=0

b n−i
r c

∑
k=0

(−1)k
(

n
rk + i

)
(−p)n−rk−iqrk+i tn

n!
.

The identity (11) is obtained by comparing the coefficients on both sides. The
identity (12) is similarly proved.

c(r,i)
n (p, q) (respectively, ĉ(r,i)

n (p, q)) can be written in terms of G(r,i)
n (p, q) (respectively,

Ĝ(r,i)
n (p, q)).

Proposition 3. For n ≥ 0 and i = 0, 1, . . . , r− 1,

c(r,i)
n (p, q) =

n

∑
k=0

(
n
k

)
cn−kG(r,i)

k (p, q) , (13)

ĉ(r,i)
n (p, q) =

n

∑
k=0

(
n
k

)
cn−kĜ(r,i)

k (p, q) . (14)

Proof.

∞

∑
n=0

ĉ(r,i)
n (p, q)

tn

n!
=

t
log(1 + t)

·
f̂ (r,i)
q (t)

(1 + t)p

=

(
∞

∑
l=0

cl
tl

l!

)(
∞

∑
k=0

G(r,i)
k (p, q)

tk

k!

)

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
cn−kG(r,i)

k (p, q)
tn

n!
.

The identity (14) is obtained by comparing the coefficients on both sides. The
identity (13) is similarly proved.

Contrary to Proposition 3, G(r,i)
n (p, q) (respectively, Ĝ(r,i)

n (p, q)) can be written in terms
of c(r,i)

n (p, q) (respectively, ĉ(r,i)
n (p, q)).

Proposition 4. For n ≥ 0 and i = 0, 1, . . . , r− 1,

G(r,i)
n (p, q) =

n

∑
k=0

(−1)n−kn!
(n− k + 1)k!

c(r,i)
k (p, q) , (15)
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Ĝ(r,i)
n (p, q) =

n

∑
k=0

(−1)n−kn!
(n− k + 1)k!

ĉ(r,i)
k (p, q) . (16)

Proof.

∞

∑
n=0

G(r,i)
n (p, q)

tn

n!
=

log(1 + t)
t

∞

∑
k=0

c(r,i)
k (p, q)

tk

k!

=

(
∞

∑
l=0

(−1)ltl

l + 1

)(
∞

∑
k=0

c(r,i)
k (p, q)

tk

k!

)

=
∞

∑
n=0

n

∑
k=0

(−1)n−kn!
(n− k + 1)k!

c(r,i)
k (p, q)

tn

n!
.

The identity (15) is obtained by comparing the coefficients on both sides. The
identity (16) is similarly proved.

We have a summation formula for c(r,i)
n (p, q) (respectively, ĉ(r,i)

n (p, q)).

Theorem 1. For n ≥ 0 and i = 0, 1, . . . , r− 1,

n

∑
k=0

(
n + 1

k

)
c(r,i)

k (p, q)
d

dp
(p)n−k+1

=

{
−(−1)(n−i)/r(n + 1)qn if n ≡ i (mod r);
0 otherwise ,

(17)

n

∑
k=0

(
n + 1

k

)
ĉ(r,i)

k (p, q)
d

dp
(p)n−k+1

=

{
−(n + 1)qn if n ≡ i (mod r);
0 otherwise .

(18)

When p = 0 in Theorem 1, by

d
dp

(p)n−k+1

∣∣∣∣
p=0

= (−1)n−k(n− k)!

we have simpler recurrence relations.

Corollary 1. For n ≥ 0 and i = 0, 1, . . . , r− 1,

n

∑
k=0

(−1)n−kc(r,i)
k (p, q)

(n− k + 1)k!
=

−(−1)(n−i)/r qn

n!
if n ≡ i (mod r);

0 otherwise ,

n

∑
k=0

(−1)n−k ĉ(r,i)
k (p, q)

(n− k + 1)k!
=

−
qn

n!
if n ≡ i (mod r);

0 otherwise .

Proof of Theorem 1. From the definition in (1) and the proof of Proposition 4, we have

f (r,i)
q (t) = (1 + t)p · log(1 + t)

t

∞

∑
n=0

c(r,i)
n (p, q)

tn

n!
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=

(
∞

∑
m=0

(p)m

m!
tm

)(
∞

∑
l=0

l

∑
k=0

(−1)l−k+1

(l − k + 1)k!
c(r,i)

k (p, q)tl

)

=
∞

∑
n=0

(
n

∑
l=0

(p)n−l
(n− l)!

l

∑
k=0

(−1)l−k+1n!
(l − k + 1)k!

c(r,i)
k (p, q)

)
tn

n!

=
∞

∑
n=0

(
n

∑
k=0

c(r,i)
k (p, q)

n

∑
l=k

(
n
l

)(
l
k

)
(−p)n−l

(l − k + 1)

)
tn

n!

=
∞

∑
n=0

(
n

∑
k=0

(−1)k−1c(r,i)
k (p, q)

k!

n

∑
l=k

(−1)ln!(p)n−l
(l − k + 1)(n− l)!

)
tn

n!

=
∞

∑
n=0

(
n

∑
k=0

(−1)k−1c(r,i)
k (p, q)

k!
(−1)nn!

n−k

∑
j=0

(−1)j(p)j

(n− k− j + 1)j!

)
tn

n!
.

Since

n−k

∑
j=0

(−1)j(p)j

(n− k− j + 1)j!
=

1
(n− k + 1)!

n−k

∑
l=0

(−1)l(l + 1)
[

n− k + 1
l + 1

]
pl

=
1

(n− k + 1)!
d

dp
(−1)n−k(p)n−k+1 ,

where
[ n

k
]

denotes the (unsigned) Stirling numbers of the first kind as in

(x)n =
n

∑
k=0

(−1)n−k
[n

k

]
xk ,

comparing the coefficients with

f (r,i)
q (t) =

∞

∑
n=0

(−1)n (qt)rn+i

(rn + i)!

in (2), we get the identity (17). The identity (18) is similarly proved.

From Theorem 1, we have the recurrence relations

c(r,i)
n (p, q) = −n!

n−1

∑
k=0

c(r,i)
k (p, q)

k!
d

dp
(p)n−k+1

(n− k + 1)!

−
{
(−1)(n−i)/rqn if n ≡ i (mod r);
0 otherwise ,

(19)

ĉ(r,i)
n (p, q) = −n!

n−1

∑
k=0

ĉ(r,i)
k (p, q)

k!
d

dp
(p)n−k+1

(n− k + 1)!

−
{

qn if n ≡ i (mod r);
0 otherwise

(20)

with

c(r,i)
0 (p, q) = ĉ(r,i)

0 (p, q) =

{
1 if i = 0;
0 if i = 1, 2 .

By using recursions, we can get the exact values of c(r,i)
n (p, q) and ĉ(r,i)

n (p, q) for small
n. We list some initial values in the Appendix A.
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Theorem 2. For n ≥ 0 and i = 0, 1, . . . , r− 1,

c(r,i)
n (p + 1, q)− c(r,i)

n (p, q) = −nc(r,i)
n−1(p + 1, q) , (21)

ĉ(r,i)
n (p + 1, q)− ĉ(r,i)

n (p, q) = −nĉ(r,i)
n−1(p + 1, q) . (22)

Proof.

∞

∑
n=0

c(r,i)
n (p + 1, q)

tn

n!
−

∞

∑
n=0

c(r,i)
n (p, q)

tn

n!

=
t f (r,i)

q (t)
(1 + t)p+1 log(1 + t)

−
t f (r,i)

q (t)
(1 + t)p log(1 + t)

= −
t2 f (r,i)

q (t)
(1 + t)p+1 log(1 + t)

= −t
∞

∑
n=0

c(r,i)
n (p + 1, q)

tn

n!

= −
∞

∑
n=0

nc(r,i)
n−1(p + 1, q)

tn

n!
.

The identity (21) is obtained by comparing the coefficients on both sides. The
identity (22) is similarly proved.

Theorem 3. For n ≥ 0 and i = 0, 1, . . . , r− 1,

c(r,i)
n (p + s, q) =

n

∑
k=0

(
n
k

)
c(r,i)

k (p, q)(−s)n−k , (23)

ĉ(r,i)
n (p + s, q) =

n

∑
k=0

(
n
k

)
ĉ(r,i)

k (p, q)(−s)n−k . (24)

Proof.

∞

∑
n=0

c(r,i)
n (p + s, q)

tn

n!
=

t f (r,i)
q (t)

(1 + t)p+s log(1 + t)

=

(
∞

∑
n=0

c(r,i)
n (p, q)

tn

n!

)(
∞

∑
l=0

(−s)ltl

l!

)

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
c(r,i)

k (p, q)(−s)n−k
tn

n!
.

The identity (23) is obtained by comparing the coefficients on both sides. The
identity (24) is similarly proved.

Theorem 4. For n ≥ 0 and i = 0, 1, . . . , r− 1,

n

∑
k=0

c(r,i)
k (p, q)

k!
= − c(r,i)

n (p + 1, q)
n!

, (25)

n

∑
k=0

ĉ(r,i)
k (p, q)

k!
= − ĉ(r,i)

n (p + 1, q)
n!

. (26)
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Proof. By using Theorem 3 (23) with r = 1 and r = 0,

c(r,i)
n+1(p + 1, q)− c(r,i)

n+1(p, q) =
n

∑
k=0

(
n + 1

k

)
c(r,i)

k (p, q) · (−1)n−k+1(n− k + 1)!

= (n + 1)!
n

∑
k=0

(−1)n−k+1 c(r,i)
k (p, q)

k!
.

Together with Theorem 2 (21), we get the identity (25). The identity (26) is
similarly proved.

Theorem 5. For n ≥ 1,

∂

∂p
c(r,i)

n (p, q) =
n−1

∑
k=0

(−1)n−k−1 c(r,i)
k (p, q)
(n− k)k!

(i = 0, 1, . . . , r− 1) , (27)

∂

∂q
c(r,i)

n (p, q) =

{
−nc(r,r−1)

n−1 (p, q) if i = 0;

nc(r,i−1)
n−1 (p, q) if i = 1, 2, . . . , r− 1 ,

(28)

∂

∂p
ĉ(r,i)

n (p, q) =
n−1

∑
k=0

(−1)n−k−1 ĉ(r,i)
k (p, q)
(n− k)k!

(i = 0, 1, . . . , r− 1) , (29)

∂

∂q
ĉ(r,i)

n (p, q) =

{
nĉ(r,r−1)

n−1 (p, q) if i = 0;

nĉ(r,i−1)
n−1 (p, q) if i = 1, 2, . . . , r− 1 .

(30)

Proof.

∞

∑
n=1

∂

∂p
c(r,i)

n (p, q)
tn

n!
= −

t f (r,i)
q (t)

(1 + t)p

=

(
∞

∑
m=1

(−1)m−1 tm

m!

)(
∞

∑
n=0

c(r,i)
n (p, q)

tn

n!

)

=
∞

∑
n=0

n−1

∑
k=0

(−1)n−k−1 c(r,i)
k (p, q)
(n− k)k!

tn

n!
,

yielding (27). Since

∂

∂q
f (r,0)
q (t) = t

∞

∑
n=1

(−1)n(qt)rn−1

(rn− 1)!

= −t f (r,r−1)
q (t)

and
∂

∂q
f (r,i)
q (t) = t f (r,i−1)

q (t) (i = 1, 2, . . . , r− 1) ,

we get (28). The identities (29) and (30) are similarly proved.

3. Determinants

Bivariate Cauchy polynomials c(r,0)
n (p, q) with a higher level and their complementary

numbers ĉ(r,0)
n (p, q) have determinant expressions.
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Theorem 6. For n ≥ i + 1,

c(r,i)
n (p, q) =

qin!
i!

∣∣∣∣∣∣∣∣∣∣∣∣

rp(2) 1 0 · · · 0

rp(3) rp(2) 1
...

...
...

. . . . . . 0
rp(n− i) rp(n− i− 1) · · · rp(2) 1

r∗p(n− i + 1) r∗p(n− i) · · · r∗p(3) r∗p(2)

∣∣∣∣∣∣∣∣∣∣∣∣
and

ĉ(r,0)
n (p, q) =

qin!
i!

∣∣∣∣∣∣∣∣∣∣∣∣

rp(2) 1 0 · · · 0

rp(3) rp(2) 1
...

...
...

. . . . . . 0
rp(n− i) rp(n− i− 1) · · · rp(2) 1

r̂p(n− i + 1) r̂p(n− i) · · · r̂p(3) r̂p(2)

∣∣∣∣∣∣∣∣∣∣∣∣
,

where

rp(n) =
d

dp
(−1)n−1(p)n

n!

=
1
n!

n−1

∑
`=0

(−1)`(`+ 1)
[

n
`+ 1

]
p`

with

r∗p(n) = rp(n)−

 (−1)n+(n−1)/r i!qn−1

(n+i−1)! if n ≡ 1 (mod r);

0 otherwise
(n ≥ 2)

and

r̂p(n) = rp(n) +


(−1)ni!qn−1

(n+i−1)! if n ≡ 1 (mod r);

0 otherwise
(n ≥ 2) .

Proof. From Theorem 1 with the recurrence relation in (19), putting

γn :=
i!
qi

c(r,i)
n (p, q)

n!
,

we have

γn =
n−1

∑
k=i

(−1)n−k+1rp(n− k + 1)γk −
{

(−1)(n−i)/r i!qn−i

n! if n ≡ i (mod r);
0 otherwise .

(31)

Notice that γ0 = · · · = γi−1 = 0 and γi = 1 since c(r,i)
0 (p, q) = · · · = c(r,i)

i−1 (p, q) = 0

and c(r,i)
i (p, q) = qi. By induction, we shall prove that

γn =

∣∣∣∣∣∣∣∣∣∣∣∣

rp(2) 1 0 · · · 0

rp(3) rp(2) 1
...

...
...

. . . . . . 0
rp(n− i) rp(n− i− 1) · · · rp(2) 1

r̂p(n− i + 1) r̂p(n− i) · · · r̂p(3) r̂p(2)

∣∣∣∣∣∣∣∣∣∣∣∣
. (32)
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For n = i + 1, by the recurrence relation (31), we get

γi+1 = rp(2) = |rp(2)| .

Assume that the determinant expression of (32) is valid up to n− 1. Then, by expand-
ing the right-hand-side of (32) along the first row repeatedly, we have

rp(2)γn−1 −

∣∣∣∣∣∣∣∣∣∣∣∣

rp(3) 1 0 · · · 0

rp(4) rp(2) 1
...

...
...

. . . . . . 0
rp(n− i) rp(n− i− 2) · · · rp(2) 1

r∗p(n− i + 1) r∗p(n− i− 1) · · · r∗p(3) r∗p(2)

∣∣∣∣∣∣∣∣∣∣∣∣
= rp(2)γn−1 − rp(3)γn−2 + · · ·+ (−1)n−i−1rp(n− 1)γi+2

+ (−1)n−i
∣∣∣∣ rp(n− i) 1

r∗p(n− i + 1) r∗p(2)

∣∣∣∣
= rp(2)γn−1 − rp(3)γn−2 + · · ·+ (−1)n−i−1rp(n− 1)γi+2

+ (−1)n−irp(n)γi+1 + (−1)n−i+1r∗p(n− i + 1)γi

= γn .

The last identity is entailed from the recurrence relation (31) and

r∗p(n− i + 1) = rp(n− i + 1) + (−1)n−i+1 (−1)(n−i)/rqn−i

n!

for n ≡ i (mod r). By putting m = n− i + 1, we find that

r∗p(m) = rp(m)− (−1)m+(m−1)/ri!qm−1

(m + i− 1)!

for m ≡ 1 (mod r). In addition,

n−k

∑
j=0

(−1)j(p)j

(n− k− j + 1)j!
=

1
(n− k + 1)!

n−k

∑
l=0

(−1)l(l + 1)
[

n− k + 1
l + 1

]
pl

=
1

(n− k + 1)!
d

dp
(−1)n−k(p)n−k+1 .

Another identity can be yielded similarly from the recurrence relation

γ̂n =
n−1

∑
k=i

(−1)n−k+1rp(n− k + 1)γ̂k +

{
i!qn−i

n! if n ≡ i (mod r);
0 otherwise ,

with

γ̂n :=
i!
qi

ĉ(r,i)
n (p, q)

n!
.
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When q = i = 0 in Theorem 6, a simpler determinant expression of Cauchy polynomi-
als cn(p) := c(r,0)

n (p, 0) = ĉ(r,0)
n (p, 0) is given. For simplification of determinant expressions,

we use the Jordan matrix

J =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0


J0 is an identity matrix and JT is the transpose matrix of J.

Corollary 2. For n ≥ 1,

cn(p) = ĉn(p) = n!

∣∣∣∣∣JT +
n

∑
k=1

rp(k + 1)Jk−1

∣∣∣∣∣ .

Remark 1. When p = 0 in Corollary 2, by

r0(n) =
d

dp
(−1)n−1(p)n

n!

∣∣∣∣
p=0

=
1
n

,

we have a determinant expression of Cauchy numbers cn as

cn = n!

∣∣∣∣∣JT +
n

∑
k=1

1
k + 1

Jk−1

∣∣∣∣∣
(p. 50 [30]).

We need the following equivalent relations (see, e.g., [31]).

Lemma 1.
n

∑
k=0

(−1)n−kxn−kzk = 0 with x0 = z0 = 1

⇐⇒ xn =

∣∣∣∣∣JT +
n

∑
k=1

zk Jk−1

∣∣∣∣∣ ⇐⇒ zn =

∣∣∣∣∣JT +
n

∑
k=1

xk Jk−1

∣∣∣∣∣ .

By using Lemma 1 again, we have the inversion relation of Corollary 2.

Corollary 3. For n ≥ 1,

rp(n + 1) =

∣∣∣∣∣JT +
n

∑
k=1

ck(p)
k!

Jk−1

∣∣∣∣∣ .

We shall use Trudi’s formula to obtain different explicit expressions and inversion
relations for the numbers c(r,i)

n (p, 0).

Lemma 2. For n ≥ 1, we have∣∣∣∣∣a0 JT +
n

∑
k=1

ak Jk−1

∣∣∣∣∣ = ∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn

t1, . . . , tn

)
(−a0)

n−t1−···−tn at1
1 at2

2 · · · a
tn
n ,



Axioms 2021, 10, 207 12 of 15

where (t1+···+tn
t1,...,tn

) = (t1+···+tn)!
t1!···tn ! are the multinomial coefficients.

This relation is known as Trudi’s formula [32] (Volume 3, p. 214), [33] and the case
a0 = 1 of this formula is known as Brioschi’s formula [34], (Volume 3, pp. 208–209) [32].

By Corollaries 2 and 3 with Lemma 2, we get different expressions of cn(p) and rp(n).

Corollary 4. For n ≥ 1,

cn(p) = ∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn

t1, . . . , tn

)
× (−1)n−t1−···−tn

(
rp(2)

)t1
(
rp(3)

)t2 · · ·
(
rp(n + 1)

)tn ,

rp(n + 1) = ∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn

t1, . . . , tn

)

× (−1)n−t1−···−tn
(
c1(p)

)t1

(
c2(p)

2!

)t2

· · ·
(

cn(p)
n!

)tn

.

4. Discussion

Cauchy numbers and polynomials have been often considered and studied in rela-
tion to Bernoulli polynomials and numbers. There are many generalizations of Cauchy
polynomials. In particular, poly-Cauchy numbers are analogues of poly-Bernoulli num-
bers, and hypergeometric Cauchy numbers are analogues of hypergeometric Bernoulli
numbers. Recently, parametric types of Cauchy polynomials with level 2 (bivariate) and
level 3 (trivariate) are introduced and studied as analogues of parametric types of Bernoulli
polynomials with level 2 and level 3, respectively. In this paper, such a concept is totally
generalized as Cauchy polynomials with a higher level. We give their characteristic and
combinatorial properties, including determinant expressions.
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Appendix A

By using recursions in (19) and (20) or the determinant expressions in Theorem 6, we
can get the exact values of c(r,i)

n (p, q) and ĉ(r,i)
n (p, q) for small n. We list some initial values.

c(3,0)
0 (p, q) = 1 ,

c(3,0)
1 (p, q) = −p +

1
2

,

c(3,0)
2 (p, q) = p2 − 1

6
,

c(3,0)
3 (p, q) = −p3 − 3p2

2
− q3 +

1
4

,

c(3,0)
4 (p, q) = p4 + 4p3 + 4p2 + 4q3 p− 2q3 − 19

30
,

c(3,0)
5 (p, q) = −p5 − 15p4

2
− 55p3

3
− 5(2q3 + 3)p2 +

5q3

3
+

9
4

,

c(3,0)
6 (p, q) = p6 + 12p5 +

105p4

2
+ 20(q3 + 5)p3 + 6(5q3 + 12)p2 + q6 − 5q3 − 863

84
.
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c(3,1)
0 (p, q) = 0 ,

c(3,1)
1 (p, q) = q ,

c(3,1)
2 (p, q) = −2qp + q ,

c(3,1)
3 (p, q) = 3qp2 − q

2
,

c(3,1)
4 (p, q) = −4qp3 + 6qp2 − q4 + q ,

c(3,1)
5 (p, q) = 5qp4 + 20qp3 + 20qp2 + 5q4 p− 5q4

2
− 19q

6
,

c(3,1)
6 (p, q) = −6qp5 − 45qp4 − 110qp3 − 15q(q3 + 6)p2 +

5q4

2
+

27q
2

.

c(3,2)
0 (p, q) = 0 ,

c(3,2)
1 (p, q) = 0 ,

c(3,2)
2 (p, q) = q2 ,

c(3,2)
3 (p, q) = −3q2 p +

3q2

2
,

c(3,2)
4 (p, q) = 6q2 p2 − q2 ,

c(3,2)
5 (p, q) = −10q2 p3 − 15q2 p2 − q5 +

5q2

2
,

c(3,2)
6 (p, q) = 15q2 p4 + 60q2 p3 + 60q2 p2 + 6q5 p− 3q5 − 19q2

2
.

ĉ(3,0)
0 (p, q) = 1 ,

ĉ(3,0)
1 (p, q) = −p +

1
2

,

ĉ(3,0)
2 (p, q) = p2 − 1

6
,

ĉ(3,0)
3 (p, q) = −p3 − 3p2

2
+ q3 +

1
4

,

ĉ(3,0)
4 (p, q) = p4 + 4p3 + 4p2 − 4q3 p + 2q3 − 19

30
,

ĉ(3,0)
5 (p, q) = −p5 − 15p4

2
− 55p3

3
+ 5(2q3 − 3)p2 − 5q3

3
+

9
4

,

ĉ(3,0)
6 (p, q) = p6 + 12p5 +

105p4

2
− 20(q3 − 5)p3 − 6(5q3 − 12)p2 + q6 + 5q3 − 863

84
.

ĉ(3,1)
0 (p, q) = 0 ,

ĉ(3,1)
1 (p, q) = q ,

ĉ(3,1)
2 (p, q) = −2qp + q ,

ĉ(3,1)
3 (p, q) = 3qp2 − q

2
,

ĉ(3,1)
4 (p, q) = −4qp3 + 6qp2 + q4 + q ,

ĉ(3,1)
5 (p, q) = 5qp4 + 20qp3 + 20qp2 − 5q4 p +

5q4

2
− 19q

6
,

ĉ(3,1)
6 (p, q) = −6qp5 − 45qp4 − 110qp3 + 15q(q3 − 6)p2 − 5q4

2
+

27q
2

.
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ĉ(3,2)
0 (p, q) = 0 ,

ĉ(3,2)
1 (p, q) = 0 ,

ĉ(3,2)
3 (p, q) = −3q2 p +

3q2

2
,

ĉ(3,2)
4 (p, q) = 6q2 p2 − q2 ,

ĉ(3,2)
5 (p, q) = −10q2 p3 − 15q2 p2 + q5 +

5q2

2
,

ĉ(3,2)
6 (p, q) = 15q2 p4 + 60q2 p3 + 60q2 p2 − 6q5 p + 3q5 − 19q2

2
.
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