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Abstract: COVID-19 is a highly contagious disease which has spread across the world. A deter-
ministic model that considers an important component of individuals with vertically transmitted
underlying diseases (high-risk susceptible individuals), rather than the general public, is formulated
in this paper. We also consider key parameters that are concerned with the disease. An epidemio-
logical threshold, R0, is computed using next-generation matrix approach. This is used to establish
the existence and global stability of equilibria. We identify the most sensitive parameters which
effectively contribute to change the disease dynamics with the help of sensitivity analysis. Our results
reveal that increasing contact tracing of the exposed individuals who are tested for COVID-19 and
hospitalizing them, largely has a negative impact on R0. Results further reveal that transmission
rate between low-risk/high-risk susceptible individuals and symptomatic infectious individuals β

and incubation rate of the exposed individuals σ have positive impact on R0. Numerical simulations
show that there are fewer high-risk susceptible individuals than the general public when R0 < 1.
This may be due to the fact that high-risk susceptible individuals may prove a bit more difficult to
control than the low-risk susceptible individuals as a result of inherited underlying diseases present
in them. We thus conclude that high level of tracing and hospitalizing the exposed individuals, as
well as adherence to standard precautions and wearing appropriate Personal Protective Equipment
(PPE) while handling emergency cases, are needed to flatten the epidemic curve.

Keywords: high-risk susceptible individuals; contact tracing; Lyapunov functions; global stability;
sensitivity analysis

MSC: 34D23; 93C15; 93D20

1. Introduction

Until now, the COVID-19 pandemic remains a global concern due to the continuous
increase in the number of infectious individuals. The number of confirmed cases has
been growing very fast on a daily basis and it has been declared a worldwide pandemic
disease. The disease started in Wuhan, Hubei Province, China, in 2020 and since then, it
has spread across the world [1]. Presently, the pandemic has disrupted economies all over
the world. Since December 2019, the world has reported 148,329,348 confirmed cases and
3,128,962 death cases [2]. High fever, severe chest pain, body aches, headache, difficulty in
breathing, fatigue, pains, sore throat, skin rashes, running nose, taste loss, and diarrhea are
the symptoms of COVID-19, but the main and most common symptoms are dry cough and
fatigue [1].

With ongoing community transmission from asymptomatic infectious individuals,
disease burden is expected to rise. Consequently, there will be an ongoing need for people
with underlying diseases who are front-line health care workers in patient-facing roles.
This is due to the fact that their work requires close personal exposure to patients with
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SARS-CoV-2. They are at high risk of infection contributing to further spread [3]. SARS-
Cov-2 infects all susceptible individuals. However, evidence to date suggests that a group
of people is at a higher risk of contacting the virus quickly than the general public, due
to compromised immune system. These are people with underlying medical conditions.
An underlying disease affects the immunity, nutritional status and general well-being
of patients-factors that play a critical role in protecting individuals against COVID-19.
The World Health Organization emphasizes that this group of individuals (high-risk
susceptible individuals) must protect themselves from COVID-19 in order to protect others.
Furthermore, the highly susceptible individuals experience severe symptoms that may
lead to death when they contact COVID-19. In response to the pandemic, government
authorities at various levels have put in place various control measures such as imposing
strict mandatory lockdown, use of a face mask in public, regular hand washing, and social
distancing. Therefore, in order to reduce COVID-19 spread, contact tracing of suspected
infected individuals has been stepped up in several countries and detected cases are quickly
placed in isolation for prompt treatment [4].

The use of mathematical models to describe the transmission and spread of COVID-19,
so as to gain insights into the disease behaviour and develop strategies for its curtailment,
has been extensively studied by researchers. (see in [5–18] and the references cited therein.)
Our model has a unique difference from the models developed in [10,18] as follows: the
authors of [18] developed a mathematical model of COVID-19 to investigate the impact
of non-pharmaceutical interventions for possible control of the disease. In their model,
they only considered symptomatically infected and asymptomatically infected individ-
uals without considering some individuals in the susceptible population who are more
vulnerable to the disease than the rest of the susceptible population. These are front-line
health care workers, pregnant women, children and family of COVID-19 patients. For in-
stance, any COVID-19 patient who visits hospital for medical treatment will be attended
to by these health care workers and this puts them in higher risk of contacting the virus.
Classifying these individuals as a risk and treating them as a genuine threat is a national
priority. Furthermore, in [10], they modeled the effects of non-pharmaceutical interventions
on COVID-19 spread in Kenya. Their model excludes the class of high risk susceptible
individuals which is taken into account in our model. The work in [19] investigated a
class of SEIRS epidemic models with a general nonlinear incidence function. Systems
of differential equations are also used as HIV infection model with transitions between
uninfected cells and infected cells. The classical HIV infection divided the cells population
into following three main compartments depending on cell status, target cells, infected cells
producing viruses, matured virus particles, and its concentrations are denoted by x(t), y(t),
and v(t), respectively. The authors of [20] developed a nonlinear mathematical model of
MERS-COV to study the dynamical behaviour of the disease with two discrete-time delays.
We highlight the main objectives of the study to achieve our aim in what follows.

(1) It is noteworthy to mention that the high-risk susceptible individuals that we refer
to, in this paper, are individuals with vertically transmitted or inherited underlying
diseases, i.e., HIV, asthma and so on. These individuals are at higher-risk of con-
tacting COVID-19 than the rest of individuals in the population and thus the need
for the inclusion of high-risk susceptible individuals in order to understand the
disease dynamics.

(2) Global stability analyses of the disease-free and endemic equilibrium points are derived
(3) Robust sensitivity analysis of the model is performed to determine the contributory

effects of the factors/parameters on the spread of COVID-19.

The rest of the paper is organized as follows. Section 2 has the model formulation and
computation of basic reproduction number. In Section 3, global stability of disease-free and
endemic equilibrium points are established. Sensitivity analysis of the model parameters
is performed in Section 4. Some simulations are done in order to confirm our theoretical
results, regarding the global stability of equilibriums, in Section 5. Section 6 wraps the
modeling work with conclusion.
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2. Materials and Methods

The total population size, N, is divided into eight mutually exclusive compartments;
S, J, E, A, B, H, C, and R, which is interpreted as (i) low-risk susceptible individuals, (ii)
high-risk susceptible individuals, (iii) exposed individuals, (iv) asymptomatic infectious
individuals, (v) symptomatic infectious individuals, (vi) hospitalized individuals, (vii)
death class, and (viii) recovered individuals. People with vertically transmitted or inherited
disease are assumed as the high-risk susceptible individuals. Individuals in S and J can
be exposed to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) through
contact with either A or B, and we assume that the disease is faster transmitted in symp-
tomatic infectious population than the asymptomatic infectious population, and include
a variability factor π. It is assumed that the transmission rate in classes S and J are the
same. We also assume that individuals in H are in isolation and therefore cannot transmit
the disease. We assume that new recruits enter human population by birth, immigration,
or emigration at the rate Λ. Furthermore, there is vertical transmission recruitment into
class J at a rate φ. With contact tracing, a fraction, p, of the exposed individuals is tested
for COVID-19 at a rate q and become hospitalized. A fraction ε of the remaining fraction
(1− p) of the exposed individuals who show no clinical symptoms of COVID-19 at the end
of incubation period become asymptomatic at a progression rate σ, while the remaining
fraction (1− ε)(1− p) of the exposed individuals who show clinical symptoms at the end
of incubation period becomes symptomatic at a progression rate σ. Fraction of low-risk
and high-risk susceptible individuals who adhere to COVID-19 prevention guidelines
(wearing of face masks, hand washing, and maintaining social distancing) is denoted as
0 < ψ ≤ 1, while 0 < g ≤ 1 represents the expected decrease in the risk of infection due to
strict and correct compliance to COVID-19 prevention guidelines by low-risk and high-risk
susceptible individuals. Further, a fraction of low-risk and high-risk susceptible individuals
who are on lockdown within a population is denoted as 0 < ν ≤ 1, while 0 < m ≤ 1 is
the expected decrease in the risk of infection due to lock-down. The asymptomatic and
symptomatic infectious individuals are hospitalized at the rates κ and k and recover at the
rates τ and d. The hospitalized individuals recover at the rate ϕ but die due to COVID-19
at the rate u. The symptomatic infectious individuals also die due to COVID-19 at the rate
δ. Dead individuals are buried at the rate a. η and ω are the transmission rate of J and A
and J and B while α and ω are the transmission rate of S and A and S and B. We ignore
the transmission route from death compartment as the likelihood of transmission when
handling human remains is low [21].

Applying the assumptions, description of terms above, Table 1, Table 2 and Figure 1,
the differential equations which describe the dynamics of COVID-19 are formulated below.

Table 1. Description of state variables of model (1)–(8).

Variables Description

S Low-risk susceptible individuals
J High-risk susceptible individuals
E Exposed individuals
A Asymptomatic infectious individuals
B Symptomatic infectious individuals
H Hospitalized individuals
C Death class
R Recovered individuals
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Table 2. Summary of the parameters.

Parameter Meaning Value Reference

σ Incubation rate 0.166 [15]
α Transmission rate between low-risk/high-risk susceptibles and asymptomatics 0.001 Assumed
β Transmission rate between low-risk/high-risk susceptibles and symptomatics 0.001 Assumed
ψ Fraction of low-risk/high-risk susceptibles who adhere to prevention guidelines 0.1 [22]
ν Fraction of low-risk/high-risk susceptibles who are on lock-down 0.7 Assumed
ε Fraction of the exposed who become asymptomatic 0.2 [14]
m Lock-down efficacy for low-risk susceptibles 0.5 [22]
g Effectiveness of adherence for low-risk/high-risk susceptibles 0.5 [22]
p Fraction of the exposed who are hospitalized 0.5 Assumed
q Rate of testing 0.5 Assumed
τ Recovery rate for asymptomatics 0.14286 [14]
ϕ Recovery rate for hospitalized 0.05 [15]
d Recovery rate for symptomatics 0.1 [15]
Λ Recruitment rate 10000 Assumed
φ Vertical transmission recruitment rate 0.5 Assumed
µ Natural death rate of individuals 0.9 Assumed
δ COVID-19-caused death rate for symptomatics 0.015 [15]
u COVID-19-caused death rate for hospitalized 0.015 [15]
k Hospitalization rate for symptomatics 0.2 [15]
κ Hospitalization rate for asymptomatics 0.19466 [15]
π Reduction factor in COVID-19 transmission for concerned symptomatics 0.0242 (0–1) [23,24]
a Rate of safe burial of deaths 0.7 Assumed

Figure 1. Scheme of COVID-19 model.
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dS
dt

= Λ− απ(1− νm)(1− ψg)SA− β(1− νm)(1− ψg)SB− µS, (1)

dJ
dt

= φ− απ(1− νm)(1− ψg)JA− β(1− νm)(1− ψg)JB− µJ, (2)

dE
dt

= απ(1− νm)(1− ψg)SA + β(1− νm)(1− ψg)SB +

απ(1− νm)(1− ψg)JA + β(1− νm)(1− ψg)JB− (qp + σ(1− p) + µ)E, (3)
dA
dt

= (1− p)εσE− (κ + τ + µ)A, (4)

dB
dt

= (1− p)(1− ε)σE− (k + δ + d + µ)B, (5)

dH
dt

= qpE + κA + kB− (u + ϕ + µ)H, (6)

dC
dt

= δB + uH − aC, (7)

dR
dt

= dB + ϕH + τA− µR. (8)

with initial conditions

S(0) = S0 > 0, J(0) = J0 > 0, E(0) = E0 > 0, A(0) = A0 > 0,

B(0) = B0 > 0, H(0) = H0 > 0, C(0) = C0, R(0) = R0 > 0

where
N(t) = S(t) + J(t) + E(t) + A(t) + B(t) + H(t) + C(t) + R(t)

2.1. Positivity of Solutions

Theorem 1. Let N(0) = N0 and let the initial data for (1)–(8) be S(0) ≥ 0, J(0) ≥ 0, E(0) ≥ 0,
A(0) ≥ 0, B(0) ≥ 0, H(0) ≥ 0, C(0) ≥ 0 and R(0) ≥ 0. Then, the solutions (S(t), J(t), E(t),
A(t), B(t), H(t), C(t), R(t)) of the model will remain non-negative for all time t > 0.

Proof. From (1), it can be seen that

dS
S

= −(απ(1− νm)(1− ψg)A + β(1− νm)(1− ψg)B + µ)dt

Further simplification gives

S(t) = S(0)exp(−
∫ t

0
(απ(1− νm)(1− ψg)A + β(1− νm)(1− ψg)B + µ)ds) > 0 for t > 0

Furthermore, from (2), it can be seen that

dJ
J

= −(απ(1− νm)(1− ψg)A + β(1− νm)(1− ψg)B + µ)dt

Further simplification gives

J(t) = J(0)exp(−
∫ t

0 (απ(1− νm)(1− ψg)A + β(1− νm)(1− ψg)B + µ) > 0 for t > 0

We can use similar arguments to show that E(0) ≥> 0, A(0) ≥ 0, B(0) ≥ 0, H(0) ≥ 0,
C(0) ≥ 0, R(0) ≥ 0

Therefore, the model (1)–(8) is well posed and epidemiologically feasible in the region
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D =

(
(S, J, E, A, B, H, C, R) ∈ <8

+ : 0 ≤ S ≤ Λ
µ

, 0 ≤ J ≤ φ

µ
, N ≤ Λ

µ
, S0 ≤

Λ
µ

, J0 ≤
φ

µ

)
Equations (1)–(5) are independent of H, C, and R, and therefore we decouple the

compartments H, C, and R from the above equations which gives

Remark 1. Models (1)–(8) are potentially analytically solvable by using the Lie algebra method
through matrix exponentials. See in [25] and the references therein. Based on the Kolmogorov
equation and the Wei–Norman method, the analytical solution for the proposed model can be obtained
in terms of matrix exponentials.

dS
dt

= Λ− απ(1− νm)(1− ψg)SA− β(1− νm)(1− ψg)SB− µS, (9)

dJ
dt

= φ− απ(1− νm)(1− ψg)JA− β(1− νm)(1− ψg)JB− µJ, (10)

dE
dt

= απ(1− νm)(1− ψg)SA + β(1− νm)(1− ψg)SB + (11)

απ(1− νm)(1− ψg)JA + β(1− νm)(1− ψg)JB− (qp + σ(1− p) + µ)E,

dA
dt

= (1− p)εσE− (κ + τ + µ)A, (12)

dB
dt

= (1− p)(1− ε)σE− (k + δ + d + µ)B. (13)

2.2. Basic Reproduction Number

First, we obtain the disease-free equilibrium point as E0 = (S, J, E, A, B) = (S0, J0, 0, 0, 0) =

(Λ
µ , φ

µ , 0, 0, 0). Calculation of E0 gives
(

10, 000
0.9

,
0.5
0.9

, 0, 0, 0
)

. This gives (11111.11, 0.555, 0, 0, 0).

We use the next-generation operator approach in [26] to obtain the basic reproduction number R0.
The approach is explored on the model (9)–(13) as follows:

Considering only the disease compartments, the rate of appearance of new infections
and the transition rate are given, respectively, by

dE
dt

dA
dt

dB
dt


= F− G =

 απ(1− νm)(1− ψg)SA + β(1− νm)(1− ψg)SB + HT
0
0

−
 k1 E

−(1− p)εσE + k2 A
−(1− p)(1− ε)σE + k3 B



where

HT = απ(1− νm)(1− ψg)JA + β(1− νm)(1− ψg)JB

R0 is the maximum eigenvalue given as

R2
0 =

απ(1− νm)(1− ψg)(1− p)S0εσ

k1k2
+

απ(1− νm)(1− ψg)(1− p)J0εσ

k1k2
+

β(1− νm)(1− ψg)(1− p)(1− ε)S0σ

k1k3
+

β(1− νm)(1− ψg)(1− p)(1− ε)J0σ

k1k3
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This is the same as

R2
0 =

απ(1− νm)(1− ψg)(1− p)εσ(S0 + J0)

k1k2
+

β(1− νm)(1− ψg)(1− p)(1− ε)σ(S0 + J0)

k1k3

Further simplification of R0 gives

R2
0 =

απεσ(1− νm)(1− ψg)(1− p)(Λ + φ)

µ(qp + σ(1− p) + µ)(κ + τ + µ)
+

βσ(1− νm)(1− ψg)(1− p)(1− ε)(Λ + φ)

µ(qp + σ(1− p) + µ)(κ + δ + d + µ)

for

k1 = qp + σ(1− p) + µ

k2 = κ + τ + µ

k3 = k + δ + d + µ

3. Global Stability Analysis

In reality, there are always small perturbations. It is of interest to know whether such
deviations from steady state will lead to drastic changes or will be damped out in the
advancement of time. Therefore, in what follows, we establish a global asymptotic stability
of the disease-free equilibrium, that is, solution trajectories of sub-population, irrespective
of where they start, converge to the disease-free equilibrium solution for R0 < 1. This is
stated and proved below.

3.1. Global Stability of Disease-Free Equilibrium Solution

Theorem 2. The disease-free equilibrium solution is globally asymptotically stable if R0 < 1 and
unstable if R0 > 1

Proof. Consider the following linear Lyapunov function

L1 = E +
απ(1− νm)(1− ψg)(S0 + J0)

k2
A +

β(1− νm)(1− ψg)(S0 + J0)

k3
B

Its time derivative along solution path of COVID-19 model (9)–(13) is
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L̇1 = απ(1− νm)(1− ψg)SA + β(1− νm)(1− ψg)SB +

απ(1− νm)(1− ψg)JA + β(1− νm)(1− ψg)JB− k1E +

απ(1− νm)(1− ψg)S0

k2
((1− p)εσE− k2 A) +

απ(1− νm)(1− ψg)J0

k2
((1− p)εσE− k2 A) +

β(1− νm)(1− ψg)S0

k3
((1− p)(1− ε)σE− k3B) +

β(1− νm)(1− ψg)J0

k3
((1− p)(1− ε)σE− k3B)

= S(απ(1− νm)(1− ψg)A + β(1− νm)(1− ψg)B−
S0(απ(1− νm)(1− ψg)A + β(1− νm)(1− ψg)B +

J(απ(1− νm)(1− ψg)A + β(1− νm)(1− ψg)B)−
J0(απ(1− νm)(1− ψg)A + β(1− νm)(1− ψg)B)

+

(
DT
k1k2

+
FT

k1k2
+

WT
k1k3

+
NT

k1k3
− 1
)

k1 E

= (S− S0)(απ(1− νm)(1− ψg)A + β(1− νm)(1− ψg)B) +

(J − J0)(απ(1− νm)(1− ψg)A + β(1− νm)(1− ψg)B) + (R2
0 − 1)k1E

where

DT = S0εσαπ(1− νm)(1− ψg)(1− p)

FT = J0απ(1− νm)(1− ψg)(1− p)εσ

WT = S0βσ(1− νm)(1− ψg)(1− p)(1− ε)

NT = J0βσ(1− νm)(1− ψg)(1− p)(1− ε)

Because S ≤ S0 and J ≤ J0, we have

L̇1 = k1E(R2
0 − 1) ≤ 0

whenever R0 ≤ 1
Therefore, L̇1 ≤ 0 for R0 ≤ 1 and L̇1 = 0 if and only if E = 0, A = 0, B = 0 or S = S0,

J = J0 and R0 = 1. Consequently, the largest invariant set in (S, J, E, A, B, H, C, R) ∈ D : L′1 = 0
is the singleton E0 and by LaSalle’s Invariance Principle [27], E0 is globally asymptotically stable.
The epidemiological implication of the above result is that COVID-19 can be eradicated from the
population when R0 ≤ 1 irrespective of the initial sizes of the sub-population of the model.

3.2. Global Stability of Endemic Equilibrium Point

Theorem 3. The model (9)–(13) has a unique endemic equilibrium solution whenever R0 > 1,
and no endemic equilibrium solution otherwise.

Proof. The following equations are satisfied by the endemic equilibrium solution E1 =
(S∗, J∗, E∗, A∗, B∗):

Λ− απ(1− νm)(1− ψg)S∗A∗ − β(1− νm)(1− ψg)S∗B∗ − µS∗ = 0, (14)

φ− απ(1− νm)(1− ψg)J∗A∗ − β(1− νm)(1− ψg)J∗B∗ − µJ∗ = 0, (15)

απ(1− νm)(1− ψg)S∗A∗ + β(1− νm)(1− ψg)S∗B∗

+απ(1− νm)(1− ψg)J∗A∗ + β(1− νm)(1− ψg)J∗B∗ − k1E∗ = 0 (16)
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(1− p)εσE∗ − k2 A∗ = 0, (17)

(1− p)(1− ε)σE∗ − k3B∗ = 0. (18)

Making S∗, J∗, A∗, and B∗ the subject of formula in (14)–(18) gives

S∗ =
Λ

απ(1− νm)(1− ψg)A∗ + β(1− νm)(1− ψg)B∗ + µ
(19)

J∗ =
φ

απ(1− νm)(1− ψg)A∗ + β(1− νm)(1− ψg)B∗ + µ
(20)

A∗ =
εσ(1− p)E∗

k2
(21)

B∗ =
(1− p)(1− ε)σE∗

k3
(22)

Adding (14)–(16), we get

Λ + φ− µS∗ − µJ∗ − k1E∗ = 0 (23)

Substituting (19)–(22) in (23) yields

−
k1µR2

0(E∗)2

Λ + φ
+ µ(R2

0 − 1)E∗ = 0 (24)

From (24), we can obtain E∗ to be

E∗ =
Λ + φ

k1

(
1− 1

R2
0

)
Substituting E∗ in (19)–(22) gives

S∗ =
Λ

µR2
0

(25)

J∗ =
φ

µR2
0

(26)

A∗ =
(1− p)(Λ + φ)εσ

k1k2

(
1− 1

R2
0

)
(27)

B∗ =
(1− p)(1− ε)(Λ + φ)σ

k1k3

(
1− 1

R2
0

)
(28)

Calculation of E∗ yields

S∗ = 41534.09533

J∗ = 0.06922349223

A∗ = 2857.065333

B∗ = 11640.08393

The above results exist if only R0 > 1.
Further, we establish the global asymptotic stability of the endemic equilibrium

solution by proving that solution trajectories converge to the endemic equilibrium point for
R0 > 1. We shall carry this out by constructing a suitable Lyapunov candidate function of
Goh–Volterra type (see [28,29] and the references cited therein). The result below establishes
the global stability of the endemic equilibrium solution E1.
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Theorem 4. If R0 > 1, then the endemic equilibrium E1 of the model (9)–(13) is globally asymp-
totically stable in the interior of the region D.

Proof. Given the following equations which are satisfied by the endemic equilibrium
point E1:

Λ = απ(1− νm)(1− ψg)S∗A∗ + β(1− νm)(1− ψg)S∗B∗ + µS∗, (29)

φ = απ(1− νm)(1− ψg)J∗A∗ + β(1− νm)(1− ψg)J∗B∗ + µJ∗ (30)

απ(1− νm)(1− ψg)S∗A∗ + β(1− νm)(1− ψg)S∗B∗

+απ(1− νm)(1− ψg)J∗A∗ + β(1− νm)(1− ψg)J∗B∗ = k1E∗ (31)

(1− p)εσE∗ = k2 A∗, (32)

(1− p)(1− ε)σE∗ = k3B∗. (33)

Consider the following Lotka–Volterra Lyapunov function

L2 =

(
S− S∗ − S∗ ln

S∗

S∗

)
+

(
J − J∗ − J∗ ln

J∗

J∗

)
+

(
E− E∗ − E∗ ln

E∗

E∗

)
+

n1

(
A− A∗ − A∗ ln

A
A∗

)
+ n2

(
B− B∗ − B∗ ln

B∗

B∗

)
where

n1 =
απ(1− νm)(1− ψg)S∗

k2
+

απ(1− νm)(1− ψg)J∗

k2

n2 =
β(1− νm)(1− ψg)S∗

k3
+

β(1− νm)(1− ψg)J∗

k3

The Lyapunov time derivative along the solutions of the model gives

L̇2 =

(
1− S∗

S

)
S′ +

(
1− J∗

J

)
J′ +

(
1− E∗

E

)
E′ + n1

(
1− A∗

A

)
A′ + n2

(
1− B∗

B

)
B′

L̇2 =

(
1− S∗

S

)
((απ(1− νm)(1−ψg)A∗+ β(1− νm)(1−ψg)B∗)S∗+µS∗− (απ(1−

νm)(1−ψg)A+ β(1− νm)(1−ψg)B)S−µS+

(
1− J∗

J

)
((απ(1− νm)(1−ψg)A∗+ β(1−

νm)(1 − ψg)B∗)J∗ + µJ∗ − (απ(1 − νm)(1 − ψg)A + β(1 − νm)(1 − ψg)B)J − µJ +(
1− E∗

E

)
((απ(1− νm)(1− ψg)SA + β(1− νm)(1− ψg)SB + απ(1− νm)(1− ψg)JA +

β(1− νm)(1−ψg)JB− k1E)+n1

(
1− A∗

A

)
((1− p)εσE− k2 A)+n2

(
1− B∗

B

)
((1− p)(1−

ε)σE− k3B)

Further simplification gives

L̇2 = (απ(1− νm)(1− ψg)A∗ + β(1− νm)(1− ψg)B∗)S∗

+ (απ(1− νm)(1−ψg)A∗+ β(1− νm)(1−ψg)B∗)J∗+ k1E∗+ n1k2 A∗+ n2k3B∗+ p3k4U∗

− (απ(1− νm)(1−ψg)A∗+ β(1− νm)(1−ψg)B∗
(S∗)2

S
− (απ(1− νm)(1−ψg)A∗+ β(1−

νm)(1− ψg)B∗
(J∗)2

J
− (απ(1− νm)(1− ψg)A + β(1− νm)(1− ψg)B

SE∗

E
− (απ(1− νm)

(1− ψg)A + β(1− νm)(1− ψg)B
JE∗

E
− n1(1− p)εσEA∗

A
− n2(1− p)(1− ε)σEB∗

B
+ 2µS∗
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+ 2µJ∗ − µ(S∗)2

S
− µ(J∗)2

J
− µ(S + J) + (απ(1− νm)(1− ψg)A + β(1− νm)(1− ψg)B

+ µ)S∗ + (απ(1− νm)(1− ψg)A + β(1− νm)(1− ψg)B + µ)J∗

Substituting n1 and n2 by their values and employing (29)–(33) gives

n1(1− p)εσ =
απ(1− νm)(1− ψg)S∗A∗ + απ(1− νm)(1− ψg)J∗A∗

E∗
(34)

n2(1− p)(1− ε)σ =
β(1− νm)(1− ψg)S∗B∗ + β(1− νm)(1− ψg)J∗B∗

E∗
(35)

Using (29)–(35), we have

L̇2 = µS∗
(

2− S∗

S
+ µJ∗

(
2− J∗

J
− J

J∗

))
+ 3(απ(1− νm)(1− ψg)A∗ + β(1− νm)

(1− ψg)B∗)S∗ + 3(απ(1− νm)(1− ψg)A∗ + β(1− νm)(1− ψg)B∗)J∗ − (απ(1− νm)
(1− ψg)A∗ + β(1− νm)(1− ψg)B∗)
(S∗)2

S
− (απ(1− νm)(1− ψg)A∗ + β(1− νm)(1− ψg)B∗)

(J∗)2

J
− (απ(1− νm)(1− ψg)

A + β(1− νm)(1− ψg)B)
SE∗

E
− (απ(1− νm)(1− ψg)A + β(1− νm)(1− ψg)B)

JE∗

E
− απ(1− νm)(1− ψg)S∗E∗(A∗)2

E∗A

− απ(1− νm)(1− ψg)J∗E∗(A∗)2

E∗A
− β(1− νm)(1− ψg)S∗E(B∗)2

E∗B
−

β(1− νm)(1− ψg)J∗E(B∗)2

E∗B

L̇2 = µS∗
(

2− S∗

S
− S

S∗

)
+ µJ∗

(
2− J∗

J
− J

J∗

)
+

απ(1− νm)(1− ψg)S∗A∗
(

3− S∗

S
− ASE∗

A∗ES∗
− A∗E∗

E∗A

)
+

απ(1− νm)(1− ψg)J∗A∗
(

3− J∗

J
− AJE∗

A∗EJ∗
− A∗E∗

E∗A

)
+

β(1− νm)(1− ψg)S∗B∗
(

3− S∗

S
− BSE∗

B∗ES∗
− EB∗

E∗B

)
+ β(1− νm)(1− ψg)J∗B∗(

3− J∗

J
− BJE∗

B∗EJ∗
− EB∗

E∗B

)
By arithmetic-geometric means inequality, i.e., n− (a1 + a2 + · · ·+ an) ≤ 0, where

a1.a2 . . . an = 1 and a1, a2, . . . , an > 0, it follows that L̇2 ≤ 0 with L2 = 0 if and only if
S = S∗, J = J∗, E = E∗, A = A∗, B = B∗.

Therefore, the largest compact invariant subset of the set where L̇2 = 0 is

(S, J, E, A, B) = (S∗, J∗, E∗, A∗, B∗)

Therefore, by stability theorem of Lyapunov and LaSalle’s Invariance Principle, it
follows that every solution in D approaches E1 for R0 > 1 as t→ ∞.

The implication of the above result is that COVID-19 will establish itself in the popula-
tion for R0 > 1.

4. Sensitivity Analysis

We perform a sensitivity analysis of COVID-19 model in order to determine the
parameters that are most influential in the transmission dynamics and spread of the disease.
Sensitivity analysis is helpful for experimental design, data assimilation, and reduction
of complex nonlinear models. A very high sensitivity indicates that more care should be
taken in the estimation of the associated parameters. Following the approach in [30], we
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define sensitivity index of a variable to a parameter as the ratio of relative change in the
variable to the relative change in the parameter.

When the variable is a differentiable function of the parameter, the sensitivity index
may be alternatively defined using partial derivatives.

Definition 1. The normalized forward sensitivity index of a variable, u(p), that depends differen-
tiably on a parameter, p, is defined as

Nu
p =

∂u
∂p
× p

u

for u 6= 0
Consequently, we derive analytical expression for the sensitivity index of R0 as

NR0
pi =

∂R0

∂pi
× pi

R0

where pi, i ∈ N denotes each parameter involved in R0
R0 is defined as

R2
0 =

απεσ(1− νm)(1− ψg)(1− p)(Λ + φ)

µ(qp + σ(1− p) + µ)(κ + τ + µ)
+

βσ(1− νm)(1− ψg)(1− p)(1− ε)(Λ + φ)

µ(qp + σ(1− p) + µ)(κ + δ + d + µ)

We have Table 3 which summarizes the sensitivity indices on R0 with respect to
parameters, i.e.,

NR0
Λ , NR0

β , NR0
σ , NR0

α , NR0
φ , NR0

π , NR0
µ , NR0

p , NR0
m ,

NR0
ν , NR0

ε , NR0
q , NR0

k , NR0
g , NR0

d , NR0
ψ , NR0

κ , NR0
δ , NR0

τ

In order to know the most influential parameters concerned with the basic reproduc-
tion of the disease, sensitivity analysis is performed. We categorize the most sensitive
parameters in descending order to the least sensitive ones in Table 3, after ranking the
sensitivity functions. The most sensitive parameters that have positive indices on R0 are the
recruitment rate Λ, followed by the transmission rate between low-risk/high-risk suscepti-
ble individuals and symptomatic infectious individuals β, followed by the incubation rate
σ, followed by the transmission rate between low-risk/high-risk susceptible individuals
and asymptomatic infectious individuals α, followed by vertically transmitted recruitment
rate φ. From the sensitivity analysis results, we can confidently say that the intervention
strategies must focus on the reduction in the above parameters in order to have a disease-
free population. On the other hand, the most sensitive parameters in a negative sense is the
natural death rate µ, followed by the fraction of the exposed individuals who are tested for
COVID-19 p and become hospitalized, followed by the lockdown efficacy for low and high
risk susceptible individuals m, followed by the fraction of low-risk and high-risk suscepti-
ble individuals who are on lockdown ν, followed by the fraction of the exposed individuals
who become asymptomatic ε, followed by rate of testing q, followed by hospitalization
rate of symptomatic k, followed by effectiveness of adherence for low-risk and high-risk
susceptible individuals g, followed by the recovery rate of symptomatic individuals d,
followed by the fraction of low-risk and high-risk susceptible individuals who adhere
to prevention guidelines ψ, followed by hospitalization rate of asymptomatic infectious
individuals κ, followed by COVID-19-caused death rate δ, followed by recovery rate of
asymptomatic infectious individuals τ. It is clear to see that a fraction p, of the exposed
individuals who are tested for COVID-19 at a rate q, and become hospitalized, has signifi-
cant contribution to the disease dynamics. Therefore, high level of contact tracing through
testing and hospitalization of the exposed individuals who are tested for COVID-19, are
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needed at the beginning of the epidemic. The sensitivity indices of the model (9)–(12) are
graphically shown in Figure 2.

Table 3. Numerical values of sensitivity indices of R0 with respect to parameter involved.

Parameter Symbol Sensitivity Index

Λ +0.4999

β +0.4963

σ +0.4663

α +0.0036

φ +0.00000083

π +0.0036

µ −1.2352

p −0.5689

m −0.3321

ν −0.3308

ε −0.1203

q −0.1013

k −0.0816

g −0.0555

d −0.0408

ψ −0.0555

κ −0.0005

δ −0.0061

τ −0.0004

Figure 2. Sensitivity analysis between R0 and its associated parameters.

5. Numerical Simulations

Numerical simulations for COVID-19 model are presented in this section with the
parameters mostly taken from the literature. See Tables 1 and 2 for the description of
variables and parameters with their values. Figure 3 represents the solution trajectories of
the model for initial conditions (S(0) = 50, J(0) = 40, E(0) = 10, A(0) = 150, B(0) = 200,
H(0) = 100, C(0) = 10), R(0) = 150) when Λ = 10, 000, φ = 0.5 and µ = 0.9 so that
R0 = 0.517. From Figure 3, it can be seen that the population of exposed individuals
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E, asymptomatic infectious individuals A, symptomatic infectious individuals B, hospi-
talized individuals H, and death class C converge to disease-free equilibrium solution
and never turn to epidemic for R0 < 1 and this gives an increase in the population
of low-risk susceptible individuals S and high- risk susceptible individuals. This im-
plies that COVID-19 is cleared from the population for R0 < 1 as shown in Theorem
2. It can be viewed that the graph of high risk susceptible individuals J do not rise as
much as the graph of low risk susceptible individuals S. This may be due to the fact
that the high risk susceptible individuals may prove a bit more difficult to control than
the low risk susceptible individuals due to their constant and inevitable exposure to
the virus. Figure 4 presents the solution trajectories when Λ = 300,000, φ = 0.5 and
µ = 0.9 for initial conditions (S(0) = 1000, 000, J(0) = 400, 000, E(0) = 500, A(0) = 200,
B(0) = 250, H(0) = 150, C(0) = 20, R(0) = 200) so that R0 = 2.832. From Figure 4, it can
be seen that irrespective of the initial size of the infectious population, the infectious indi-
viduals remain in the population for R0 > 1. Therefore, the limit of the solution trajectories
is the endemic equilibrium solution. This implies that solution trajectories converge to the
endemic equilibrium point. Thus, as established in Theorem 4, the disease establishes itself
in the population.

(a) Graph of low-risk susceptible individuals (b) Graph of high-risk susceptible individuals

(c) Graph of exposed individuals (d) Graph of asymptomatic infectious individuals

Figure 3. Cont.
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(e) Graph of symptomatic infectious individuals (f) Graph of hospitalized individuals

(g) Graph of death classes (h) Graph of recovered individuals

Figure 3. Simulation results showing the global stability of the disease-free equilibrium.

(a) Graph of low-risk susceptible individual (b) Graph of high-risk susceptible individual

(c) Graph of exposed individual (d) Graph of asymptomatic infectious individual

Figure 4. Cont.
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(e) Graph of symptomatic infectious individual (f) Graph of hospitalized individual

(g) Graph of death class (h) Graph of recovered individual

Figure 4. Simulation results showing the global stability of the endemic equilibrium.

6. Conclusions

We have developed an epidemic model for the transmission dynamics of COVID-
19. Previous research in the literature has concentrated on mathematical modeling of
COVID-19, taking into account, the general public (susceptible population) without consid-
ering individuals with vertically transmitted underlying diseases (high-risk susceptible
individuals), on the disease dynamics. Therefore, we formulate a mathematical model
that incorporates a very important factor of individuals with higher risk of contacting the
disease rather than the general public. These include HIV patients, HCV patients, asthma
patient etc. The epidemiological threshold quantity, R0, is derived and we establish that
our model has a globally asymptotic stable disease-free equilibrium solution whenever
R0 < 1. For the case where R0 > 1, we have proved that there exists a unique endemic
equilibrium solution, which is proved analytically to be globally asymptotically stable.
We illustrate that COVID-19 disappears from the population when R0 < 1 but persists
in the population for R0 > 1. See Figures 3 and 4. Numerical simulations reveal two
equilibria: disease-free equilibrium solution and endemic equilibrium solution, which
are shown to be globally asymptotically stable for R0 < 1 and R0 > 1. We perform the
sensitivity analysis of the basic reproduction number to each of the parameters to explore
the significance of each parameter to R0. Sensitivity analysis results reveal that increase in
the fraction of exposed individuals who are tested for COVID-19, through contact tracing,
largely has negative impact on R0. Therefore, in order to reduce the continuous increase
in the spread of the disease in the population, increase in the effective contact tracing of
the exposed individuals through testing must be activated. Then, the problem of limited
hospital spaces should be addressed in order to absorb higher number of COVID-19 cases.
It is also pertinent that the front-line health care workers who have underlying diseases,
some of which are funeral directors and mortuary personnel, who handle the bodies of
those confirmed to have died from COVID-19, should avoid unnecessary manipulation of
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the body that may expel air from the lungs. This study can help epidemiologists and public
health officials to focus more on the parameters in formulating a disease control policy.
This work can be extended by placing control on the most sensitive parameter in the model
so as to know the duration of time to apply control for the disease to die out. This can be
achieved through optimal control analysis. It can also be extended by considering the role
of high risk susceptible population on the spread of COVID-19 in a meta-population model.

Author Contributions: T.S.F. carried out the modeling and analyses. L.N.N. and T.T.M. provided
data and its processing. All authors have read and agreed to the published version of the manuscript.

Funding: There is no external funding for this research. The APC was funded by the authors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The article contains the data used to support the findings of this study.

Acknowledgments: The authors thank the Computer Science Department of Lead City University,
Nigeria, for provision of conducive space to carry out this research as well as University of Yaounde
I, Cameroon.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. WHO. Q and A on Coronaviruses (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-

coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-coronaviruses (accessed on 16 July 2020).
2. World Health Organization. Coronavirus (COVID-19 Dashboard). Available online: https://covid19.who.int/?adgroupsurvey=

adgroupsurveygclid=EAIaIQobChMIp9yer5Ta8gIVJ8BMAh3xnw8WEAAYASABEgItCvD_BwE(accessed on 28 April 2021).
3. CDC. COVID-19 response team, characteristic of health care personnel with COVID-19: United States. MMWR Morb. Mortal.

Wkly. Rep. 2020, 69, 477–481.
4. Dunford, D.; Dale, B.; Stylianou, N.; Lowther, E.; Ahmed, M.; Arenas, I.D.l. Coronavirus: The World in Lock-Down in Maps and

Charts. BBC News, 7 April 2020.
5. Adewole, M.O.; Onifade, A.A.; Abdullahi, F.A.; Kasali, F.; Ismail, A.I.M. Modeling the dynamics of COVID-19 in Nigeria. Int. J.

Appl. Comput. Math. 2021, 7. [CrossRef] [PubMed]
6. Dwomoh, D.; Iddi, S.; Adu, B.; Aheto, J.M.; Sedzro, K.M.; Fobil, J.; Bosomprah, S. Mathematical modeling of covid-19 infection

dynamics in Ghana: Impact evaluation of integrated government and individual level interventions. Infect. Dis. Model. 2021, 6,
381–397. [PubMed]

7. DarAssi, M.A.; Safi, M.A.; Ahmad, M. Global dynamics of discrete-time MERS-CoV model. Mathematics 2021, 563. [CrossRef]
8. Enahoro, A.I.; Ngonghala, C.N.; Gumel, A.B. Will an imperfect vaccine curtail the COVID-19 pandemic in the US? Infect. Dis.

Model. 2020, 5, 510–524.
9. Gebremeskel, A.B.; Berhe, H.W.; Atsbaha, H.A. Mathematical modeling and analysis of covid-19 epidemic and predicting its

future situation in Ethiopia. Results Phys. 2021, 22, 103853. [CrossRef]
10. Gathungu, D.K.; Ojiambo, V.N.; Kimathi, M.E.M.; Mwalili, S.M. Modeling the effect of non-pharmaceutical interventions on

Covid-19 spread in Kenya. Interdiscip. Perspect. Infect. Dis. 2020. [CrossRef]
11. Iwuoha, V.C.; Aniche, E.T. COVID-19 lockdown and physical distancing policies are elitist:towards an indigenous (Afro-centred)

approach to containing the pandemic in sub-urban slums in Nigeria. Local Environ. 2020, 25, 631–640. [CrossRef]
12. Mohsen, A.A.; Al-Hussein, H.F.; Zhou, X.; Hattaf, K. Global stability of covid-19 model involving the quarantine strategy and

media coverage effects. AIMS Public Health 2020, 7, 587–605. [CrossRef]
13. Nkamba, L.N.; Manyombe, M.L.M.; Manga, T.T.; Mbang, J. Modeling Analysis of a SEIQR Epidemic Model to Assess the Impact

of Undetected Cases and Containment Measures of the COVID-19 Outbreak in Cameroon. Lond. J. Press 2020, 20. [CrossRef]
14. Olaniyi, S.; Obabiyi, O.S.; Okosun, K.O.; Oladipo, A.T.; Adewale, S.O. Mathematical Modeling and Optimal Cost-Effectiveness

Control of COVID-19 Transmission Dynamics. Eur. Phys. J. Plus 2020, 135, 938. [CrossRef]
15. Riyapan, P.; Shuaib, S.E.; Intarasit, A. A Mathematical model of COVID-19 pandemic: A case study of Bangkok, Thailand. Comput.

Math. Methods Med. 2021, 11. [CrossRef]
16. Shahrear, P.; Rahman, S.M.S.; Nahid, M.D.H. Prediction and mathematical analysis of the outbreak of coronavirus (covid-19) in

Bangladesh. Results Appl. Math. 2021, 10. [CrossRef]
17. Sinan, M.; Ali, A.; Shah, K.; Assiri, T.A.; Nofai, T.A. Stability analysis and optimal control of covid-19 pandemic SEIQR fractional

mathematical model with harmonic mean type incidence rate and treatment. Results Phys. 2021, 22, 103873. [CrossRef]
18. Ullah, S.; Khan, M.A. Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with

optimal control analysis with a case study. Chaos Solitons Fractals 2020, 139, 110075. [CrossRef]

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-coronaviruses
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-coronaviruses
https://covid19.who.int/?adgroupsurvey=adgroupsurveygclid=EAIaIQobChMIp9yer5Ta8gIVJ8BMAh3xnw8WEAAYASABEgItCvD_BwE
https://covid19.who.int/?adgroupsurvey=adgroupsurveygclid=EAIaIQobChMIp9yer5Ta8gIVJ8BMAh3xnw8WEAAYASABEgItCvD_BwE
http://doi.org/10.1007/s40819-021-01014-5
http://www.ncbi.nlm.nih.gov/pubmed/33898652
http://www.ncbi.nlm.nih.gov/pubmed/33521403
http://dx.doi.org/10.3390/math9050563
http://dx.doi.org/10.1016/j.rinp.2021.103853
http://dx.doi.org/10.1155/2020/6231461
http://dx.doi.org/10.1080/13549839.2020.1801618
http://dx.doi.org/10.3934/publichealth.2020047
http://dx.doi.org/10.21203/rs.3.rs-64201/v1
http://dx.doi.org/10.1140/epjp/s13360-020-00954-z
http://dx.doi.org/10.1155/2021/6664483
http://dx.doi.org/10.1016/j.rinam.2021.100145
http://dx.doi.org/10.1016/j.rinp.2021.103873
http://dx.doi.org/10.1016/j.chaos.2020.110075


Axioms 2021, 10, 210 18 of 18

19. Fan, X.; Wang, L.; Teng, Z. Global dynamics for a class of discrete SEIRS (susceptible-exposed-infected-recovered-susceptible)
epidemic model with general nonlinear incidence. Adv. Differ. Equ. 2016, 123. [CrossRef]

20. Batarfi, H.; Elaiw, A.; Alshareef, A. Dynamical behaviour of MERS-COV model with discrete delays. J. Comput. Anal. Appl. 2019,
26, 37–49.

21. European Centre for Disease Prevention and Control. Considerations Related to the Safe Handling of Bodies of Deceased Person with
Suspected or Confirmed COVID-19; ECDC: Stockholm, Sweden, 2020.

22. Iboi, E.A.; Sharomi, O.O.; Ngonghala, C.N.; Gumel, A.B. Mathematical modeling and analysis of COVID-19 pandemic in Nigeria.
medRxiv 2020. [CrossRef]

23. Tridip, S.; Nadim, S.K.S.; Joydev, C. Assessment of 21 days lockdown effect. arXiv 2020, arXiv:2004.03487.
24. Ahmad, M.D.; Usman, M.; Khan, A.; Imran, M. Optimal control analysis of Ebola disease with control strategies of quarantine

and vaccination. Infect. Dis. Poverty 2016, 5, 1–2. [CrossRef]
25. Shang, Y. Lie algebra method for solving biological population model. J. Theor. Appl. Phys. 2013, 7. [CrossRef]
26. Diekmann, O.; Heesterbeak, J.A.P.; Metz, J.A.J. On the definition and computation of the basic reproduction ratio, R0, in models

for infectious diseases in heterogeneous populations. J. Math. Biol. 1990, 284, 365–382.
27. Lasalle, J.P. The Stability of Dynamical Systems; SIAM: Philadelphia, PA, USA, 1976.
28. Mathur, K.S.; Narayan, P. Dynamics of an SVEIRS epidemic model with vaccination and standard incidence rate. J. Appl. Comput.

Math. 2018, 118. [CrossRef]
29. Guo, H.; Li, M.Y. Global stability in a mathematical model of tuberculosis. Can. Appl. Math. Quaterly 2006, 4. [CrossRef]
30. Arriola, L.M.; Hyman, J.M. Being sensitive to uncertainty. J. Comput. Eng. 2007. [CrossRef]

http://dx.doi.org/10.1186/s13662-016-0846-y
http://dx.doi.org/10.3934/mbe.2020369
http://dx.doi.org/10.1186/s40249-016-0161-6
http://dx.doi.org/10.1186/2251-7235-7-67
http://dx.doi.org/10.1007/s40819-018-0548-0
http://dx.doi.org/10.1016/j.mcm.2011.03.033
http://dx.doi.org/10.1109/MCSE.2007.27

	Introduction
	Materials and Methods
	Positivity of Solutions
	Basic Reproduction Number

	Global Stability Analysis
	Global Stability of Disease-Free Equilibrium Solution
	Global Stability of Endemic Equilibrium Point

	Sensitivity Analysis
	Numerical Simulations
	Conclusions 
	References

