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Abstract: It is well known that every normed (even quasibarrelled) space is a Mackey space. However,
in the more general realm of locally quasi-convex abelian groups an analogous result does not hold.
We give the first examples of normed spaces which are not Mackey groups.
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1. Introduction

Let (E, τ) be a locally convex space (lcs for short). A locally convex vector topology ν
on E is called compatible with τ if the spaces (E, τ) and (E, ν) have the same topological dual
space. The famous Mackey–Arens Theorem states that there is a finest locally convex vector
space topology µ on E compatible with τ. The topology µ is called the Mackey topology on
E associated with τ, and if µ = τ, the space E is called a Mackey space. The most important
class of Mackey spaces is the class of quasibarrelled spaces. This class is sufficiently rich
and contains all metrizable locally convex spaces. In particular, every normed space is a
Mackey space.

For an abelian topological group (G, τ) we denote by Ĝ the group of all continuous
characters of (G, τ). Two topologies µ and ν on an abelian group G are said to be compatible
if (̂G, µ) = (̂G, ν). Being motivated by the concept of Mackey spaces, the following notion
was implicitly introduced and studied in [1], and explicitly defined in [2] (for all relevant
definitions see the next section): A locally quasi-convex abelian group (G, µ) is called a
Mackey group if for every locally quasi-convex group topology ν on G compatible with µ it
follows that ν ≤ µ.

Every lcs considered as an abelian topological group is locally quasi-convex. So, it
is natural to ask whether every Mackey space is also a Mackey group. Surprisingly, the
answer to this question is negative. Indeed, answering a question posed in [2], we show
in [3] that there is even a metrizable lcs which is not a Mackey group. Recall that for every
Tychonoff space X, the space Cp(X) of all continuous functions on X endowed with the
pointwise topology is quasibarrelled, and hence it is a Mackey space. However, in [4] we
proved that the space Cp(X) is a Mackey group if and only if it is barrelled. In particular,
the metrizable space Cp(Q) is not a Mackey group. These results motivate the following
question. For 1 ≤ p ≤ ∞, denote with T`p the topology on the direct sum R(N) :=

⋃
n∈NRn

induced from `p.

Problem 1 ([3]). Does there exist a normed space E which is not a Mackey group? What about
(R(N),T`p)?

The main goal of this note is to answer Problem 1 in the affirmative. More pre-
cisely, we show that the normed spaces c00 := (R(N),T`∞) and `1

00 := (R(N),T`1) are not
Mackey groups.
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2. Main Result

Set N := {1, 2, . . . }. Denote by S the unit circle group and set S+ := {z ∈ S : Re(z) ≥ 0}.
Let G be an abelian topological group. A character χ ∈ Ĝ is a continuous homomor-

phism from G into S. A subset A of G is called quasi-convex if for every g ∈ G \ A there
exists χ ∈ Ĝ such that χ(g) /∈ S+ and χ(A) ⊆ S+. An abelian topological group is called
locally quasi-convex if it admits a neighborhood base at the neutral element 0 consisting of
quasi-convex sets. It is well known that the class of locally quasi-convex abelian groups is
closed under taking products and subgroups.

The following group plays an essential role in the proof of our main results,
Theorems 1 and 2. Set

c0(S) :=
{
(zn) ∈ SN : zn → 1

}
,

and denote by F0(S) the group c0(S) endowed with the metric d
(
(z1

n), (z2
n)
)
= sup{|z1

n −
z2

n|, n ∈ N}. Then F0(S) is a Polish group, and the sets of the form VN ∩ c0(S), where V
is a neighborhood at the unit 1 ∈ S, form a base at the identity 1 = (1n) ∈ F0(S). In [5]
(Theorem 1), we proved that the group F0(S) is reflexive and hence locally quasi-convex.

A proof of the next important result can be found in [6] [Proposition 2.3].

Fact 1. Let E be a real lcs. Then the map ψ : E′ → Ê, ψ(χ) := e2πiχ, is an algebraic isomorphism.

We use the next standard notations. Let {en}n∈N be the standard basis of the Banach
space (c0, ‖ · ‖∞), and let {e∗n}n∈N be the canonical basis in the dual Banach space (c0)

′ = `1,
i.e.,

en = (0, . . . , 0, 1, 0, . . . ) and e∗n = (0, . . . , 0, 1, 0, . . . ),

where 1 is placed in position n. Then c00 = (R(N),T`∞) is a dense subspace of c0 consisting
of all vectors with finite support.

Theorem 1. The normed space c00 is not a Mackey group.

Proof. For simplicity and clearness of notations we set E := c00 and τ := T`∞ . For every
n ∈ N, set χn := ne∗n. It is clear that χn → 0 in the weak∗ topology on E′ and hence in
σ(Ê, E). Therefore we can define the linear injective operator F : E → E × c0 and the
monomorphism p : E→ E× F0(S) setting (for all x = (xn) ∈ E)

F(x) :=
(

x, R(x)
)
, where R(x) :=

(
χn(x)

)
= (nxn) ∈ c0,

p(x) :=
(

x, R0(x)
)
, where R0(x) := Q ◦ R(x) =

(
exp{2πiχn(x)}

)
=
(

exp{2πinxn}
)
∈ F0(S).

Denote with T and T0 the topologies on E induced from E× c0 and E× F0(S), re-
spectively. So T is a locally convex vector topology on E and T0 is a locally quasi-convex
group topology on E. By construction, τ ≤ T0 ≤ T, so taking into account Fact 1 and the
Hahn–Banach extension theorem, we obtain

ψ(E′) = ψ
(
`1
)
⊆
(̂
E,T0

)
⊆ ψ

(
(E,T)′

)
⊆ ψ

(
`1 × `1

)
. (1)

Step 1: The topologies τ and T0 are compatible. By (1), it is sufficient to show that each

continuous character of
(
E,T0

)
belongs to ψ

(
`1
)
. Fix χ ∈

(̂
E,T0

)
. Then (1) implies that

χ = ψ(η) = exp{2πiη} for some

η =
(
ν, (cn)

)
∈ `1 × `1, where ν ∈ `1 and (cn) ∈ `1,

and
η(x) = ν(x) + ∑

n∈N
cnχn(x) = ν(x) + ∑

n∈N
cn · nxn

(
x = (xn) ∈ E

)
.

To prove that χ ∈ ψ
(
`1
)

it is sufficient (and also necessary) to show that
(
cnn
)

n ∈ `1.
Replacing, if needed, η by η − ν, we assume that ν = 0.
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Suppose for a contradiction that ∑n |cn|n = ∞. Since χ is continuous, Fact 1 shows
that, for every ε < 0.01, there is a δ < ε such that

η(x) = ∑
n∈N

ncnxn ∈ (−ε, ε) +Z, for every x ∈ Uδ, (2)

where Uδ is a canonical T0-neighborhood of zero

Uδ :=
{

x = (xn) ∈ E : |xn| ≤ δ and nxn ∈ [−δ, δ] +Z for every n ∈ N
}

. (3)

In what follows ε and δ are fixed as above. We distinguish between three cases.

Case 1: There is a subsequence {nk}k∈N ⊆ N such that |cnk |nk → ∞ as k → ∞. As
|cnk |nk → ∞ and cn → 0, there is k ∈ N such that

1
8|cnk |

> 1 and 3
8|cnk |nk

< δ. (4)

The first inequality in (4) implies that there is

mk ∈
(

1
8|cnk |

, 3
8|cnk |

)
∩N. (5)

Set x = (xn) := (0, . . . , 0, sign(cnk )
mk
nk

, 0, . . . ), where the nonzero element is placed in
position nk. Then nxn ∈ Z for every n ∈ N, and the second inequality of (4) and (5) imply

‖x‖∞ = |xnk | =
mk
nk

< 3
8|cnk |nk

< δ.

Therefore x ∈ Uδ. On the other hand, (5) implies

1
8 < η(x) = ∑

n∈N
cnnxn = |cnk |nk

mk
nk

= |cnk |mk <
3
8 .

Hence η(x) 6∈ (−ε, ε) +Z since ε < 0.01. However, this contradicts (2).

Case 2: There is a subsequence {nk}k∈N and a number a > 0 such that |cnk |nk → a as
k→ ∞. Choose N ∈ N such that

a
2 < |cnk |nk <

3a
2 for all k ≥ N. (6)

Choose a finite subset F of {nk}k≥N and, for every n ∈ F, a natural number in such
that the following two conditions are satisfied:

in ∈ {1, 2, . . . , bδnc} for every n ∈ F, (7)

and
10
72a < ∑

n∈F

in
n < 30

72a (8)

(this is possible because 1
n ≤

in
n ≤

bδnc
n ≈ δ and n → ∞: so, if 10

72a < δ the set F can be
chosen to have only one element, and if δ ≤ 10

72a , the set F also can be easily chosen to be
finite). Now we define x = (xn) ∈ E by

xn = sign(cn) · in
n if n ∈ F, and xn = 0 if n ∈ N\F.

Then nxn ∈ Z for every n ∈ Z, and, by (7), ‖x‖∞ = max
{ in

n : n ∈ F
}
≤ δ. Therefore

x ∈ Uδ. On the other hand, (6) and (8) imply

5
24 < a

2 ∑
n∈F

in
n < η(x) = ∑

n∈N
cnnxn = ∑

n∈F
|cn|n · in

n < 3a
2 ∑

n∈F

in
n < 5

8 .
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Hence η(x) 6∈ (−ε, ε) +Z which contradicts (2).

Case 3: limn |cn|n = 0. Choose N ∈ N such that (recall that (cn) ∈ `1)

∑
n≥N
|cn| < δ

100 and sup
{
|cn|n : n ≥ N

}
< δ

100 . (9)

Since ∑n |cn|n = ∞, choose a finite subset F ⊆ {N, N + 1, . . . } such that

∑
n∈F
|cn|n > 2

δ . (10)

Define x = (xn) ∈ E by

xn := ∆n · sign(cn) · bδnc
n if n ∈ F, and xn := 0 if n ∈ N\F,

where ∆n ∈ {0, 1} will be chosen afterwards. Then, for all n ∈ N and arbitrary ∆ns, we
have xn · n ∈ Z and |xn| ≤ δ. Therefore x ∈ Uδ. On the other hand, we have

0 < η(x) = ∑
n∈N

cnnxn = ∑
n∈F
|cn|n∆n · bδnc

n ≤ ∑
n∈F
|cn|nδ + ∑

n∈F
|cn|n bδnc−δn

n , (11)

(to obtain the last inequality we put ∆n = 1 for all n ∈ F) and (9) and (10) imply

∑
n∈F
|cn|nδ + ∑

n∈F
|cn|n bδnc−δn

n > 2− δ
100 > 1. (12)

From the second inequality in (9), we have

cnnxn = |cn|n∆n ≤ |cn|n < δ
100 < 1

100 for every n ∈ F.

Using this inequality and (11) and (12), one can easily find a family {∆n : n ∈ F}
such that

1
4 < η(x) = ∑

n∈N
cnnxn < 3

4 ,

and hence η(x) 6∈ (−ε, ε) +Z which contradicts (2).

Cases 1–3 show that the assumption ∑n |cn|n = ∞ is wrong. Thus the topologies τ
and T0 are compatible.

Step 2. The topology T0 is strictly finer than the original topology τ. Thus, E is not a
Mackey group. Indeed, it is clear that 1

2k ek → 0 in the norm topology τ on E. On the other
hand, since

R0
( 1

2k ek
)
=
(

exp
{

2πi · χn
( 1

2k ek
)})

n∈N
= (1, . . . , 1,−1, 1, . . . , ) for every k ∈ N,

where −1 is placed in position k, we obtain that 1
2k ek 6→ 0 in the topology T0. Since, by

construction, τ ≤ T0 we obtain τ ( T0 as desired.

Analogously we prove that the normed space `1
00 = (R(N),T`1) is not a Mackey group.

To this end, let {en}n∈N be the standard basis of the Banach space (`1, ‖ · ‖1), and let
{e∗n}n∈N be the canonical dual sequence in the dual Banach space (`1)

′ = `∞, i.e.,

en = (0, . . . , 0, 1, 0, . . . ) and e∗n = (0, . . . , 0, 1, 0, . . . ),

where 1 is placed in position n. Then `1
00 is a dense subspace of `1 consisting of all vectors

with finite support.

Theorem 2. The normed space `1
00 is not a Mackey group.
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Proof. For simplicity and clearness of notations we set E := `1
00 and τ := T`1 . For every

n ∈ N, set χn := ne∗n. It is clear that χn → 0 in the weak∗ topology on E′ and hence in
σ(Ê, E). Therefore we can define the linear injective operator F : E → E × c0 and the
monomorphism p : E→ E× F0(S) setting (for all x = (xn) ∈ E)

F(x) :=
(

x, R(x)
)
, where R(x) :=

(
χn(x)

)
= (nxn) ∈ c0,

p(x) :=
(

x, R0(x)
)
, where R0(x) := Q ◦ R(x) =

(
exp{2πiχn(x)}

)
=
(

exp{2πinxn}
)
∈ F0(S).

Denote with T and T0 the topologies on E induced from E× c0 and E× F0(S), re-
spectively. So T is a locally convex vector topology on E and T0 is a locally quasi-convex
group topology on E. By construction, τ ≤ T0 ≤ T, so taking into account Fact 1 and the
Hahn–Banach extension theorem we obtain

ψ(E′) = ψ
(
`∞
)
⊆
(̂
E,T0

)
⊆ ψ

(
(E,T)′

)
⊆ ψ

(
`∞ × `1

)
. (13)

Step 1: The topologies τ and T0 are compatible. By (13), it is sufficient to show that each

continuous character of
(
E,T0

)
belongs to ψ

(
`∞
)
. Fix χ ∈

(̂
E,T0

)
. Then (1) implies that

χ = ψ(η) = exp{2πiη} for some

η =
(
ν, (cn)

)
∈ `∞ × `1, where ν ∈ `∞ and (cn) ∈ `1,

and
η(x) = ν(x) + ∑

n∈N
cnχn(x) = ν(x) + ∑

n∈N
cn · nxn

(
x = (xn) ∈ E

)
.

To prove that χ ∈ ψ
(
`∞
)

it is sufficient (and also necessary) to show that
(
cnn
)

n ∈ `∞.
Replacing if needed η by η − ν, we assume that ν = 0.

Suppose for a contradiction that
(
|cn|n

)
n is unbounded. Then there is a subsequence

{nk}k∈N ⊆ N such that |cnk |nk → ∞ as k→ ∞. Since χ is continuous, Fact 1 shows that, for
every ε < 0.01, there is a δ < ε such that

η(x) = ∑
n∈N

ncnxn ∈ (−ε, ε) +Z, for every x ∈ Uδ, (14)

where Uδ is a canonical T0-neighborhood of zero

Uδ :=
{

x = (xn) ∈ E : ‖x‖1 ≤ δ and nxn ∈ [−δ, δ] +Z for every n ∈ N
}

. (15)

As |cnk |nk → ∞ and cn → 0, there is k ∈ N such that

1
8|cnk |

> 1 and 3
8|cnk |nk

< δ. (16)

The first inequality in (16) implies that there is

mk ∈
(

1
8|cnk |

, 3
8|cnk |

)
∩N. (17)

Set x = (xn) := (0, . . . , 0, sign(cnk )
mk
nk

, 0, . . . ), where the nonzero element is placed in
position nk. Then nxn ∈ Z for every n ∈ N, and the second inequality of (16) and (17) imply

‖x‖1 = |xnk | =
mk
nk

< 3
8|cnk |nk

< δ.

Therefore x ∈ Uδ. On the other hand, (17) implies

1
8 < η(x) = ∑

n∈N
cnnxn = |cnk |nk

mk
nk

= |cnk |mk <
3
8 .

Hence η(x) 6∈ (−ε, ε) +Z since ε < 0.01. However, this contradicts (14).



Axioms 2021, 10, 217 6 of 6

Step 2. The topology T0 is strictly finer than the original topology τ. Thus E is not a
Mackey group. Indeed, it is clear that 1

2k ek → 0 in the norm topology τ on E. On the other
hand, since

R0
( 1

2k ek
)
=
(

exp
{

2πi · χn
( 1

2k ek
)})

n∈N
= (1, . . . , 1,−1, 1, . . . , ) for every k ∈ N,

where −1 is placed in position k, we obtain that 1
2k ek 6→ 0 in the topology T0. Since, by

construction, τ ≤ T0 we obtain τ ( T0 as desired.

We finish this note with the following problem.

Problem 2. Let E be a real normed (metrizable, bornological or quasibarrelled) locally convex
space. Is it true that E is a Mackey group if and only if it is barrelled?

Note that every barrelled lcs is a Mackey group, see [1].
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