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Abstract: We show that the following general version of the Riemann–Dirichlet theorem is true:
if every rearrangement of a series with pairwise commuting terms in a Hausdorff topologized
semigroup converges, then its sum range is a singleton.
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1. Introduction

In 1827, Peter Lejeune-Dirichlet was the first to notice that it is possible to rearrange the
terms of certain convergent series of real numbers so that the sum changes [1]. According
to [2] (Ch. 2, §2.4), In 1833, Augustin-Louis Cauchy also noticed this in his “Resumes
analytiques”.

Later, in 1837, Dirichlet showed that this cannot happen if the series converges abso-
lutely: if a series formed by absolute values of a term of series of real numbers converges,
then the series itself converges and every rearrangement also converges to the same sum.
A series in which every rearrangement converges is called unconditionally convergent. Let
us define the sum range of series as the set of all sums of all its convergent rearrangements.

It is not clear in advance that an unconditionally convergent series of real numbers is
also absolutely convergent, and hence its sum range is a singleton. This is in fact true thanks
to the following Riemann rearrangement theorem: if a convergent series of real numbers is
not absolutely convergent, then some rearrangement is not convergent, and its sum range
is the set of all real numbers.

These results depend heavily on the structure of the set of real numbers. However,
the concepts of unconditional convergence and sum range make sense even in general
topologized semigroups. An abelian version of the statement in the abstract appears in
(unpublished) [3]. A non-abelian version for topological groups appears in [4].

Section 2 focuses on ‘finite series’ and Section 3 treats the general case. Section 4
contains additional comments.

2. Algebraic Part

We write N for the set {1, 2, . . . } of natural numbers with its usual order and

Nn := {k ∈ N : k ≤ n}, n = 1, 2, . . .

A non-empty set, X, endowed with a binary operation + : X × X → X is called a
groupoid or a magma. For a groupoid, (X,+) , the value of + at (x1, x2) ∈ X× X will be
denoted as x1 + x2.
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For a finite non-empty I ⊂ N and a family (xi)i∈I of elements of a groupoid (X,+),
following Bourbaki, we define the (ordered) sum

∑
i∈I

xi ∈ X (OS)

inductively as follows:
(1) If I consists of a single element, I = {j}, then ∑i∈I xi = xj;
(2) If I has more than one element, j is the least element of I and I′ = I \ {j}, then

∑
i∈I

xi = xj +

(
∑
i∈I′

xi

)
.

Note that:
If I consists of two elements, then ∑i∈I xi = xj + xk, where j is the least element of I

and k is the last element of I;
If I consists of three elements, then ∑i∈I xi = xj + (xm + xk), where again, j is the least

element of I, k is the last element of I and j < m < k.
If I = Nn, then instead of ∑i∈I xi we write also ∑n

i=1 xi.
A groupoid, (X,+), is a semigroup if its binary operation + is associative, i.e., for every

(x1, x2, x3) ∈ X× X× X we have x1 + (x2 + x3) = (x1 + x2) + x3.
For a finite non-empty I ⊂ N and a family (xi)i∈I of elements of a semigroup (X,+)

the above given definition of (OS) can be reformulated as follows:
(1r) if I consists of a single element, I = {k}, then ∑i∈I xi = xk,
(2r) if I has more than one element, k is the last element of I and I′ = I \ {k}, then

∑
i∈I

xi =

(
∑
i∈I′

xi

)
+ xk .

For a set I a bijection σ : I → I called a permutation of I; the set of all permutations of
I is denoted by S(I).

For a finite non-empty I ⊂ N and a family (xi)i∈I of elements of a groupoid (X,+),we
define its sum range

SR((xi)i∈I)

as follows:
SR((xi)i∈I) := {s ∈ X : ∃σ ∈ S(I), s = ∑

i∈I
xσ(i)} .

In a case where the multiplicative notation · is applied for the binary operation, it would be
natural to use the word ‘product’ instead of ‘sum’; ‘ordered product’ (OP) instead of ‘ordered sum’
(OS); ‘product range’ (PR) instead ‘sum range’ (SR) and ∏ instead of ∑.

Two elements, x1 and x2, of a groupoid, (X,+), are said to commute (or to be per-
mutable) if x1 + x2 = x2 + x1; i.e., if SR

(
(xi)i∈N2

)
is a singleton.

A family (xi)i∈I of elements of a groupoid (X,+) is commuting if for each i ∈ I and
j ∈ I, the elements xi and xj commute.

An element a of a groupoid (X,+) is left cancellable if the left translation mapping
x 7→ a + x is injective; right cancellable is defined similarly. An element is cancellable if it is
both left and right cancellable.

Theorem 1 (Commutativity theorem). For a finite non-empty I ⊂ N and a family (xi)i∈I of
elements of a semigroup (X,+) the following statements are true.

(a) If (xi)i∈I is a commuting family, then SR((xi)i∈I) is a singleton.
(b) If SR((xi)i∈I) is a singleton and either Card(I) ≤ 2 or for every i ∈ I the element xi is

right (resp. left) cancellable, then (xi)i∈I is a commuting family.

Proof. (a) See [5] [Ch.1, §1.5, Theorem 2 (p. 9)].
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(b) For the case Card(I) ≤ 2 the statement is evident. Now, let n = Card(I) > 2 and
for every i ∈ I the element xi is right cancellable. Fix i, j ∈ I, i 6= j, write I′′ = I \ {i, j}.
Also write I = {k1, k2, . . . , kn}, where k1 < k2 < · · · < kn. Moreover, consider permu-
tations σ and π of I such that σ(k1) = i, σ(k2) = j, σ({k3, . . . , kn}) = I′′ and π(k1) = j,
π(k2) = i, π({k3, . . . , kn}) = I′′. As SR((xi)i∈I) is a singleton, we can write:

xi + xj +

(
∑

r∈I′′
xr

)
= ∑

i∈I
xσ(i) = ∑

i∈I
xπ(i) = xj + xi +

(
∑

r∈I′′
xr

)
.

From this equality, as ∑r∈I′′ xr is right cancellable, we obtain xi + xj = xj + xi.
The case where Card(I) > 2 and for every i ∈ I the element xi is left cancellable is
considered similarly.

Our next claim is to find an analog of Theorem 1 when I = N.

3. Series

A (formal) series corresponding to a sequence x = (xn)n∈N of elements of a groupoid
(X,+) is the sequence (

∑
k∈Nn

xk

)
n∈N

. (S1)

The ‘multiplicative’ counterpart is: a (formal) infinite product corresponding to a sequence
x = (xn)n∈N of elements of a groupoid (X, ·) is the sequence(

∏
k∈Nn

xk

)
n∈N

. (P1)

We use the additive notation herein.
Let (X,+) be a groupoid and τ be a topology in X; such a triplet (X,+, τ) will be

called a topologized groupoid.
A topologized groupoid (X,+, τ) is a topological groupoid if its binary operation + is

continuous as mapping from (X × X, τ ⊗ τ) to (X, τ) (where τ ⊗ τ stands for the prod-
uct topology).

A series corresponding to a sequence x = (xn)n∈N of elements of a topologized
groupoid (X,+, τ) is said to be convergent in (X,+, τ) if the sequence (S1) converges to an
element s ∈ X in the topology τ; in such a case, we write

s =
∞

∑
k=1

xk

and call s a sum of the series.
To a sequence x = (xn)n∈N of elements of a topologized groupoid (X,+, τ), we

associate a subset P(x) of S(N) as follows: a permutation π : N → N belongs to P(x) if
and only if the series corresponding to (xπ(n))n∈N is convergent in (X,+, τ) and define the
sum range of the series corresponding to x = (xn)n∈N

SR(x)

as follows (cf. [6] (Definition 2.1.1)):

SR(x) := {t ∈ X : ∃π ∈ P(x), t =
∞

∑
k=1

xπ(k)} .

It may happen that for a sequence x = (xn)n∈N the set P(x) is empty; in which case,
SR(x) = ∅ as well.
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The series corresponding to x = (xn)n∈N is called unconditionally convergent (Bourbaki
says commutatively convergent [7]) in (X,+, τ) if

P(x) = S(N) ;

i.e., if for every permutation σ : N→ N the series corresponding to xσ = (xσ(n))n∈N is convergent
in (X,+, τ).

We proceed to our main result, extending to topologized semigroups the results for
topological groups in [4] (Theorem 2 and Theorem 1).

Theorem 2 (Commutativity Theorem 2). For a sequence x = (xn)n∈N of elements of a Hausdorff
topologized semigroup (X,+, τ), the following statements are true.

(a′) If the series corresponding to x is convergent in (X,+, τ), x is a commuting family and
SR(x) is not a singleton, then there is a permutation λ : N→ N such that the series corresponding
to xλ = (xλ(n))n∈N is not convergent in (X,+, τ).

(a) If the series corresponding to x is unconditionally convergent in (X,+, τ) and x =
(xn)n∈N is a commuting family, then SR(x) is a singleton.

(b) If SR(x) is a singleton, (X,+) is a group and for every n ∈ N the left translation
determined by xn is sequentially continuous, then x = (xn)n∈N is a commuting family.

Proof. (a′).
To prove (a′), denote by s the limit in (X,+, τ) of the sequence (S1), i.e.,

(τ) lim
n ∑

k∈Nn

xk = s . (1)

Since SR(x) is not a singleton, there is t ∈ SR(x) such that t 6= s. Hence, there
is a permutation π : N → N such that the series corresponding to xπ = (xπ(n))n∈N is
convergent to t in (X,+, τ), i.e.,

(τ) lim
n ∑

k∈Nn

xπ(k) = t . (2)

Construction of a permutation λ : N→ N.
Find and fix a strictly increasing sequence of natural numbers (mk)k∈N such that

1 = m1, Nm2k−1
⊂ π(Nm2k

) ⊂ Nm2k+1
, k = 1, 2, . . . (3)

Now, define a mapping λ : N→ N as follows:

λ(1) = 1; λ(Nm2k
\Nm2k−1

) = π(Nm2k
) \Nm2k−1

;

λ(Nm2k+1
\Nm2k

) = Nm2k+1
\ π(Nm2k

), k = 1, 2, . . . (4)

It is easy to see that λ ∈ S(N).
From (3) and (4), we can conclude that

λ(Nm2k+1
) = Nm2k+1

, k = 1, 2, . . . (5)

and
λ(Nm2k

) = π(Nm2k
) , k = 1, 2, . . . (6)

From (5) and (6) together with Theorem 1(a) (which is applicable because x = (xn)n∈N
is a commuting family), we conclude that the following relations are true:

m2k+1

∑
i=1

xλ(i) =

m2k+1

∑
i=1

xi, k = 1, 2, . . . (7)
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and
m2k

∑
i=1

xλ(i) =

m2k

∑
i=1

xπ(i), k = 2, 3, . . . (8)

The equality (7) implies:

lim
k

m2k+1

∑
i=1

xλ(i) = s , (9)

while the equality (8) implies:

lim
k

m2k

∑
i=1

xλ(i) = t . (10)

From (9) and (10), since t 6= s and τ is a Hausdorff topology, we conclude that
(∑n

i=1 xλ(i))n∈N is not a convergent sequence. Therefore, we found a permutation λ : N→ N
such that the series corresponding to xλ = (xλ(n))n∈N is not convergent in (X,+, τ) and
(a′) is proved.

(a) follows from (a′).
(b) In view of Theorem 1(b), it is sufficient to show that for a fixed natural number

n > 1 we find that SR((xi)i∈Nn) is a singleton.
We can suppose without loss of generality that the series corresponding to x is con-

vergent in (X,+, τ) to s ∈ X. This implies:

lim
m>n

 ∑
i∈Nn

xi + ∑
i∈Nm\Nn

xi

 = s .

From this, since the left translations are continuous, we obtain:

lim
m>n ∑

i∈Nm\Nn

xi = − ∑
i∈Nn

xi + s .

Now, fix an arbitrary permutation π : N→ N such that π(k) = k, k = n + 1, n + 2, . . .
From the above equality, since the left translations are continuous, we can now write

lim
m>n

 ∑
i∈Nn

xπ(i) + ∑
i∈Nm\Nn

xi

 = ∑
i∈Nn

xπ(i) + (− ∑
i∈Nn

xi + s) .

Hence, since SR(x) is a singleton, we conclude:

∑
i∈Nn

xπ(i) + (− ∑
i∈Nn

xi + s) = s .

Therefore,
∑

i∈Nn

xπ(i) = ∑
i∈Nn

xi

and, as π is arbitrary, we prove that SR((xi)i∈Nn) is a singleton.

Remark 1. Theorem 2(a) for a Banach space was first proved in [8], where the term “B-space”
was used and it was also noticed that this term is credited to M. Frechet. In [9], where the
term ‘Banach space’ is already used, one finds a nice discussion of equivalent characterizations of
unconditional convergence.
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4. Additional Comments
4.1. On Theorem 2

The statement (b) of Theorem 2 is not a complete converse of statement (a) of
Theorem 2; in the case of Hausdorff topological groups, such a complete converse can be
formulated as follows:

If for a sequence x = (xn)n∈N of elements of a Hausdorff topological group X the set SR(x)
is a singleton, then the series corresponding to x is unconditionally convergent in X and
x = (xn)n∈N is a commuting family.

Let us say that a Hausdorff topological group X has property (HM) if whenever for a
sequence x = (xn)n∈N the set SR(x) is a singleton, then the series corresponding to x is
unconditionally convergent in X.

The Riemann rearrangement theorem implies that X = R has property (HM). In [10], it was
shown that if X is an infinite-dimensional Hilbert space, then X does not have property
(HM); a similar result was obtained in [11] for infinite-dimensional Banach spaces. From
the general result of [12], we conclude that the finite-dimensional real normed spaces, as
well as the countable product of real lines RN, have property (HM).

4.2. On Sum Ranges

A subset A of a topological group X is a sum range if a sequence x = (xn)n∈N of
elements of X exists such that A = SR(x). Known results and the history of the study of
the structure of sum ranges in Banach spaces are found in [6]; see also, [12–18].

A subset A of a real vector space X is called affine if

x1 ∈ A, x2 ∈ A, t ∈ R, =⇒ tx1 + (1− t)x2 ∈ A .

It is known that:

• A subset of a finite-dimensional real Banach space is a sum range if and only if it is
affine (Steinitz’s theorem, see [6]);

• A subset of a real nuclear Frechet space is a sum range if and only if it is closed and
affine [13];

• Every closed affine subset of a separable real Frechet space can be a sum range (cf. [19],
where the following question is left open: is every separable infinite-dimensional complete
metrizable real topological vector space a sum range?);

• An arbitrary finite subset of an infinite-dimensional Banach space can be a sum range [20];
• A non-analytic subset of an infinite-dimensional separable Banach space cannot be a

sum range [21];
• A non-closed subset of an infinite-dimensional separable Banach space can be a sum

range (see [6,22]; however, it is unknown whether a non-closed vector subspace of an
infinite-dimensional separable Banach space can be a sum range [16]) .

Finally, note that it would be interesting to:
(1) Investigate, in connection with Theorem 2(a), the question of how rich the sum

range SR(x) can be for a non-commuting sequence x = (xn)n∈N, the series corresponding
to which is unconditionally convergent; may happen that SR(x) = X?

(2) Find a “semigroup version” of Theorem 2(b).
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