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Abstract: The present work is motivated by the development of a mathematical model mimicking
the mechanisms observed in lab-on-chip experiments, made to reproduce on microfluidic chips
the in vivo reality. Here we consider the Cancer-on-Chip experiment where tumor cells are treated
with chemotherapy drug and secrete chemical signals in the environment attracting multiple im-
mune cell species. The in silico model here proposed goes towards the construction of a “digital
twin” of the experimental immune cells in the chip environment to better understand the complex
mechanisms of immunosurveillance. To this aim, we develop a tumor-immune microfluidic hybrid
PDE–ODE model to describe the concentration of chemicals in the Cancer-on-Chip environment and
immune cells migration. The development of a trustable simulation algorithm, able to reproduce
the immunocompetent dynamics observed in the chip, requires an efficient tool for the calibration
of the model parameters. In this respect, the present paper represents a first methodological work
to test the feasibility and the soundness of the calibration technique here proposed, based on a
multidimensional spline interpolation technique for the time-varying velocity field surfaces obtained
from cell trajectories.

Keywords: differential equations; mathematical biology; cell migration; microfluidic chip

MSC: 65M06; 92B05; 92C17; 82C22

1. Introduction

Recruitment of immune cells to a tumor is a key parameter in cancer prognosis and
response to therapy and the complex relationship between cellular, noncellular components
and secreted chemotactic factors plays an essential role in directing the migration of both
activating and suppressive immune cell types. In recent years with the development of the
highly multidisciplinary Organ-on-Chip field (OOC) [1,2], microfluidic technologies are
employed as valuable in vitro platform tools to build tumor microenvironments, with mod-
ular degree of complexity and to visualize and quantify immune infiltration in response to
anticancer therapies.

The work that set the stage for Organs-on-Chip (OOC) was published in 2010 [3] and
thereafter OOC constituted a dynamic field of research, and substantial effort has been
devoted to creating realistic mimics of different organs in recent years [4–7].

The coupling with live-cell imaging may enable extraction of single-cell tracking pro-
files which can be processed with advanced mathematical tools. In this context, the present
study is inspired by the modeling of the complex mechanisms behind the cell dynamics
and interactions between immune (ICs) and treated tumor (TCs) cells in microfluidic chips.
In this framework, several studies [1,7,8] were conducted on immunocompetent cancer-on-
chips to assess the effects of therapeutic drugs on TCs and on the possible reactions of the
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immune system. One of the first studies addresses the role of formyl peptide receptor 1/an-
nexin a1 axis in anti-tumor response to anthracycline-based chemotherapy [7]. Timelapse
recordings were performed in a microfluidic platform designed for oncoimmunology [1]
research to assess physical and chemical contacts between malignant and immune popu-
lations. Some of the earliest applications of microfluidic cell culture technology focused
on modeling specific steps in the cancer cascade, including tumor growth [9] and expan-
sion [10], angiogenesis [11–16], progression from early to late stage lesions involving an
epithelial–mesenchymal transition [17,18], tumor cell invasion [19] and metastasis [20].
Although Organs-on-Chip represent an increasing in importance field of research because
it allows experimentalists to have major control on the objects of investigation, resulting in
more accurate measurements, some aspects still remain difficult to understand. In particu-
lar, a quantification of the average chemical gradients present in the chip environment is
difficult to be estimated.

Motivated by these laboratory experiments, we present an in silico mathematical
model to describe ICs migration in the case of an efficient interaction with TCs treated with
chemotherapeutic drug.

The main goal of this work is to build a bridge between experimental data coming
from Cancer-on-Chip experiment given as particles and macroscopic mathematical mod-
els, such as the one proposed in reference [21], in order to gain further insights on the
dynamics and short-range interactions between cells. Indeed, the present works goes
towards the direction of the mean-field limit to unveil the statistical properties of the model.
Recently, one of the authors of the present paper has derived rigorously in Wasserstein’s
type topologies the mean-field limit (and propagation of chaos) to the Vlasov-type equa-
tion, in the framework of generalizations of the kinetic model given by Cucker–Smale
dynamical system, see reference [22]. Here we propose a simulation algorithm based on a
hybrid macroscopic-microscopic chemotaxis model able to reproduce the main features
of phenomena observed in microfluidic chip, such as migration of ICs and short-range
interactions with cancer cells representing the sources of chemical gradients.

Existing methods used in the literature so far were dealing with the description of
particle trajectories and are essentially represented by statistics on cell trajectories, as in
the work by Agliari et al. [23]. Another possibility, already applied in other papers dealing
with particle trajectories, see for instance reference [24], is to compute the distance between
immune cells and tumor cells across time. However, we would like to stress that here our
main concern is to show the feasibility of the proposed approach and to create a connection
with macroscopic modeling of the same problem, in order to see what happens when
we go to the limit (corresponding to the situation in which millions of cells move in the
environment). Our final aim is indeed to be able in the future to simulate the behavior of
immune cells in the tissue of an organ. In this framework, a novel strategy for the estimation
of model parameters to perform the validation against real data and the calibration of the
mathematical model is introduced. Such strategy involves from one hand the analysis of
ICs trajectories coming from experimental data to describe realistically the average speed
and the pathways of immune cells and the creation of a synthetic dataset for evaluating the
effectiveness of the calibration technique for the estimation of model parameters. Moreover,
in order to determine the velocity distribution of ICs, a stochastic component is obtained
analyzing real trajectories of cells falling in the area under examination and then it is added
to the deterministic velocity field.

The modeling of dynamics and interactions in microfluidic chip environment was
already studied in [18,25–27] with particle models and with cellular automata models
in [28]. In [21] a fully macroscopic mathematical (PDE) model was considered, both for
the chemical gradient which is seen as an average field and for the density of immune
cells. With the PDE model we were able to describe long-range interactions in the chip
environment and a first estimate of the chemical gradient driving ICs movement was
obtained in [29].
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Here, instead, we are interested in describing efficient short-range interactions between
treated tumor cells and immune cells. As an example of this phenomenon, we considered
the study and the experimental setting in [7], where tumor cells treated with chemotherapy
drug release a chemical stimulus sensed by healthy immune cells, thus promoting their
migration towards the tumor cells. For the construction of the model, we used a discrete in
continuous approach where we coupled a reaction-diffusion partial differential equation
(PDE) describing the evolution of the average substances released by the TCs in the tumor
microenvironment with a particle model, where every IC in the system was considered
to be a single entity and provided with specific properties, as previously done in [30] in a
different experiment. Here the hybrid approach was revealed to be crucial in providing
a proper description of the multiscale phenomenon that with a traditional macroscopic
model would not be possible to fully decipher. In particular, our model describes the
dynamics of each IC by means of ordinary differential equations (ODE) in such a way that
every cell can be followed individually. Since the motion of ICs is driven by chemotaxis,
the migratory activity is regulated by a chemotactic term which allows them to sense
the gradient of the chemicals in the tumor neighborhood and of specific forces such as
adhesion–repulsion which establish between cells.

The calibration of the mathematical model is supported by the development of ad-hoc
parameter estimation procedure based on an interpolation technique for the approximation
of the velocity field of ICs across time, i.e., multidimensional spline method previously
introduced in [31] and described in Section 4.1. Such procedure, applied to synthetic
cell trajectories dataset, provides accurate estimates for the values of unknown model
parameters and demonstrates to be a promising approach for the validation of the proposed
model against real data.

1.1. The Geometry of the Microfluidic Chip and the Related Computational Domain

The immune-oncology chip designed for the experiment consists of three main culture
chambers for plating adherent TCs and floating ICs connected by a bridge of microcapil-
laries allowing chemical and physical contacts. In Figure 1 a picture of the two boxes is
shown. With regards to the dimensions, the capillaries have, respectively, width and length
of 12 µm and 500 µm, while the height is of 10 µm; however, since in the video footage the
experiment is recorded at a fixed height, the third spatial dimension in our framework
is neglected.

Figure 1. Microfluidic chip environment. On the (left): real microphotograph of microfluidic devices
filled with food dye and schematics of the 2D layout with three main culture chambers connected by
arrays of microchannels. On the (right): Timelapse video frame with detected immune cells in the left
and intermediate chambers surrounded, respectively, by red and green circles. Credit: Vacchelli et al.
(2015) edited by AAAS.
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The cross-sectional dimensions of culture chambers are 1 mm (width) × 100 µm
(height). Further details about the chip design are illustrated in [7]. We also underline that
here we are considering a 2D culture in the liquid with dying cancer cells adherent to the
glass slide and mainly static, and immune cells floating.

In the experimental set-up, the timelapse observation area comprises left TCs culture
chamber and central one with loaded ICs. Our goal consists of modeling the migration of
ICs towards the TCs taking into account the different forces acting on the cells. To achieve
such a result, we neglected the migration of ICs in the right chamber and through the
microchannels, and we only focused on motility patterns of infiltrated ICs in the TCs
left chamber.

Moreover, in order to better analyze the short-range dynamics and interactions be-
tween tumor and immune cells, we restricted our study on a subarea of the left chamber
of length and height equal to 200 µm. This area corresponds to the subset [400, 600] ×
[200, 400] µm, and we defined it as Ω = [0, Lx]× [0, Ly]. In Figure 2 we present the setting
of the experiment at time t = 24 h, with a focus on the area under analysis. The main
reason for considering only a portion of the chip is motivated by:

• the reduction of the computational cost in view of the optimization procedure for the
parameter estimation;

• the focus on short-range interactions.

Moreover, Ω contains four treated TCs, and this makes the area a good representa-
tive of cell dynamics, since in the laboratory experiment there are about 60 TCs in the
entire chamber.

  

A

B

Figure 2. Timelapse pre-processed image of microfluidic chip environment at time t = 24 h. (A) Full
chip, in red the domain Ω; (B) Focus on the area Ω.

1.2. Original Contribution of the Present Paper

To describe such complex mechanisms with a multiscale nature, the model here
proposed belongs to the category of hybrid models, involving the coupling between
macroscopic and microscopic models.

As mentioned above, we assume the presence of forces between cells, which are
established due to the chemoattractant and due to the nature of the cells itself. For this
reason, in the current work, we refer to the discrete–continuous model (1)–(2) proposed
in [30] to describe the morphogenesis of the posterior lateral line system in zebrafish.
Such a model includes a classical reaction-diffusion partial differential equation (PDE)
used to describe the evolution of the concentration of chemicals released by TCs in the
tumor milieu, coupled with ordinary differential equations (ODEs) for the inter-cellular
dynamics of ICs, which establishes both due to the presence of the chemoattractant and to
the forces generated between the cells. In particular, the use of a particle model permits
the highlighting of the role of single cells in the space, to analyze short-range interactions
and to attribute specific characteristics to cells behavior that a macroscopic model would
not allow. As mentioned in Section 1.1, for computational reasons and for the datatype at
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our disposal, cell tracks extracted from video recorded at a fixed level on the z-axis, we
neglect the third dimension and consider only the 2D case. However, the third dimension
can be easily taken into account by the model, but we do not expect important changes in
the overall dynamics.

Here, chemical signals are described as an average field by means of a reaction-
diffusion equation

∂t f = D∆ f + S(t, Y, f ) (1)

with a possible source or degradation term given in S term. Equation (1) was endowed
with Robin boundary conditions to state the exchange of chemicals between the internal
and the external environment. The gradient field f influences the evolution of cell positions,
according to a second order equation of the form:

Ẍi = F(t, X, Ẋ, Y, f ,∇ f )− µẊi (2)

where Xi, i = 1, . . ., Ntot,I , is the position vector of the i-th IC, Ntot,I is the total number of
ICs, X = (X1, . . ., XNtot,I ) contains all the positions, and Ẋ = (Ẋ1, . . ., ẊNtot,I ) the velocities.
The vector Y = (Y1, . . ., YNtot,T ), i = 1, . . ., Ntot,T , stands for TCs positions, which are taken
as constants in the problem, since dying TCs do not migrate as time evolves. The function
F includes several effects: from the detection of the chemical signal f (chemotaxis) to
mutual interactions between ICs (adhesion and repulsion) and ICs and TCs (adhesion and
repulsion). All these effects take into account a non-local sensing radius. The term µẊi
represents damping due to cell adhesion to the substrate.

We remark that the use of second order equations to describe the cell motion was
first used in the seminal work [32] in the framework of Newton’s equation of motion
for particles. Indeed, even in this case the acceleration is not so high, this formulation
describes the effects of the presence of an external force causing velocities and direction
changes. Moreover, the friction term for cells immersed in a fluid is also taken into account.
In order to have a more complete model able to represent the randomness characterizing
cell motility, we also introduced a stochastic component in the velocity field in the spirit of
Langevin model, see the review [33] and references therein.

In this context, in order to better reproduce the phenomenon under consideration
such as the presence of chemical stimulus of treated cancer cells, we applied the following
modification respect to the model in [30]:

• we model the presence of tumor cells, and we also take into account the repulsion
forces to avoid overlapping. Eventually, a slight overlay may occur between tumor
and immune cell in the case of close interactions. However, it does not seem to occur
in the video footage;

• a chemical gradient concentrated around sources represented by cancer cells is con-
sidered and diffused in the environment;

• Robin boundary conditions for the inflow of chemoattractant in the area under con-
sideration are applied and adjusted to drive cell migration in a diagonal direction,
as observed experimentally;

• the alignment effect between cells is discarded since in this context is not present;
• a chemotactic sensitivity term—i.e., receptor saturation—is added in the drift term of

the equation of particles motion, with the effect that chemotaxis of cells is reduced in
areas of high chemoattractant concentrations;

• a stochastic component in the particle velocities is added to have more realistic cell
trajectories in terms of randomness.

The equations are solved in a square domain Ω, introduced in Section 1.1, subset of
the chamber where the experiment was performed and the approximation was carried
out using a classical central difference scheme in space and the Crank–Nicolson scheme in
time, although in Appendix A we prefer to present the general form of the scheme based
on the θ-method.

The main novelty of our approach here is mainly represented by:
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• the modeling study on ICs behavior by considering different scenarios, see Section 3;
• the construction of a calibration algorithm to find a trustable estimate of the most

significant parameters of the model to assess the effects of chemical gradients on the
ICs movement, see Section 4.

In particular, such calibration algorithm—based on the mathematical model—is built
to test the possibility of validating the model on real data provided by experimentalists.
The main goal of the present work is indeed the introduction of a robust procedure for
the estimate of model parameters by means of the paths taken by ICs in the chip subarea
under examination. It is worth noting that this is not an easy task, since to succeed in the
model calibration we need to extract a common behavior from the time-varying trajectories
of immune cells located at different points of the examined area. For this reason, in this
first work based on this framework we propose a calibration strategy taking into account
this variability and applying it to a synthetic dataset, in order to assess the effectiveness of
our methodology.

We underline that the synthetic dataset of ICs pathways has been created reproducing
qualitatively the real trajectories extracted from the video footage of the experiment, in order
to have a “realistic” dataset. In more detail, a set of trajectories of cells sharing an average
behavior has been produced by suitably tuning model parameters to have an upper and
lower bound of cell speeds taken from the experimentally observed ones. With these
synthetic trajectories, we have computed ICs velocity field at every observation time as a
surface produced by the model itself, supposing to have a single population of immune
cells thus showing an average behavior. Such velocity field has been then approximated
using a multidimensional spline interpolation technique, described in Section 4.1 to have
smoothing in time and space on the dataset to be compared.

Finally, this average field has been used as our target solution to be used in the
calibration procedure, as described in detail in Section 4.2. The methodology for the error
quantification is based on the minimization of a cost functional depending on the difference
between the target velocity field of cell in the whole domain and the velocity field obtained
for another choice of the model parameters during the optimization procedure performed
with a local search method and we compared them at every time step. In addition to this,
we also studied the introduction of further terms in functionals with the aim of improving
the optimization results and show the soundness of our algorithm representing a starting
point for investigations on experimental data in the next future.

1.3. Main Contents and Plan of the Paper

We introduce a hybrid model composed of a reaction diffusion equation, describing
the time and space evolution of signaling substances released by treated TCs in a subarea
of the main chamber, and of an agent-based model made up of second order differential
equations for each IC. The boundary conditions associated with the partial differential
equation are of Robin type, so that we can have a control on the amount of chemical
exchanged with the surrounding microenvironment. In addition, based on experimental
observation, an ad hoc parameter estimation technique was developed. To summarize
the main contents of the present work, the mathematical issues faced in this study are
identified into:

• the development of a mathematical model describing the behavior of ICs in short-
range interactions in the microfluidic chip environment;

• the development of ad-hoc parameter estimation techniques for time-varying velocity
fields.

The plan of the paper is as follows. In Section 2 we describe the biological framework
that inspired our study, and we introduce the mathematical formulation of biologically
inspired models, and we present the adopted model. Section 3 is devoted to the modeling
study on the scenarios suggested from the observation of the dynamics in the laboratory
experiment performed with the numerical simulation algorithm reported in the Appendix.
Section 4 contains the parameter estimation techniques here developed and the results
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obtained with the calibration algorithm. A sensitivity analysis is also performed and
reported in the Appendix. Finally, in Section 5 we discuss the presented results, and the
future aims of our work.

2. Materials and Methods
2.1. Biological Framework

The OOC technology allow the design and recreation of more sophisticated in vitro
cellular microenvironments under physiological or pathological scenarios; as potential
candidates for better prediction of human responses than animal testing cannot. This suc-
cess is also due thanks to compatibility with a variety of microscopy techniques including
live-cell high-content imaging and to the wide variety of cells and tissues that the chips
can host, see [1].

One of the most challenging scenarios for the application of these devices is repre-
sented by cancer-immune relations due to very complex and not still completely discovered
signaling modalities between ICs and TCs. Some attempts have been presented with the
aim of modeling the effect of drugs on TCs, see for instance [34,35] where the microfluidic
devices helped to control and evaluate the magnitude of cancer responses.

In particular, here we refer to the study in Vacchelli et al. [7], where timelapse imag-
ing of microfluidic co-cultures were performed to investigate the motility patterns and
crosstalk between ICs and TCs in the context of chemotherapy-induced anticancer im-
mune responses.

Setting of the Laboratory Experiments

Details on the in vitro microfluidic experiments, type of cells involved and loading
procedures can be found in [7,36]. Briefly, human breast cancer cells were previously
treated with anthracycline-based chemotherapy and were cultivated in the left chamber.
This treatment triggers the process of immunogenic cell death [37], according to which
TCs release danger signals. The right chamber is loaded with unlabeled human peripheral
blood mononuclear cells (PBMCs) from healthy donors (with normal expression of FPR1).
PBMCs start migrating biased by the detection of chemical signal produced by TCs and
after crossing microchannels enter in contact with dying cancer cells, engaging in stable
interactions leading to TCs killing events.

In the chip, the chosen culture medium is neutral, which means that no exogenous
substance is introduced. Timelapse imaging was performed using a microscope placed
directly inside the CO2 incubator for all the duration of the recordings. Images were
taken every 2 min over a period of 72 h of migration. Immune cells tracks (<400) were
extracted in left chamber (interval time: 24–48 h) using TrackMate plugin(ref) available in
the Fiji/ImageJ software (https://imagej.nih.gov/ij/, accessed on 1 August 2020).

Our aim consists of designing a basic mathematical model able to capture the main
aspects related to the migratory movement of the ICs with respect to TCs. Therefore, we
only focus on the case of efficient interaction between dying cancer cells exposed to ICD
inducers and immune cells from healthy donors. Concurrently, we want to develop an
algorithmic calibration procedure to derive model parameter values as close to empirical
observations as possible.

2.2. Mathematical Framework

In this context, it is important to remark that late years have experienced an increasing
interest in the direction of developing techniques to combine experimental data and mathe-
matical models, in order to produce systems, i.e., in silico models, whose solutions could be
as close as possible to the experimental outcomes. Indeed, the success of informed models
is mainly due to the consistent improvements in computational abilities of the machines
and in imaging techniques that allowed a wider access to data.

The involvement of the immune system in all stages of the tumor life cycle, including
prevention, maintenance and response to therapy is now recognized as central to under-

https://imagej.nih.gov/ij/
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standing cancer development from a systemic point of view. The increasing availability
of experimental data and of treatment options, have represented a breeding ground to
construct always more precise models. From a mathematical point of view, equations
of different nature can be considered, depending on the type of analysis to be carried
out. In macroscopic models, consisting of PDEs, any reference to the single constituents,
the cells, are neglected, and macroscopic quantities such as the average cell densities are
taken into consideration, see for instance the classical models [38,39] and their application
to the immunocompetent microfluidic chip experiments in the recent work [21], allowing
the simulation of long-range dynamics of immune cells driven by the chemical gradients
secreted by cancer cells in the environment. The evolution of chemical stimuli in the
tumor microenviroment can be also described by means of ODE models, see for instance
the work [25] consisting of three ODEs that model the dynamics of effector and tumor
cells and the cytokine IL-2, is one of the first to describe tumor-immune cells interactions.
Another model in the same direction is due to Lee et al. [18], where changes in velocity
and directionality of ICs are modeled with a system of ODE considering the combined
effects of the interstitial flow, the tumor mass, the cytokines IL-8 and CCL-2, and the
related receptors. Moreover, ODE models describing cell responses heterogeneity to death
ligand (cytotoxic drugs) observed in laboratory experiments with single-cell techniques is
proposed in [40]. In [28] the immune system is depicted as a network in the framework
of cellular automata, where the nodes are molecules and cells and the arches connecting
them are the influences each node has on others. Another kind of modeling consists of
combining the macro approach expressed by a PDE, with the micro approach expressed by
an ODE.

Hybrid models, developed including the macroscopic and microscopic scales, have
been deeply studied in recent years, see [41–44]. In particular, in [41] a hybrid discrete–
continuous model of metastatic cancer cell migration was developed, while in [45] a hybrid
discrete-continuum approach was applied to model Turing pattern formation. In [43] a 3D
agent-based model is proposed using an off-lattice approach to simulate vasculogenesis.
For a comprehensive literature review of hybrid models sees the book chapter [46].

Here, in the framework of hybrid deterministic PDE–ODE models, we propose a
discrete–continuous approach previously applied in [30], where immune cell motion is
governed by ODE and the diffusion of chemoattractant released by cancer cells in the envi-
ronment is described by PDE. The present work is complementary to the fully macroscopic
approach proposed in [21], since it allows a zooming on immune system dynamics. More-
over, we enriched the equations of cell motion with a Brownian component to reproduce
zigzag pathways of ICs.

The Model

Here we develop a model that can mimic cell migration under the effects of chemicals
released by TCs on immune system dynamics. The considered TCs are experiencing
apoptosis during which they liberate damaged-associated molecular patterns together
with tumor antigens that elicit an immune response. For the sake of simplicity, the alarm
concentrations are not differentiated, and we indicate them by means of the chemoattractant
f , whose evolution is described by a PDE. At the cellular level, the model is discrete and
includes the equation of the motion of each IC. We also underline that since we refer to
experiment of treated cancer cells, according to the experimental setting we do not need to
include TCs migration or duplication in our model. Let us summarize the main ingredients
which compose the model.

For the IC motion we use a second order dynamic equation, which takes into account
the forces acting on the cells that arise from the presence of the chemical signals and from
the mechanical interactions between cells. The effect of cancer is described by a chemotactic
term produced by the gradient of the f . The cell–cell mechanical interactions due to
filopodia, consist of a radial attraction and repulsion depending on the relative positions of
the cells, see [47] for experimental results in this direction. To describe this effect we refer
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to the mechanism introduced in [48]. The action of ICs regarding TCs is described by a
radial repulsion term, depending on cells positions. Finally, we introduce a damping term,
proportional to the velocities, which models cell adhesion to the substrate [49–51].

About the concentration of the chemoattractant, we associate a diffusion equation
including a source term, given by the chemoattractant released by TCs, and a natural
degradation term.

In the current context, the species under examination are TCs and ICs, but we under-
line that the setting can be made more complex with the introduction of a greater number
of cell species and with the presence of an exogenous substance in the environment. Fur-
thermore, in the present framework we are not taking into account the killing activity of ICs
towards TCs as we already did in [21], since we do not have a quantitative data regarding
the killing rate of immune cells in the chip environment. However, in the future also this
feature will be included in the model.

Let Xi be the position of the i-th IC and f (x, t) the total chemoattractant concentration,
the following equations are introduced:{

∂t f = D∆ f + ξF4(Y)− η f (3)

Ẍi = γF1(χ( f )∇ f ) + F2(X,Y) + F3(X)− µẊi (4)

where γ, µ, ξ and η are given constants and Fn(·), n = 1, 2, 3, 4 are suitable functions.

Function F1

The term F1 is the chemotactic term and therefore it is related to the detection of a
chemical signal by i-th cell in its neighborhood and it is taken to be a weighted average
over a ball of radius R̄ and centered in Xi:

F1(g(x, t)) =
1
W

∫
B(Xi ,R̄)

g(x, t)wi(x)dx, (5)

where
B(Xi, R̄) := {x : ||x− Xi|| ≤ R̄},

‖ · ‖ being the Euclidean norm,

wi(x) =

 2 exp
(
−||x− Xi||2

log 2
R̄2

)
, if ||x− Xi|| ≤ R̄,

0, otherwise,
(6)

is a truncated Gaussian weight function, and

W :=
∫

B(Xi ,R̄)
wi(x)dx,

independently on i. A similar definition holds for the vector quantity F1.
In addition, the function F1 contains the gradient of the chemical substance and a

chemotaxis function χ( f ), representing the chemotactic sensitivity of ICs. Such chemotactic
function, suggested in [52] by Lapidus and Schiller (1976) has the form:

χ( f ) =
k1

(k2 + f )2 , (7)

where k1 represents the cellular drift velocity, while k2 is the receptor dissociation constant,
which indicates how many molecules are necessary to bind the receptors. Such function is
known as receptor saturation function and has the effect of reducing chemotaxis of cells
in areas of high chemoattractant concentrations. In the integral, R̄ will be chosen larger
than the IC radius RI , thus relation (5) describes a chemical signal that is sensed more in
the center of the cell and less at the edge of the cell extensions.
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Function F2

Function F2 includes a repulsion effect among TCs and ICs. In particular, repulsion
occurs at a distance between the centers of two cells less than R1, where R1 is defined as
the sum of the two radii, RI and RT , of the immune and tumor cells, respectively. With this
formulation, repulsion occurs when an IC and a TC start being effectively overlapped. We
assume

F2(X,Y) = ∑
j:Yj∈B(Xi ,R2)\{Xi}

K(Yj − Xi), (8)

where the function K depends on the relative positions Yj − Xi, namely:

K(Yj − Xi) = −ωrepTI

(
1

||Yj − Xi||
− 1

R1

) Yj − Xi

||Yj − Xi||
, if ||Yj − Xi|| ≤ R1, (9)

where ωrepTI is a constant. The quantity R2 > R1 indicates the radius of the ball centered in
Xi, in which the centers of the tumor cells can fall. Thus, we are considering all the tumor
cells in proximity of the center of an immune cell.

Function F3

Function F3 includes adhesion–repulsion effects between ICs. In particular repulsion
occurs at a distance between the centers of two ICs less than R3 and takes into account the
effects of a possible cell deformation. Conversely, adhesion occurs at a distance greater
than R3 and less than R4 > R3, and it is due to a mechanical interaction between cells via
filopodia. We assume

F3(X) = ∑
j:Xj∈B(Xi ,R4)\{Xi}

K(Xj − Xi), (10)

where the function K depends on the relative positions Xj − Xi, namely:

K(Xj − Xi) =


−ωrep

(
1

||Xj − Xi||
− 1

R3

) Xj − Xi

||Xj − Xi||
, if ||Xj − Xi|| ≤ R3, (11)

ωadh(||Xj − Xi|| − R3)
Xj − Xi

||Xj − Xi||
, if R3 < ||Xj − Xi|| ≤ R4, (12)

where ωrep, ωadh are constants. R3 = 2RI will be chosen, so that the repulsion occurs
when two cells start being effectively overlapped. Please note that function (11) gives a
repulsion which goes as 1/r, r being the distance between the centers of two cells as we
can find in [53,54]. The function (12) is the Hooke’s law of elasticity. The last term in the
first equation is due to the cell adhesion to the substrate (see for example [49–51]).

Friction

The addend µẊi in the equation of the motion is due to cell adhesion to the substrate,
with damping coefficient equals µ.

Function F4

In the diffusion equation, only cancer cells are responsible for the production of the
chemoattractant, so that

F4(Y) =
Ntot,c

∑
j=1

χB(Yj ,RT)
, (13)

where Ntot,c is the total number of cancer cells, and

χB(Yj ,RT)
=


1, if x ∈ B(Yj, RT),

0, otherwise.

(14)



Axioms 2021, 10, 243 11 of 30

In the previous formula RT is the radius of a cancer cell, considering that the source of
chemoattractant is defined by the dimension of a single cell.

Initial Conditions

Initial data for Equation (4) are given by the position and velocity of each IC:

Xi(0) = Xi,0 , Vi(0) = Vi,0.

Moreover, since TCs do not migrate and maintain their initial position Y during the
whole time, the initial data for Equation (3) is provided by the chemoattractant produced
by TCs at time t = 0:

f (x, 0) = F4(Y).

Boundary Conditions

Now, let Ω = [0, Lx] × [0, Ly] our domain, for the chemoattractant we require the
inhomogeneous Robin boundary condition:

D
∂ f
∂n

+ a f = b, on ∂Ω, (15)

where b signals the similarity with the inhomogeneous Neumann boundary condition and
regulates the exchange with the external environment.

The system of Equations (3) and (4) can be now rewritten as:
∂t f = D∆ f + ξ ∑

Ntot,c
j=1 χB(Yj ,RT)

− η f ,

Ẍi =
γ

W
∫

B(Xi ,R̄)
χ( f (x, t))∇ f (x, t)wi(x)dx + ∑j:Yj∈B(Xi ,R2)\{Xi}K(Yj − Xi)

+∑j:Xj∈B(Xi ,R4)\{Xi}K(Xj − Xi)− µVi.

(16)

2.3. Stochastic Model

The model (16) is composed of deterministic equations, but a stochastic version for
Equation (4) can be formulated. In fact, in recent years, several studies have shown that
ICs exhibit an intermittent motion composed of a walking phase and of a zigzag phase.
The walk is characterized by pause steps between the run steps, while during the zigzag,
cells tend to turn away from their last turn directions and prefer to move forward in a
zigzag manner [27,55].

This characteristic walk is here described by Brownian motion [56] as a first approach
to the problem, revealing to be effective in reproducing the randomness of cell trajectories.
The stochastic equation for ICs motion is:

Ẍi = γF1(χ( f )∇ f ) + F2(X,Y) + F3(X)− µ(Ẋi − σψ). (17)

Equation (17) contains the stochastic contribution, where ψ(t) is a Gaussian white
noise, and σ is the standard deviation of ICs trajectories. With this formulation, ICs are
not only subjected to mechanical forces such as adhesion or repulsion, but also to random
factors that might be related to unknown cell mechanisms. Some estimates of parameter σ
based on experimental data are provided in Section 3.1.3.

3. Study on Different Scenarios: Numerical Tests

In this section, we look at some of the different scenarios the model can produce. We
remark that the numerical simulations are performed in MATLAB c©. The computational
time for a simulation on the total number of frames Tf = 681(N∆t = 680) takes about 260 s
on an Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz 2.59 GHz.
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3.1. Scenarios Representing Relevant Features of ICs Dynamics and Interactions

One of the motivations of the present study is to show the features of the proposed
hybrid model in describing Cancer-on-Chip experiment. To this aim, we explore the differ-
ent dynamics in three significant situations represented by the scenarios here proposed.
During apoptosis TCs release alarm substances, which remain localized in proximity of the
cells, that become attractors for ICs. In absence of an incoming chemical flow through the
boundary, if the immune cells fall in the basin of attractions of the tumor cells, would re-
main trapped in their proximity all the time. From the experiments, however, we observed
that ICs migrate also towards the bottom (where a reservoir of TCs was located) and to
the left side of Ω, due to the presence of other cells in the surrounding microenvironment,
generating a diagonal motion, as illustrated in Figure 2.

To allow ICs migration towards the sides of the domain, we added an incoming
chemical flow through the boundaries, which caused changes in ICs orientation.

Moreover, to have control over the changes in orientation and direction of the migra-
tory activity, it is necessary to find proper parameter values to attain a balance between the
internal chemical concentration due to TCs and the concentration present at the boundary.
For instance, if the chemotactic concentration at the boundary is higher than the internal
concentration, ICs will sense the resulting gradient and move towards the boundary. On the
opposite, ICs will not sense the gradient at the boundary. Thus, a balance between the
internal and the boundary concentrations must be reached to have an IC attracted by the
TCs and by the concentration on the sides.

For the numerical simulations we consider the domain Ω where four TCs are present
(see Figure 2). The numerical positions of the TCs and the initial concentration of the
chemoattractant released by the TCs are shown in Figure 3. We numbered the TCs from 1
to 4 to distinguish them.

Figure 3. TCs locations (left) and TCs chemoattractant (right) at time t = 0. The grid dimensions are
in µm.

In our preliminary study, we also changed the number of TCs and their positions,
with the aim of assessing the effect of their presence and their localization on the overall
dynamics of ICs.

We assume the coefficients a and b in the Robin boundary condition (15) in such a way
to have an incoming flux through the sides y = 0, x = Lx and x = 0.

The laboratory experiment recording immune-cancer cells interaction has an overall
duration of 24 h, but after data analysis we identified the presence of 97 ICs crossing the
area in a time interval of 681 frames, which correspond to 1360 min (22 h 40 min) of video
recording. To provide an idea of how ICs dynamics changes in time, we divided the
time interval in six homogeneous parts, so that we can take a picture of ICs positions
at six different instants Tk for k = 0, . . ., 5 (T0 = 1 frame, T1 = 136 frames (4 h 32 min),
T2 = 272 frames (9 h 4 min), T3 = 408 frames (13 h 36 min), T4 = 544 frames (18 h 8 min),
T5 = 681 frames (22 h 40 min)).

The initial conditions for Equation (4) are assumed as the initial positions and speeds
of the experimental cells.

In the following we consider three different scenarios that describe the interactions
between TCs and ICs in a subarea Ω of the chip. Specifically, we consider:
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1. Deterministic Motion,
2. Deterministic Motion including Cell Death;
3. Stochastic Motion.

The first scenario is assumed to be a prototypal case, where the reciprocal mechanical
forces between cells and the chemotactic stimuli are the only guiding forces of ICs migration,
the second case takes also into account the possible effects of TCs death over ICs motion,
and the third case contemplates the addition of the stochastic component Equation (A11),
which modifies the deterministic IC trajectories.

3.1.1. Scenario 1: Deterministic Motion

In Figure 4 we show the final concentration of the chemoattractant, plotted as a 2D
surface with a focus on the contour lines (left), and at the boundary of the domain and
in correspondence of the centers of the TCs as a function of the longitudinal (center) and
transverse distance (right). Cutting the surface this way, the maximum concentrations
related to each TC are highlighted.

Figure 4. Final Concentration. (Left) Concentration plotted in 2D, with contour lines. (Center) Concentration profiles as
a function of the longitudinal distance. (Right) Concentration profiles as a function of the transverse distance. The grid
dimensions are in µm.

In Figure 5 the time evolution of the migratory activity of ICs at six different times is
depicted. At the initial time, only one IC enters the domain, while at time T1 the number of
ICs increases, and they are directed towards the tumor. As the time grows, most of the ICs
approach the TCs and stay nearby, accumulating around them; while the others, guided by
the inflow of chemical signal, move towards the left-bottom boundaries of the domain.

3.1.2. Scenario 2: Deterministic Motion including Cell Death

The biological experiment inspiring our work is related to the phase of immunogenic
cell death, during which the TCs, previously treated with a drug, release alarm molecules
sensed by the immune system. This latter reacts, attacking the tumor.

In the current scenario we focus on the description of the effects of cell death on the
ICs dynamics. We remark that in this preliminary study, we did not insert a specific term
in the model to describe the death of TCs due to ICs, but we directly turned off some TCs.
Of course, this represents a simplification of what happens in reality, but is here applied
for illustrative purposes. However, in the next future we will include in our modeling the
death of cancer cells as a consequence of killing activity of ICs, similarly to the modeling
proposed in [21].
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Figure 5. ICs dynamics photographed at six consecutive times. ICs meet all TCs and move towards the left and the right
sides of Ω. The grid dimensions are in µm.

Please note that in this simplified setting we let dead TCs physically remain in the
domain, thus the effects of repulsion with ICs are still effective, but they do not release
alarm molecules anymore. This provokes a decrease of the internal concentration due to
the absence of previous sources. In the following, we turn off the third TC during the time
interval [T2, T3], and then we turn off also the fourth TC in the time interval [T3, T4]. Figure 4
shows the level of the initial concentration (interval [T0, T2]), while Figure 6 presents the
evolution of the concentration after cell death. Comparing Figure 6 with Figure 4, we can
observe how the overall concentration decreases after the two cells are killed.

Figure 7 shows the ICs dynamics. At time T2 both the third and the fourth cells are
approached by ICs, while at time T3 ICs start moving away from the third cell, which was
previously killed and not releasing chemicals anymore. Between time T3 and T4 also the
fourth cell is turned off and from time T4 onwards it is not approached anymore. The effect
of cell death of some tumor cells (the cells 3 and 4 depicted in Figure 3) on ICs dynamics is
depicted in Figure 7. Please note that in the present case a different behavior respect to the
one depicted in Figure 5 is observed, since here the accumulation around dead cancer cells
does not occur, as expected.
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  A1                                                                A2                                                             A3

  B1                                                                B2                                                             B3

Figure 6. Chemoattractant concentration in the time interval [T2, T3] (Top) and at the final time (Bottom). (A1,A2) Con-
centration plotted in 2D, concentration profiles as a function of the longitudinal distance (A2,B2) and transverse (A3,B3)
distance.

Figure 7. ICs dynamics photographed at six consecutive times. Cell 3 dies during the interval [T2, T3], while cell 4 dies
during the interval [T3, T4]. The grid dimensions are in µm.

3.1.3. Scenario 3: Stochastic Motion

Several chemical signals are produced at sites of dying TCs and then diffuse into the
surrounding environment. ICs sense these chemoattractants and move in the direction
where their concentration is greatest, therefore locating the source of the chemoattractants
and their associated targets. If on one hand the deterministic model allows us to control the
direction of motion of the ICs acting of the concentration of chemicals, on the other hand
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the complex migratory activity of ICs is better described by a stochastic model, that takes
into account the variability of cells, over the preset deterministic mechanisms. For this
reason, the features of this last scenario seem to be more suitable to qualitatively describe
the real problem.

Estimates of standard deviations. Here we preliminary determine an appropriate
value for the standard deviation σ in Equation (17). To this end, we consider the trajectory
Pi of the i-th IC, for i = 1, . . ., Ntot,I and its corresponding smoothing Si, obtained with a
moving average (the Matlab c© smooth function), and we compute the variance of each IC
trajectory:

σ2
i =

1
Ti

Ti

∑
k=1

(Pk
i − Sk

i )
2, (18)

where Ti is the number of frames the i-th IC spends on the domain Ω and we obtain the
sequence Σ = {σ2

i }i=1,...,Ntot,I . Successively, we average the values of Σ and divide by 120 s,
which corresponds to the time interval between two consecutive frames:

σ2 =

(
1

Ntot,I

Ntot,I

∑
i=1

σ2
i

)
/120, (19)

obtaining a variance expressed in seconds. As a last step, we apply the square root to
relation (19) and then obtain the standard deviation σ of real trajectories. From the analysis
conducted on the total number of ICs, we observed cells with variances very far from the
average, probably because of the presence of different cell species among the group of
ICs. We remark that the immune cell population is heterogeneous, since it is composed
by T-lymphocites, monocites, dendritic cells; however, a clear distinction among cell
species is not possible currently. For this reason, in order to obtain homogeneous data, we
neglect these cell trajectories in the computation of the standard deviation. Indeed, our
mathematical model aims at describing an average behavior, and therefore the trajectories
whose variance is too far from the average are discarded.

In the presence of more data, we will try to make a classification of cells based on their
pathways (length, stops, tortuosity, etc.). This will be the subject of a future study.

The cleaned standard deviations computed from experimental trajectories are reported
in Table 1.

ICs dynamics. Figure 8 captures ICs at six different times, while Figure 4 shows the
evolution of the chemoattractant. Differences with the deterministic dynamics shown in
Figure 5 can be highlighted. In the stochastic case, ICs are more spread.

The computations for this case are performed with a finer time spacing of ∆t = 10 s,
with the aim of better describing by the model the complex mechanisms really happening
to cells at smaller time scales, and then, the plots are taken every 2 min, which is the
timeframe of video recordings.

As an example, in order to evaluate the effects of the stochastic component on the
dynamics and establish a qualitative comparison with the deterministic model, we depict
the trajectories of six randomly selected cells. In Figure 9 we assume the starting point of
a given experimental cell and show the trajectories obtained with the ODE model (blue)
and the SDE model (red), while the corresponding trajectory extracted from the video
footage is plotted in black. As can be observed, the deterministic trajectories are smooth
and tend, in most cases, to stop in correspondence of the TCs, showing that once the
immune cells have fallen in the basin of attraction of the tumor, they tend to be trapped
there. The stochastic trajectories, instead, have a more similar behavior to the real ones,
showing that after some time spent near the tumor, the immune cells move to the boundary.
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Figure 8. Brownian motion. ICs dynamics photographed at six consecutive times. ICs meet all TCs and move towards the
left and the right sides of Ω. The grid dimensions are in µm.

So far the Brownian motion yields satisfactory results as shown in Figure 9, but we do
not exclude in the next future to deal with more homogeneous and richer dataset to better
identify the probability distribution and then apply a general Levý walk.

Figure 9. ICs Dynamics. (Blue) Deterministic Motion. (Red) Brownian Motion. (Black) Experimentally observed motion.
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Table 1. Estimates of physical parameter values.

Parameter Description Units Value Ref.

Ntot,I Number of ICs in Ω during 24 h 97 Experimental Data
Ntot,C Number of TCs in Ω during 24 h 4 Experimental Data
Lx Horizontal size of Ω µm 200 Experimental Data
Ly Vertical size of Ω µm 200 Experimental Data
RI IC radius µm 4 [57]
RT TC radius µm 10 [58,59]
R̄ Detection radius of chemicals µm 7 Biological Assumption
R3 Radius of action of repulsion between ICs µm 8 Biological Assumption
R4 Radius of action of adhesion between ICs µm 10 Biological Assumption
R1 Radius of action of Repulsion between ICs and TCs µm 14 Biological Assumption
D Diffusion Coefficient µm2.s−1 2× 102 [60]
ξ Growth Rate of f s−1/cell 10−1 [61]
η Consumption Rate of f s−1 10−4 [61]
ωadh Coefficient of Adhesion between ICs s−2 10−7 Biological Assumption
ωrep Coefficient of Repulsion between ICs µm2.s−2 5× 10−4 Biological Assumption
ωrepTI Coefficient of Repulsion between ICs and TCs µm2.s−2 8.5× 10−3 Biological Assumption
µ Damping Coefficient s−1 2.1× 10−3 Biological Assumption
k1 Cellular Drift Velocity mol.µm2.s−1 0.39 [60]
k2 Receptor Dissociation Constant mol.µm−2 5× 10−6 [60]
a Rate of exchange of the Chemoattractant with the external environment µm.s−1 10 Biological Assumption
γ Coefficient of Chemotactic Effect. Scenarios 1 and 2 µm−1 5× 10−3 Biological Assumption
b1 Flux condition on y = 0. Scenarios 1 and 2 mol.s−1.µm−1 22 Biological Assumption
b2 Flux condition on x = Lx mol.s−1.µm−1 12 Biological Assumption
b3 Flux condition on y = Ly mol.s−1.µm−1 0 Biological Assumption
b4 Flux condition on y = 0. Scenarios 1 and 2 mol.s−1.µm−1 18 Biological Assumption
σx Standard Deviation of x-trajectories µm.s−1/2. 1.49× 10−1 Experimental Data
σy Standard Deviation of y-trajectories µm.s−1/2. 1.74× 10−1 Experimental Data

4. Parameters Estimation on Synthetic Data

In this Section we present the calibration algorithm for the estimation of some model
parameters and the results obtained with it. All the model parameters are reported in
Table 1. We underline that some of them are given from experimentalists since are taken
from the laboratory experiment (size of the cropped area, number of TCs and ICs across
time, standard deviation of cell pathways). Other parameters, such as for instance, the diffu-
sion coefficient of chemoattractant, cellular drift velocity, receptor dissociation constant or
the radii of cells are taken from the literature. For the model parameters whose values still
need to be assigned, we assumed fixed most of them, such as the radii of action between
cells or adhesion/repulsion coefficients among cells, setting them in a phenomenological
way through the observation of their effects on the overall dynamics.

Then, in order to reduce the computational cost of the optimization procedure, we ap-
ply our calibration procedure only to 4 model parameters, i.e., the coefficient of chemotactic
effect γ, and the chemical inflow, respectively, at the left, right and bottom boundaries
b1, b2, b4, since we observed qualitatively a great effect of such parameters on the overall dy-
namics and, as a simplification of the model, we assume b3 = 0. In particular, the coefficient
γ affects the speed of ICs, while b1, b2, b4 affect the directionality of immune cells.

We underline that the parameter estimation procedure here described is applied to
the deterministic version of the model, i.e., (3) and (4). An extension of this procedure to
calibrate the stochastic model (3)–(17) will be included in a future work.

In this methodological study we want to show the feasibility and applicability of such
estimation technique for some significant model parameters of the hybrid model describing
Cancer-on-Chip experiment. Our final goal is indeed not the exact fitting of model param-
eters, but is to show that we are able to qualitatively reproduce the dynamics observed
experimentally, even if the quantification of the chemical gradients in the environment is
currently impossible for biologists in this kind of experiments. In the next future, we will
complement this methodology with macroscopic models deriving from them to be able
to simulate immunocompetent behavior in organs and tissues, where millions of cells are
present. To this aim, we applied the proposed procedure to a synthetic dataset produced
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by the model itself—but strongly inspired by experimental one—to assess the soundness
of this strategy. In the future, we aim at having more data in such a way to apply the
proposed strategy to a real biological dataset.

Data preparation.
To succeed in the calibration of model parameters, we need to extract a common

behavior from the time-varying trajectories of immune cells located at different points
of the observed area. Thus, here we propose a calibration algorithm taking into account
this variability constructing a “realistic” synthetic dataset of ICs pathways that can repro-
duce qualitatively the real trajectories extracted from the video footage of the experiment.
In particular, a set of trajectories of cells sharing an average behavior has been produced
by suitably tuning model parameters to have an upper and lower bound of cell speeds
taken from the experimentally observed ones. Then, ICs velocity field given by 2D surface
is computed by the model itself at every observation time of 2 min (as the video footage
timeframe). It is worth noting that the application of this strategy implies the assumption
to have a single population of immune cells showing an average behavior.

The velocity field is then approximated using a multidimensional spline interpolation
technique, described in Section 4.1 to have smoothing in time and space on the dataset to
be compared.

Main steps of the calibration algorithm.
The calibration algorithm applied to estimate crucial model parameters can be sum-

marized as follows:

• the dataset representing the target solutions of our procedure computed from synthetic
ICs trajectories is obtained by the model with fixed parameters;

• a time-space approximation of the velocity fields is carried out with the spline tech-
nique presented in Section 4.1 and used as target solution of the calibration algorithm;

• perturbed model parameters are used as initial guess of a global search algorithm
minimizing the norm of the difference between the target velocity fields and the
estimated ones, as explained in Section 4.2.

The results obtained with the procedure above are reported in Section 4.3.

4.1. Multidimensional Interpolation

The position and speed of the ICs, variable in time, provide punctual information
about the velocity field in which the ICs are immersed. As a consequence, they can be
considered to be training points for the calibration of an interpolation algorithm, able
to provide information about the full space. Here we are considering time as the third
dimension, being x and y the first two. As the interpolation scheme we are using a
multidimensional spline, described in [31].

Each training point is supposed to influence the value of the interpolating function
over a (limited) portion of the space in proximity of it. The degree of influence of the ith
training point (wi(x, y, t)) is a function of time and space, driven by a compact-support
function radial basis decaying at zero outside the influence area. Then, the interpolated
value is obtained as a weighted sum of the values at the training points:

ṽ(x, y, t) =
n

∑
i=1

wi(x, y, t)h(i)c(i), (20)

where c(i) represents the value of the interpolating function at the ith training point and n
is the total data-points available, corresponding to t1, . . . , tn discrete times. Specifically, we
have two functions ṽ, i.e., ṽx(x, y, t) and ṽy(x, y, t). Moreover, the vector c(i) is different
according to the velocities under exam, with training points corresponding alternatively to
the x- and y-velocities. Since different influence areas may overlap, the value of wi(x, y, t)
needs to be adjusted to have a correct fit. To this aim, we need to solve a linear system
where the n Equations (20) are collocated at the training points, generating an n× n system.
The n coefficients h(i) are computed only once, and then applied in the interpolation
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procedure. In this specific case, we are using a linear function for the influence coefficients
wi(x, y, t).

4.2. The Calibration Algorithm

With Formula (20) we have generated a velocity field ṽ that from now on we indicate
as Ve to point out that the velocity field is produced with the punctual velocities v the
immune cells assume at every time step, coming from experimental data (in this specific
case from synthetic data). Later we have used this field to define an appropriate functional
to be minimized.

To assess the goodness and soundness of our strategy, the analysis which follows is
performed on synthetic data, i.e., numerical data produced by the PDE–ODEs system (3)
and (4). Future work will be directed towards the application of this methodology to the
experimental outcomes.

As a first step we have interpolated immune cell velocities v obtained from synthetic
data to the end of generating a velocity field to use as a target, in correspondence of every
frame. Thus, we have produced Tf = 681 velocity fields Ve

x using the punctual velocities
in x and Tf = 681 velocity fields Ve

y using the velocities in y. In Figure 10 we present an
example of the surfaces resulting from the interpolation at a certain time step. Figure 10A
shows the interpolation of the x-velocities, while Figure 10B shows the interpolation of
the y-velocities. The green points have coordinates (Px, Py, vx) in (A) and (Px, Py, vy) in (B).
For more details about the interpolation technique see Section 4.1.

Figure 10. Interpolated surfaces Ve
x (A) and Ve

y (B) at fixed time. The green points indicate the values
of the velocities in the corresponding positions. (A) Velocities in the x-direction, (B) Velocities in the
y-direction.

Successively, we have launched the optimization algorithm and at every run we have
computed the numerical solutions of the deterministic model with the approximation
scheme described in Appendix A. We have then built a routine in which inserting the
numerical positions we are able to find the corresponding velocities on the surface Ve.
The resulting interpolated velocities Vn are then used to construct the objective function:

JV(θ) =

[
1

Tf

Tf

∑
k=1

(
1

Nk
tot,I

Nk
tot,I

∑
i=1

||Ve,k
i −Vn,k

i (θ)||
||Ve,k

i ||

)]2

. (21)

In (21) we compare at every time step the punctual interpolated velocities with the
punctual target velocities, i.e., the velocities used to generate the field. With θ we indicate
the vector whose dimension corresponds to the parameter values we search.

In addition, we have also included a Tikhonov regularization term in the functional,
as usually done for the regularization of linear inverse problems. In particular, we consider
the following term to be added to the functional to be minimized:

Pλ(θ) = λ2||θ − θ0||2, (22)
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where θ0 are the a priori estimate of target parameter values and θ are the parameter values
we are optimizing. The constant λ is a regularization parameter that helps the algorithm
in the search for optimal values of model parameters by reducing the number of local
minima in the functional, see [62]. Tests for different values of λ showed better results of
the calibration algorithm for λ2 = 0.1. Thus, with relation (22) we want to reduce the error
between the target values and the searched ones.

With functionals (21) and (22) we can define the minimization problem:

min
θ∈Θ

J(θ) = min
θ∈Θ

(JV(θ) + Pλ(θ)), (23)

where Θ is the space to explore to search the unknown parameter values. For completeness,
we introduce another estimator we have used for our simulations, which is based on the
idea of comparing the distances assumed by the tumor and immune cells at every time
step. We indicate with Cj the position of the j-th TC (the temporal indicator k is omitted
since TC positions do not evolve in time). We call dk

i,j the distance between the i-th IC and
the j-th TC at time k:

dk
i,j = ||Pk

i − Cj||, (24)

and then, fixed the i-th IC, we compare the distances dn,k
i,j obtained from the numerical

positions with the distances de,k
i,j obtained from the synthetic positions:

Dk
i =

1
Ntot,c

Ntot,c

∑
j=1

||de,k
i,j − dn,k

i,j ||

||de,k
i,j ||

,

successively, we sum over all ICs:

Dk =
1

Nk
tot,i

Nk
tot,i

∑
i=1

Dk
i ,

and then we sum over all times. To summarize, we have the functional:

JDTI =

[
1

Tf

Tf

∑
k=1

(
1

Nk
tot,i

Ntot,i

∑
j=1

(
1

Ntot,c

Ntot,c

∑
j=1

||de,k
i,j − dn,k

i,j ||

||de,k
i,j ||

))]2

. (25)

In conclusion, to evaluate the error committed by the optimization with respect
to synthetic data, we indicate with θ0 the target value and with θ∗ the corresponding
optimized parameter and we define:

RE =
||θ∗ − θ0||
||θ∗|| × 100, (26)

the approximation error of each parameter.
The minimization of the functionals above is performed with Particle Swarm Opti-

mization (PSO) [63] as search method using the Matlab c© toolbox. For the approximation
of target and computed velocity fields resulting in a 2D varying in time surface we use a
spline multidimensional interpolation described in Section 4.1.

4.3. Results on Parameters Estimation

Tests on the calibration algorithm are performed to assess the goodness and robustness
of the methodology shown in Section 4.2. Please note that the total number of parameters
to be assigned is 14, since the other parameters are given from the experimentalists or
taken from the literature, as reported in Table 1. Of course, it is possible to make a
parameter estimation of all of them. However, in the present work, in order to reduce the
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computational cost, we apply our calibration procedure only to 4 model parameters that
we consider very significant since they strongly affect the dynamics of the ICs, i.e., γ, b1, b2
and b4.

We recall the γ is the coefficient which enhances the effect of the chemotactic function (5),
while bi, for i = 1, 2, 4 are the parameters that control the chemical inflow at the boundaries.
In order to perform the tests, we produced synthetic solutions choosing specific values for
the listed parameters:

γ = 5 · 10−3, b1 = 22, b2 = 12, b4 = 18, (27)

which correspond to those used to create the Scenario 1 (see Section 3.1.1). The synthetic
solutions are used to generate the velocity fields Ve to be used as targets.

To assess our strategy, we start testing one parameter and then adding one more at
time. The range for the parameter variations is chosen by varying the initial guess by a
percentage of ±50%. Specifically, we searched γ in I50% = [3.5× 10−3, 6.5× 10−3], b1 in
I50% = [11, 33], b2 in I50% = [6, 18] and b4 in I50% = [9, 27]. We also choose as initial guess a
perturbation of the model parameters by +30%. We tested the algorithm with the following
two different functionals:

J1 = JV + Pλ, (28)

and
J2 = JV + JDTI + Pλ. (29)

Results with the functional J1 are reported in Table 2, while results with J2 are in
Table 3. In each row of Tables 2 and 3 errors obtained with the parameter estimation
algorithm are reported. Please note that errors are reported in increasing order respect
to the number of parameters involved in the parameter estimation procedure, from the
top to the bottom. We can notice that in both cases the errors in parameters estimation
are quite low since their order of magnitude is around 10−3 in the worst case, meaning
the calibration was successful. We also underline that the norm of the total error of the
functional is low, around 10−7, given by the JV component.

Table 2. J1. Deterministic Model Calibration. Parameter γ = 5× 10−3, parameter b1 = 22, parameter
b4 = 18 and parameter b2 = 12 are varied by +30% and they are optimized in the range ±50%.

Functional RE % RE % RE % RE % JV Pλ Fval
γ b1 b4 b2

J1

4.114× 10−4 - - - 2.076× 10−7 4.231× 10−17 2.076× 10−7

2.066× 10−4 5.249× 10−4 - - 2.064× 10−7 1.334× 10−9 2.078× 10−7

7.874× 10−5 2.397× 10−4 2.283× 10−4 - 2.064× 10−7 2.633× 10−10 2.067× 10−7

1.353× 10−3 1.869× 10−3 5.18× 10−4 7.41× 10−4 2.09× 10−7 1.857× 10−8 2.275× 10−7

Table 3. J2. Deterministic Model Calibration. Parameter γ = 5× 10−3, parameter b1 = 22, parameter
b4 = 18 and parameter b2 = 12 are varied by +30% and they are optimized in the range ±50%.

Functional RE % RE % RE % RE % JV Pλ Fval
γ b1 b4 b2

J2

2.915× 10−6 - - - 2.064× 10−7 2.833× 10−14 2.134× 10−21 2.064× 10−7

2.798× 10−5 4.558× 10−4 - - 2.068× 10−7 2.037× 10−8 1.006× 10−9 2.281× 10−7

2.93× 10−4 4.335× 10−4 7.67× 10−4 - 2.066× 10−7 6.273× 10−10 2.816× 10−9 2.1× 10−7

1.102× 10−4 5.503× 10−4 1.63× 10−4 2.65× 10−4 2.064× 10−7 4.662× 10−10 1.653× 10−9 2.085× 10−7

In conclusion, as a way to quantify the goodness of our reconstruction, we compute
the percentage of cells passing through the cropped area of the chip representing the
computational domain. In particular, we depict with histograms the statistics obtained
from the trajectories reconstructed by the calibrated model and the statistics computed
from the trajectories of the synthetic dataset, i.e., the target solutions of the calibration
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algorithm. The percentage of outgoing cells Nk
o over the number of cells Nk

p present in the
domain Ω, is computed by the formula:

Nk =
Nk

o
Nk

p
× 100, (30)

for each timeframe k = 1, . . . , 680 with a time spacing of 2 min. Then, the optimized
parameters (27) obtained with the calibration procedure described in 4.2 are used as the
model parameters to be given in input to both the ODE model (3) and (4) and the SDE
model (3)–(17) for the computation of the statistics on cell trajectories. More precisely,
we perform this computation for the target case, i.e., the synthetic trajectories obtained
by the PDE–ODEs system (yellow bars in Figure 11). Then, assuming randomly placed
initial positions of ICs, we compute the same statistics for the PDE–ODEs system (red
bars in Figure 11) and for the PDE-SDEs system (blue bars in Figure 11). In particular,
the initial positions Pk

i , for i = 1, . . . , Ntot,I are randomly perturbed in a range of (0, 5]
µm. As can be seen in Figure 11, the statistics of target trajectories (ODE-target) and
reconstructed trajectories (ODE-modified and SDE-modified) are quite similar in terms
order of magnitude. Please note that the ODE-modified shows the ability to reproduce well
also the timing of the exits from the domain, while a slight variability, as expected, can be
observed in the SDE-modified case in terms of time occurrence of exits from the domain.

Figure 11. Percentage of outgoing cells over the number of cells present in the domain. The plot
shows results starting from frame 150, since no relevant information emerged in the previous frames.

5. Conclusions and Future Work

In the present work we have developed a mathematical model to describe the interac-
tions between ICs and treated TCs in microfluidic chip, together with a strategy to estimate
unknown parameter values.

Regarding the modeling part, we have introduced a hybrid model, composed of
a reaction-diffusion equation to describe the evolution of chemicals released by TCs,
coupled with an equation for the motion of each IC, driven by the chemical gradient. The
deterministic system represents a first microscopic model of ICs dynamics in a subarea of
the chip.

First, we qualitatively analyzed the overall dynamics of ICs, varying important pa-
rameters of the system, such as the chemotactic coefficient γ and the boundary parameters.
Indeed, according to their magnitude, the direction of the motion can be controlled and
decided a priori. Then, in order to reproduce some interesting features characterizing cell
behavior, we adjusted suitably the model parameters and we presented three different
scenarios that can occur in the chip:
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• the deterministic scenario, with some ICs attracted by the tumor and others moving
towards to the boundaries of the considered domain;

• the cell death scenario, as a subcase of the previous one, obtained assuming two TCs
have died after their interaction with ICs, causing changes in the internal concentration
of chemicals thus affecting ICs dynamics;

• the stochastic scenario, obtained adding to the equation of the motion a Brownian
walk to mimic the randomness on ICs trajectories.

Regarding the stochastic scenario, it is important to highlight that the Brownian
motion is not the most appropriate to describe ICs movement, but in the future we aim
at substituting it by the Lévy walk. In recent works [64,65], it has indeed emerged that a
heavy-tailed process is more efficient and realistic than Brownian motion. However, in the
present work, the shortage of data at our disposal did not provide us information on the
nature of the different ICs involved in the experiment. To this end, we are working on a
classification strategy in a forthcoming paper to be able to identify the different categories
of ICs and then differentiate the model parameters according to the corresponding cell type.

In addition to the pure modeling part, we have developed a model calibration proce-
dure based on the comparison of the velocity fields related to ICs at every time step.

The calibration procedure with synthetic data revealed to be successful, thus repre-
senting a first step towards the model calibration on experimental data.

Finally, the main achievements of the present work are represented by:

• the development of a simulation algorithm mimicking short-range dynamics of ICs in
the neighborhood of TCs, as observed in Cancer-on-Chip experiment;

• the introduction of an ad-hoc methodology for the calibration of model parameters
based on the time-space approximation of synthetic velocity fields computed from
immune cell trajectories.

Future perspectives.
Our future aim is to extend this framework to validate our model against the exper-

imental velocity fields computed from the real IC trajectories extracted from the video
footage of the experiment.

To face the problem of calibrating the model parameters against real data, we first
must produce an interpolation model able to take into account the non-deterministic nature
of the cell motions. A possible strategy is to produce a stochastic interpolator, able to
determine the expected value and variance of the local speed: the final interpolated value
will be then obtained adding a stochastic part, computed using the interpolated variance
and the same probability density function of the experimental data, to the interpolated
expected value. Using this approach, we have a non-deterministic interpolated value with
the same statistical qualities of the interpolating dataset. Implicitly, we are considering as
deterministic the local values of the expected value and of the variance of our experimental
dataset, and we are also assuming to be able to compute the statistical distribution of
the real data (otherwise, we can adopt a prescribed distribution. i.e., Gaussian). It is
now evident that the comparison cannot be produced on a single path, but we need to
observe the trajectories from a statistical standpoint, i.e., comparing the average path over
many simulations, whose output is now non-deterministic. At the same time, in order
to derive the statistical properties of the real IC trajectories and speed, a large number of
experiments is needed, with a time resolution of the same order of magnitude of the time
scale of the physical phenomenon under investigation. This implies a huge experimental
and numerical effort, one or two order of magnitude larger than the present work.
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Appendix A

In this section we discuss the numerical approximation scheme employed for
Equations (3) coupled with (4) or (17) in the numerical simulations. The methods used in
the numerical simulations employ a 2D finite difference scheme. We consider the spatial
domain Ω = [0, Lx]× [0, Ly] and we introduce a discretization on Lx in N − 1 subinter-

vals of length ∆x =
Lx

N − 1
and a discretization on Ly in M − 1 subintervals of length

∆y =
Ly

M− 1
. Then we introduce a Cartesian grid Ω∆ consisting of grid points (xn, ym),

where xn = n∆x, for n = 0, . . ., N − 1 and ym = m∆y, for m = 0, . . ., M− 1. The same can
be done for the time interval [0, T], in this case if ∆t is the time step, tk will be the k-th
temporal step, i.e., tk = k∆t, for k = 0, . . ., N∆t. Note that the spatial steps were chosen as
half radius of an IC: ∆x = ∆y = 2 µm, and the temporal step as the 1/6 of the video footage
timeframe (of 2 min): ∆t = 10 s. With the notation uk

n,m we denote the approximation of a
function u(x, y, t) at the grid point (xn, ym, tk).

Moreover, since experimentally it was observed that ICs leave the domain Ω, to man-
age the entrance and exit of cells and avoid numerical instabilities, we added a ghost grid
to Ωd, where the cells lie after having left the main domain. To construct the grid, we
considered the extended x interval [−Lx∗ , Lx + Lx∗ ], with Lx∗ > 0, with nodes xn = n∆x,
for n = −N∗, . . ., 0, . . ., N∗, and the extended y interval [−Ly∗ , Ly + Ly∗ ], with Ly∗ > 0,
with nodes ym = m∆y, for m = −M∗, . . ., 0, . . ., M∗. The equations were solved only on
Ωd.

Appendix A.1. Discretization of the PDE

Regarding the approximation of the parabolic Equation (3). The right hand side is
composed of the diffusion term, the source term, and the stiff degradation term −η f .

To eliminate this last quantity, we perform the classical exponential transformation:

f (x, t) = e−ηtu(x, t), (A1)

which leads to the diffusion equation with source for u(x, t):

∂tu = D∆u + eηtξ
Ntot,c

∑
j=1

χB(Yj ,RT)
. (A2)

For this equation we apply a central difference scheme in space, i.e., the 5-point stencil
for the Laplacian, and the parabolic Crank–Nicolson scheme in time.
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The numerical scheme can be written as:

uk+1
n,m − uk

n,m

∆t
=

D
2

(
D2

xuk+1 + D2
yuk+1

)
+

D
2

(
D2

xuk + D2
yuk
)
+

+
1
2

eη(k+1)∆tξ
Ntot,c

∑
j=1

χB(Yk+1
j ,RT)

+

+
1
2

eηk∆tξ
Ntot,c

∑
j=1

χB(Yk
j ,RT)

,

(A3)

where the second finite difference D2
xu is defined as the central difference:

D2
xuk =

uk
n−1,m − 2uk

n,m + uk
n+1,m

∆x2

and D2
yu is defined analogously.

Appendix A.2. Boundary Conditions

Using the transformation (A1), the associated boundary conditions are:

D
∂u
∂n

+ au = eηtb, (A4)

that we rewrite as
∂u
∂n

+ pu = q(t), with p =
a
D

and q(t) = eηt b
D

. Moreover, to distinguish
the values of p and q on the different sides of Ω, we number them as follows: p1 and q1 are
assumed on y = 0, p2 and q2 on x = Lx, p3 and q3 on y = Ly and p4 and q4 on x = 0.

For the discretization of the boundary conditions, we use a central finite difference
scheme. On y = 0 and y = Ly, we have:

∂u
∂y

+ psu− qs =
uk

n,m+1 − uk
n,m−1

2∆y
+ rk

s un,m − hk
s , (A5)

with s = 1, 3, while on x = 0 and x = Lx, we have:

∂u
∂x

+ psu− qk
s =

uk
n+1,m − uk

n−1,m

2∆x
+ rk

s un,m − hk
s , (A6)

for s = 2, 4 and k ≥ 0.
The signs of rs and hs depend on the incoming/outgoing flow. For instance on y = 0,

we have r1 = −p1 and h1 = −q1, on y = Ly, we have r3 = p3 and h3 = q3, on x = Lx,
we have r4 = −p4 and h4 = −q4 and on x = 0 we have r2 = p2 and h2 = q2 in order to
have an incoming chemical flux through the boundary. The previous discretizations (A5)
and (A6) are used with the well-known ghost nodes technique [66].

Appendix A.3. Discretization of the ODE

The equation of the motion (4) is reduced to the first order system

V̇i =
γ

W

∫
B(Xi ,R̄)

χ( f (x, t))∇ f (x, t)wi(x)dx + ∑
j:Yj∈B(Xi ,R2)\{Xi}

K(Yj − Xi) (A7)

+ ∑
j:Xj∈B(Xi ,R4)\{Xi}

K(Xj − Xi)− µVi,

Ẋi = Vi, (A8)
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for i = 1, . . ., Ntot,I . Equation (A7) is discretized with a one-step IMEX method, putting in
implicit the term containing V̇i and in explicit the other addends, see [67]. Equation (A8)
is solved with the forward Euler method. The two-dimensional integral in (A7) can be
computed by a 2D quadrature formula, which due to the truncated Gaussian weight
function wi(x) given in (6), is reduced to a sum of the discretized integrand functions on
the grid points belonging to the ball B(Xi, R̄). For an integrand function g(x, t) holds:∫

B(Xi ,R̄)
g(x, t)wi(x)dx ≈ ∑

n,ms.t.(xn ,xm)∈B(Xn
i ,R̄)

gk
n,m(wi)

(k)
n,m,

where (wi)
(k) is the weight function centered in Xk, at time step tk. The same holds for the

integralW defined in (5), which is approximated by:

W̃ := ∑
n,ms.t.(xn ,xm)∈B(Xk

i ,R̄)

(wi)
(k)
n,m.

The gradients of Equation (A7) are approximated with the first order difference:

∇g(xn, ym, tk) ≈
( gk

n+1,m − gk
n,m

∆x
,

gk
n,m+1 − gk

n,m

∆y

)
.

Equation (A7) is discretized as follows:

Vk+1
i −Vk

i
∆t

=
γ

W̃ ∑
n,ms.t.(xn ,xm)∈B(Xk

i ,R̄)

χ( f k)(∇n,m f k)(wi)
(k)
n,m

+ ∑
j:Xk

j∈B(Xk
i ,R2)\{Xk

i }
K(Xk

j − Xk
i )

+ ∑
j:Xk

j∈B(Yk
i ,R4)\{Yk

i }
K(Yk

j − Xk
i )− µVk+1

i ,

(A9)

and Equation (A8) is discretized as
Xk+1

i − Xk
i

∆t
= Vk+1

i , with Vk+1
i computed before

Equation (A8) is solved.

Appendix A.4. Discretization of the SDE

The stochastic equation of the motion (17) can be decoupled as follows:

V̇i =
γ

W

∫
B(Xi ,R̄)

χ( f (x, t))∇ f (x, t)wi(x)dx + ∑
j:Yj∈B(Xi ,R2)\{Xi}

K(Yj − Xi) (A10)

+ ∑
j:Xj∈B(Xi ,R4)\{Xi}

K(Xj − Xi)− µVi,

Ẋi = Vi + σψ(t). (A11)

for i = 1, . . ., Ntot,I . The discretization of Equation (A10) coincides with the one for
Equation (A7), while Equation (A11) requires the application of the Euler-Maruyama
method [68].

Equation (A11) can be written in the differential form and use dW(t) = ψ(t)dt where
dW(t) denotes the differential form of the Brownian motion:

dXi(t) = Vidt + σdW(t), (A12)
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where Xi(t) is a one-dimensional Wiener process with drift Vi and diffusion σ. This
equation is discretized with the Euler-Maruyama scheme, which is the stochastic version
of the deterministic Euler scheme. The increments of the Wiener process are defined as:

∆W = Wk+1 −Wk,

with 0 ≤ k ≤ N∆t − 1. The increment ∆W is a random variable with zero mean and
variance equal to ∆t:

∆W ∼ N (0, ∆t),

and with this increment we can construct approximations by drawing normally distributed
numbers from a random generator. We approximate the process (A12) at the discrete time
points tk, 0 ≤ k ≤ N∆t − 1 by

Xk+1
i = Xk

i + Vk+1
i ∆t + σ∆W, (A13)

where ∆W =
√

∆tZk, with Zk being standard normal variables with mean 0 and variance 1
for all k.
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