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Abstract: (1) Background: There is an increasing amount of information in complex domains,
which necessitates the development of various kinds of operators, such as differential, integral, and
linear convolution operators. Few investigations of the fractional differential and integral operators
of a complex variable have been undertaken. (2) Methods: In this effort, we aim to present a
generalization of a class of analytic functions based on a complex fractional differential operator. This
class is defined by utilizing the subordination and superordination theory. (3) Results: We illustrate
different fractional inequalities of starlike and convex formulas. Moreover, we discuss the main
conditions to obtain sandwich inequalities involving the fractional operator. (4) Conclusion: We
indicate that the suggested class is a generalization of recent works and can be applied to discuss the
upper and lower bounds of a special case of fractional differential equations.

Keywords: univalent function; analytic function; subordination and superordination; open unit disk;
special function; fractional calculus; fractional differential operator

1. Introduction

Geometric function theory’s primary research objective is to introduce new classes of
analytic functions and to explore their geometric shapes. There are many classes of analytic
functions in the open unit disk, such as normalized, multivalent, harmonic and mero-
morphic functions, formulating different geometric processes. These processes present
a derivative, integral or convolution operationally—for example, the Salagean differen-
tial operator [1] and its generalizations [2,3], conformabale differential operator [4] and
symmetric differential operator [5]. Recently, fractional differential and integral operators
have been utilized to formulate various types of generalizations of analytic functions. The
most popular fractional operators are Riemann–Liouville fractional differential and integral
operators. These operators were extended to the complex plane by Owa and Srivastava [6]
and generalized for 2D-parametric fractional power in [7,8].

The most significant embellishment of geometric classes is accomplished by the use
of the subordination notion [9]. Such a presentation, for the first time, is given by Ma
and Minda [10] for the class of normalized functions f (0) = f ′(0)− 1 = 0. They have
introduced the starlikeness and convexity sub-classes. These classes were modified later
considering other collection of analytic functions, generalized by assuming any types of
differential or integral operators and extended including fractional operators in the open
unit disk (see [11–16]). In our investigation, we formulate the suggested class using the
Ma-Minda-Janowski inequality. The descried classes are based on starlike and bounded
turning functions.

In this study, we aim to present two new classes of multivalent analytic function types
based on the generalized fractional differential operator. We shall show that the suggested
fractional differential operator belongs to the same class of multivalent functions under
a suitable process. Furthermore, by the Noshiro–Warschawski and Kaplan theorems, we
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show that the new operator is bounded turning in the open unit disk. Our method is
based on the differential subordination theory. The suggested classes are of the starlike and
bounded formula in the open unit disk. We present the sufficient and necessary conditions
to be in these classes. As a special case, we study a Janowski formula geometrically, where
this class indicates the extreme class of analytic functions. Moreover, we introduce different
studies of these classes, including a set of differential inequalities. The conditions of a
sandwich inequality are illustrated.

2. Methods

We proceed to illustrate some concepts which are requested for our study.

2.1. Definitions

• We consider a class of ρ−valent analytic functions denoted by Λρ, ρ ∈ N and taking
the series

ϕ(z) = zρ +
∞

∑
n=ρ+1

ϕn zn, z ∈ t := {z ∈ C, |z| < 1}.

Two analytic functions ϕ, ψ ∈ Λρ are convoluted ( ϕ ∗ ψ) if and only if

(ϕ ∗ ψ)(z) =

(
zρ +

∞

∑
n=ρ+1

ϕn zn

)
∗
(

zρ +
∞

∑
n=ρ+1

ψn zn

)

= zρ +
∞

∑
n=ρ+1

(ϕnψn)zn.

Clearly, when ρ = 1, we have the normalized class of analytic functions in t.
• In addition, we introduce the classP of all analytic functions ℘ in twith a positive real

part in t and ℘(0) = 1. Associated with this class, we have the following sub-classes
ς∗ρ(℘),>ν

ρ(℘), satisfying the inequality

zϕ′(z)
ρϕ(z)

≺ ℘(z), z ∈ t

and (
ϕ(z)
zρ

)ν

≺ ℘(z), z ∈ t

accordingly, where ≺ indicates the subordination symbol [9].
• The extended Mittag–Leffler function is given by [17–19]

Σp
a,b(z) =

∞

∑
n=0

(p)n

Γ(bn + a)
zn

n!
,

(
(p)0 = 1, (p)n = p(p + 1)...(p + n− 1)

)
where (p)n represents the Pochhammer symbol and

Σ1
a,b(z) := Σa,b(z) =

∞

∑
n=0

zn

Γ(bn + a)
.

Note that Σp
a,b(z) is the generalization of the function ez, where Σ1

1,1(z) = ez.
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2.2. ρ−Valent Fractional Differential Operator

The Prabhakar fractional integral operator is formulated, for analytic function f ∈ t
by [20,21]

p,q

∏
a,b

f (z) =
∫ z

0
(z− ζ)b−1Σp

a,b[q(z− ζ)a] f (ζ)dζ

= ( f · $
p,q
a,b )(z),

(
a, b, p, q ∈ C, z ∈ t

) (1)

where
($

p,q
a,b )(z) := zb−1Σp

a,b(q za)

and

Σp
a,b(z) =

∞

∑
n=0

Γ(p + n)
Γ(p)Γ(an + b)

(
zn

n!

)
.

For instant, for ψ(z) = z`−1, we obtain (see [22]—Corollary 2.3)

p,q

∏
a,b

z`−1 =
∫ z

0
(z− ζ)b−1Σp

a,b[q(z− ζ)a](ζ`−1)dζ

= Γ(`)zb+`−1Σp
a,b+`(qza).

(2)

Corresponding to the integral ∏
p,q
a,b , the differential construction is formulated by [20]

κ∆p,q
a,b f (z) =

dκ

dzκ

(−p,q

∏
a,κ−b

f (z)

)
, κ ∈ N. (3)

Definition 1. Let ϕ ∈ Λρ. Then, the ρ−valent differential operator of (2) can be realized in view
of the Riemann–Liouville derivative by:

R
κ ∆p,q

a,b ϕ(z) =
dκ

dzκ

∫ z

0
(z− ζ)κ−b−1Σ−p

a,κ−b[q(z− ζ)α]ϕ(ζ)dζ (4)

=
dκ

dzκ

(−p,q

∏
a,κ−b

ϕ(z)

)
.

The ρ−valent differential operator in the structure of the Caputo derivative can be recognized
coordinately by

C
κ ∆p,q

a,b ϕ(z) =
∫ z

0
(z− ζ)κ−b−1Σ−p

a,κ−b[q(z− ζ)a]

(
dκ

dζκ
ϕ(ζ)

)
dζ. (5)

=
−p,q

∏
a,κ−b

(
dκ

dzκ
ϕ(z)

)
.

Note that

C
κ ∆p,q

a,b ϕ(z) = R
κ ∆p,q

a,b ϕ(z)−
κ−1

∑
j=0

zj−bΣ−p
a,j−b[ωza]ϕ(j)(0).

Since ϕ(j)(0) = 0, j = ρ− 1, then we have

C
κ ∆p,q

a,b ϕ(z) = R
κ ∆p,q

a,b ϕ(z).
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For instant, suppose that ϕ(z) = zρ, ρ ≥ 1, ref. [22], Corollary 2.3, implies that

C
1 ∆p,q

a,b (z
ρ) =

∫ z

0
(z− ζ)1−b−1Σ−p

a,1−b[q(z− ζ)a]

(
d

dζ
ϕ(ζ)

)
dζ

=
∫ z

0
(z− ζ)s−1Σ−p

a,s [q(z− ζ)a]

(
d

dζ
(ζρ)

)
dζ

= ρ
∫ z

0
ζρ−1(z− ζ)s−1Σ−p

a,s [q(z− ζ)a]dζ

= Γ(ρ + 1)zs+ρ−1Σ−p
a,s+ρ[q zα], s := 1− b.

In general, we have

C
κ ∆p,q

a,b (z
ρ) =

∫ z

0
(z− ζ)κ−b−1Σ−p

a,κ−b[q(z− ζ)a]

(
dκ

dζκ
(ζρ)

)
dζ

= (1− κ + ρ)κ

∫ z

0
ζρ−κ(z− ζ)κ−b−1Σ−p

a,κ−b[q(z− ζ)a]dζ

= (1− κ + ρ)κ

∫ z

0
ζ(ρ−κ+1)−1(z− ζ)κ−b−1Σ−p

a,κ−b[q(z− ζ)a]dζ

:= (t)κ

∫ z

0
ζt−1(z− ζ)s−1Σ−p

a,s [q(z− ζ)a]dζ

= (t)κ Γ(t) zt+s−1Σ−p
a,s+t[qza],

where s := κ − b, t := ρ− κ + 1 and (t)κ =
Γ(1 + ρ)

Γ(1 + ρ− κ)
. Consequently, we obtain

C
κ ∆p,q

a,b (z
ρ) = Γ(1 + ρ)zs+t−1Σ−p

a,s+t[qza]

= Γ(κ + t)zt+s−1Σ−p
a,s+t[qza].

(6)

As a conclusion, we realize the next property

Proposition 1. Let ϕ ∈ Λρ. Define the operator Cκ Ωp,q
a,b : t → t by

C
κ Ωp,q

a,b :=

(
zρ

(t)κ Γ(t) zt+s−1Σ−p
a,s+t[qza]

)(
C
κ ∆p,q

a,b

)
.

Then Cκ Ωp,q
a,b ϕ ∈ Λρ. (

a, b, p, q ∈ C, z ∈ t, ϕ ∈ Λρ

)
and (

s := κ − b, t := ρ− κ + 1, τ := n− κ + 1
)

.

Proof. Assume that ϕ ∈ Λρ. Then, a calculation yields
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C
κ Ωp,q

a,b ϕ(z) =

(
zρ

(t)κ Γ(t) zt+s−1Σ−p
a,s+t[qza]

)
C
κ ∆p,q

a,b ϕ(z)

=

(
zρ

(t)κ Γ(t) zt+s−1Σ−p
a,s+t[qza]

)
C
κ ∆p,q

a,b

(
zρ +

∞

∑
n=ρ+1

ϕnzn

)

=

(
zρ

(t)κ Γ(t) zt+s−1Σ−p
a,s+t[qza]

) (
C
κ ∆p,q

a,b zρ +
∞

∑
n=ρ+1

ϕn
C
κ ∆p,q

a,b zn

)

=

(
zρ

(t)κ Γ(t) zt+s−1Σ−p
a,s+t[qza]

) (
(t)κ Γ(t) zt+s−1Σ−p

a,s+t[qza] +
∞

∑
n=ρ+1

ϕn
C
κ ∆p,q

a,b zn

)

= zρ +

(
zρ

(t)κ Γ(t) zt+s−1Σ−p
a,s+t[qza]

)
∞

∑
n=ρ+1

ϕn (τ)κ Γ(τ) zτ+s−1Σ−p
a,s+τ [qza]

= zρ +
∞

∑
n=ρ+1

(
(τ)κ Γ(τ)Σ−p

a,s+τ [qza]

(t)κ Γ(t)Σ−p
a,s+t[qza]

)
ϕnzn

= zρ +
∞

∑
n=ρ+1

ωn ϕnzn

where

ωn :=

 (n− κ + 1)κ Γ(n− κ + 1)Σ−p
a,1−b+n[qza]

(ρ− κ + 1)κ Γ(ρ− κ + 1)Σ−p
a,ρ+1−b[qza]

.

This yields Cκ Ωp,q
a,b ϕ ∈ Λρ. Moreover,

C
κ Ωp,q

a,b ϕ(z) = C
κ Ωp,q

a,b (z) ∗ ϕ(z).

We call Cκ Ωp,q
a,b , the ρ−valent Prabhakar operator in the open unit disk. Since Cκ Ωp,q

a,b ∈
Λρ, then we can investigate its properties in the recommendation of the geometric function
theory. Our goal is to formulate it in terms of some well known sub-classes of analytic
functions. It is clear that ωn is a complex connection (coefficient) of the operator and it is a
constant when a = 0. In addition, we have

lim
ρ→n

ωn =

(
(n− κ + 1)κ Γ(n− κ + 1)Σ−p

a,1−b+n[qza]

(n− κ + 1)κ Γ(n− κ + 1)Σ−p
a,1−b+n−[qza]

)
= 1.

Remark 1. The integral operator corresponds to the fractional differential operator Ck ∆γ,ω
α,β , which

is expanded by the series

C
κ Ξp,q

a,b ϕ(z) = zρ +
∞

∑
n=ρ+1

(
(t)κ Γ(t)Σ−p

a,s+t[qza]

(τ)κ Γ(τ)Σ−p
a,s+τ [qza]

)
ϕnzn.

It is clear that (
C
κ Ωp,q

a,b ∗
C
κ Ξp,q

a,b

)
ϕ(z) =

(
C
κ Ξp,q

a,b ∗
C
κ Ωp,q

a,b

)
ϕ(z) = ϕ(z).

The linear convex combination of the operators Cκ Ωp,q
a,b ϕ(z) and Cκ Ξp,q

a,b ϕ(z) can be formulated
as follows:

α
κð

p,q
a,b ϕ(z) = α Cκ Ωp,q

a,b ϕ(z) + (1− α) Cκ Ξp,q
a,b ϕ(z),
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where α ∈ [0, 1]. Certainly, α
κð

p,q
a,b ϕ ∈ Λρ, where ϕ ∈ Λρ.

2.3. Generalized Subordination Formulas

By utilizing the ρ−valent differential operator Cκ Ωp,q
a,b ϕ, we can obtain the generalized

sub-classes of the classes
zϕ′(z)
ρϕ(z)

≺ ℘(z), z ∈ t

and (
ϕ(z)
zρ

)ν

≺ ℘(z), z ∈ t

as follows:

Definition 2. A function ϕ ∈ Λρ is in the class Cκ ς
∗p,q
a,b (℘) if and only if

C
κ ς
∗γ,ω
α,β (℘) =

{
ϕ ∈ Λρ :

z( Cκ Ωp,q
a,b ϕ(z))′

ρ Cκ Ωp,q
a,b ϕ(z)

≺ ℘(z), ℘(0) = 1
}

.

And the sub-class

Definition 3. A function ϕ ∈ Λρ is in the class ν
κ>

p,q
a,b (℘) if and only if

ν
κ>

p,q
a,b (℘) =

{
ϕ ∈ Λρ :

( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν

≺ ℘(z), ℘(0) = 1
}

.

We aim to study the above classes in view of geometric function theory. We conclude
some facts and connections between these two classes.
The following preliminaries are requested to prove our results

Lemma 1. (See [9].) Consider the general class of holomorphic functions, as follows:

O[h, n] = {h̄ : h̄(z) = h + hnzn + hn+1 zn+1 + ...}.

Assume that:

a. u ∈ R. Then, <
(

h̄(z) + u z h̄′(z)
)
> 0→ <

(
h̄(z)

)
> 0. Furthermore, suppose that u > 0

and h̄ ∈ O[1, n]. Then, for the constants u1 > 0 and u2 > 0 with u2 = u2(u, u1, n),

h̄(z) + uzh̄′(z) ≺
(

1 + z
1− z

)u2

→ h̄(z) ≺
(

1 + z
1− z

)u1

.

b. v ∈ [0, 1) and h̄ ∈ O[1, n] and a positive constant w > 0. Then, the real formula is

<
(

h̄2(z) + 2 h̄(z). zh̄′(z)
)
> v → <(h̄(z)) > w.

c. h̄ ∈ O[h, n]. Then, <
(

h̄(z) + zh̄′(z) + z2h̄′′(z)
)

> 0 → <(h̄) > 0. Additionally, let
 : t → R. Then,

<
(

h̄(z) + (z)
zh̄′(z)
h̄(z)

)
> 0→ <(h̄(z)) > 0.

d. h̄,℘ ∈ O[h, n], where ℘ is convex univalent in t and for v1, v2 ∈ C, v2 6= 0, v1h̄(z) +
v2zh̄′(z) ≺ v1℘(z) + v2z℘′(z)→ h̄(z) ≺ ℘(z). (See [23].)

e. h̄,℘ ∈ O[h, n], where ℘ is convex univalent in t such that h̄(z) + vzh̄′(z) is univalent; then,
℘(z) + vz℘′(z) ≺ h̄(z) + vzh̄′(z)→ ℘(z) ≺ h̄(z). (See [24].)

f. h̄,}, g ∈ O[h, n] and g is convex univalent in t such that h̄ ≺ g and } ≺ g; then, λh̄ + (1−
λ)} ≺ g, λ ∈ [0, 1]. (See [25].)
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g. h̄, g ∈ O[h, n] and g is convex univalent in t such that h̄(z) + (1/`)(zh̄′(z)) ≺ g(z), ` 6= 0;
then (see [9]—Theorem 3.1b, P71),

h̄(z) ≺ (
`

n
)z−(`/n)

∫ z

0

(
g(ξ)ξ

`
n−1
)

dξ ≺ g(z), z ∈ t.

h. h̄, g ∈ O[1, n] such that

h̄(z) = 1 +
∞

∑
n=1

hnzn, g = 1 +
∞

∑
n=1

gnzn

and h̄ ≺ g then for all n, |hn| ≤ |g1|. (See [26].)

3. Results

We first show that

( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν

is a positive real part.

Theorem 1. Assume that one of the following relations occurs

• <
{ z
(
C
κ Ωp,q

a,b ϕ(z)
)′

+ (1− ρ)
(
C
κ Ωp,q

a,b ϕ(z)
)

zρ

}
> 0;

•
z
(
C
κ Ωp,q

a,b ϕ(z)
)′

+ (1− ρ)
(
C
κ Ωp,q

a,b ϕ(z)
)

zρ ≺
(

1 + z
1− z

)u2

, u2 > 0, z ∈ t;

• <


(
C
κ Ωp,q

a,b ϕ(z)
)

z2ρ

(
2z
(
C
κ Ωp,q

a,b ϕ(z)
)′

+ (1− 2ρ)
(
C
κ Ωp,q

a,b ϕ(z)
)) > ε, ε ∈ [0, 1);

• <

 z2
(
C
κ Ωp,q

a,b ϕ(z)
)′′

+ (1− 2ρ)z
(
C
κ Ωp,q

a,b ϕ(z)
)′

+ (ρ2 + 1)
(
C
κ Ωp,q

a,b ϕ(z)
)

zρ

 > 0;

• <

 z
(
C
κ Ωp,q

a,b ϕ(z)
)′(

C
κ Ωp,q

a,b ϕ(z)
) +

(
C
κ Ωp,q

a,b ϕ(z)
)

zρ

 > ρ;

then,

(
C
κ Ωp,q

a,b ϕ(z)
)

zρ ∈ P(ε) for some ε ∈ [0, 1).

Proof. Singe υ as follows:

υ(z) =

(
C
κ Ωp,q

a,b ϕ(z)
)

zρ , z ∈ t. (7)

Then, a calculation yields

zυ′(z) + υ(z) =
z
(
C
κ Ωp,q

a,b ϕ(z)
)′
− ρ
(
C
κ Ωp,q

a,b ϕ(z)
)

zρ +

(
C
κ Ωp,q

a,b ϕ(z)
)

zρ

=
z
(
C
κ Ωp,q

a,b ϕ(z)
)′

+ (1− ρ)
(
C
κ Ωp,q

a,b ϕ(z)
)

zρ

Consequently, we obtain <(zυ′(z) + υ(z)) > 0. Thus, Lemma 1 (a—first part), with
u = 1 implies that <(υ(z)) > 0, which means that υ(z) ∈ P(ε). Consequently, the second
part of the theorem comes from Lemma 1 (a—second part)

υ(z) ≺
(

1 + z
1− z

)u1

.
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A computation gives

<
(

υ2(z) + 2υ(z).zυ′(z)
)

= <



(
C
κ Ωp,q

a,b ϕ(z)
)

zρ

2

+ 2


(
C
κ Ωp,q

a,b ϕ(z)
)

zρ


z


(
C
κ Ωp,q

a,b ϕ(z)
)

zρ

′



= <



(
C
κ Ωp,q

a,b ϕ(z)
)

zρ

2

+ 2


(
C
κ Ωp,q

a,b ϕ(z)
)

zρ


 z
(
C
κ Ωp,q

a,b ϕ(z)
)′
− ρ
(
C
κ Ωp,q

a,b ϕ(z)
)

zρ




= <


(
C
κ Ωp,q

a,b ϕ(z)
)

z2ρ

(
2z
(
C
κ Ωp,q

a,b ϕ(z)
)′
− 2ρ

(
C
κ Ωp,q

a,b ϕ(z)
)
+
(
C
κ Ωp,q

a,b ϕ(z)
))

= <


(
C
κ Ωp,q

a,b ϕ(z)
)

z2ρ

(
2z
(
C
κ Ωp,q

a,b ϕ(z)
)′

+ (1− 2ρ)
(
C
κ Ωp,q

a,b ϕ(z)
))

> ε.

In view of Lemma 1b, we have υ(z)∈ P(ε). Accordingly, the Noshiro–Warschawski
and Kaplan theorems imply that

(
C
κ Ωp,q

a,b ϕ(z)
)

is a bounded turning function (univalent)
in t.

Computing the real

<
(

υ(z) + zυ′(z) + z2υ′′(z)
)

= <


(
C
κ Ωp,q

a,b ϕ(z)
)

zρ + z


(
C
κ Ωp,q

a,b ϕ(z)
)

zρ

′ + z2


(
C
κ Ωp,q

a,b ϕ(z)
)

zρ

′′


= <


(
C
κ Ωp,q

a,b ϕ(z)
)

zρ +

 z
(
C
κ Ωp,q

a,b ϕ(z)
)′
− ρ
(
C
κ Ωp,q

a,b ϕ(z)
)

zρ




+<

 z2
(
C
κ Ωp,q

a,b ϕ(z)
)′′
− 2ρz

(
C
κ Ωp,q

a,b ϕ(z)
)′

+ ρ2
(
C
κ Ωp,q

a,b ϕ(z)
)
+ ρ
(
C
κ Ωp,q

a,b ϕ(z)
)

zρ


= <

 z2
(
C
κ Ωp,q

a,b ϕ(z)
)′′

+ (1− 2ρ)z
(
C
κ Ωp,q

a,b ϕ(z)
)′

+ (ρ2 + 1)
(
C
κ Ωp,q

a,b ϕ(z)
)

zρ


> 0.
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Similarly, we obtain

<
(

υ(z) + z
υ′(z)
υ(z)

)

= <


(
C
κ Ωp,q

a,b ϕ(z)
)

zρ + z


(
C
κ Ωp,q

a,b ϕ(z)
)

zρ

′
(
C
κ Ωp,q

a,b ϕ(z)
)

zρ


= <


(
C
κ Ωp,q

a,b ϕ(z)
)

zρ +
z
(
C
κ Ωp,q

a,b ϕ(z)
)′
− ρ
(
C
κ Ωp,q

a,b ϕ(z)
)

(
C
κ Ωp,q

a,b ϕ(z)
)


= <


(
C
κ Ωp,q

a,b ϕ(z)
)

zρ +
z
(
C
κ Ωp,q

a,b ϕ(z)
)′(

C
κ Ωp,q

a,b ϕ(z)
) − ρ


= <

 z
(
C
κ Ωp,q

a,b ϕ(z)
)′(

C
κ Ωp,q

a,b ϕ(z)
) +

(
C
κ Ωp,q

a,b ϕ(z)
)

zρ

− ρ > 0

which is indicated by Lemma 1c υ ∈ P(ε).

Corollary 1. Let the assumptions of Theorem 1 hold. Then, for a positive real number v,

<
( C

κ Ωp,q
a,b ϕ(z)

zρ

)ν

> 0, z ∈ t.

The next outcome confirms the optimistically of the functional

( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν

Theorem 2. Let ϕ ∈ C
κ ς
∗p,q
a,b (℘) such that ℘ is a univalent convex function in t. Then, ϕ ∈

ν
κ>

p,q
a,b (℘) for some ν ∈ (0, 1].

Proof. Let ϕ ∈ C
κ ς
∗p,q
a,b (℘) and

V(z) =

( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν

.

Taking in account that ν is an arbitrary positive real number, one can assume that
ν = 1/ρ; thus, a calculation indicates the following fact

V(z) + zV′(z) =

( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν

+ z

(( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν)′

=

( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν
ν

z
(
C
κ Ωp,q

a,b ϕ(z)
)′

C
κ Ωp,q

a,b ϕ(z)
+ (1− νρ)

,
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which leads to

1 +
zV′(z)
V(z)

=

ν
z
(
C
κ Ωp,q

a,b ϕ(z)
)′

C
κ Ωp,q

a,b ϕ(z)
+ (1− νρ)


=

1
ρ

 z
(
C
κ Ωp,q

a,b ϕ(z)
)′

C
κ Ωp,q

a,b ϕ(z)

.

Since ϕ ∈ C
κ ς
∗p,q
a,b (℘),  z

(
C
κ Ωp,q

a,b ϕ(z)
)′

ρ Cκ Ωp,q
a,b ϕ(z)

 ≺ ℘(z).

Thus, for (zV′(z)/V(z))|z=0 = 0, we have

1 +
zV′(z)
V(z)

≺ ℘(z).

Then, in view of [9], Theorem 3.4.c, we have V(z) ≺ ℘(z).

Next, the results show the sufficient and necessary conditions for the sandwich behav-

ior of the functional

( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν

.

Theorem 3. Let the following assumptions hold

( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν
ν

z
(
C
κ Ωp,q

a,b ϕ(z)
)′

C
κ Ωp,q

a,b ϕ(z)
+ (1− νρ)

 ≺ ℘2(z) + z℘′2(z), (8)

where ℘2(0) = 1 and convex in t. Moreover, let

( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν

be univalent in t such that( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν

∈ O[℘1(0), 1] ∩Q, where Q represents the set of all injection analytic functions

f with limz∈∂t f 6= ∞ and

℘1(z) + z℘′1(z) ≺
( C

κ Ωp,q
a,b ϕ(z)

zρ

)ν
ν

z
(
C
κ Ωp,q

a,b ϕ(z)
)′

C
κ Ωp,q

a,b ϕ(z)
+ (1− νρ)

. (9)

Then,

℘1(z) ≺
( C

κ Ωp,q
a,b ϕ(z)

zρ

)ν

≺ ℘2(z)

and ℘1(z) is the best sub-dominant and ℘2 is the best dominant.

Proof. Since,

( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν

+ z

(( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν)′
=

( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν
ν

z
(
C
κ Ωp,q

a,b ϕ(z)
)′

C
κ Ωp,q

a,b ϕ(z)
+ (1− νρ)

,
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then we have the following double inequality

℘1(z) + z℘′1(z) ≺
( C

κ Ωp,q
a,b ϕ(z)

zρ

)ν

+ z

(( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν)′
≺ ℘2(z) + z℘′2(z).

Accordingly, by Lemma 1d,e, we have the desired assertion.

Theorem 4. Let ℘ be a univalent convex function in t such that ℘(0) = 1 and

C
κ Ωp,q

a,b ϕ(z) ≺ ℘(z), C
κ Ξp,q

a,b ϕ(z) ≺ ℘(z).

Then,

α
κð

p,q
a,b ϕ(z) = α Cκ Ωp,q

a,b ϕ(z) + (1− α) Cκ Ξp,q
a,b ϕ(z) ≺ ℘(z), α ∈ [0, 1].

Proof. By a direct application of Lemma 1f, we obtain the result.

Special Case

In the next presentation, we focus on a special case, when

℘(z) =
1 + θ1z
1 + θ2z

,

(
− 1 ≤ θ2 < θ1 ≤ 1

)
.

Theorem 5. Let ϕ ∈ ν
κ>

p,q
a,b (

1 + θ1z
1 + θ2z

). Then,

(i)

ϕ(z) =

(
zρ

(
1 + θ1ϑ(z)
1 + θ2ϑ(z)

)1/ν
)
∗
(

zρ +
∞

∑
n=ρ+1

(
(t)κ Γ(t)Σ−p

a,s+t[qza]

(τ)κ Γ(τ)Σ−p
a,s+τ [qza]

)
zn

)
.

(ii) Moreover, the function ϕ satisfies

(1 + θ2eiθ)
1
ν

(
zρ +

∞

∑
n=ρ+1

(
(τ)κ Γ(τ)Σ−p

a,s+τ [qza]

(t)κ Γ(t)Σ−p
a,s+t[qza]

)
zn

)
∗ ϕ(z)− zρ(1 + θ1eiθ)

1
ν 6= 0.

(iii) ν
κ>

p,q
a,b (

1 + θ1z
1 + θ2z

) ⊆ ν
κ>

p,q
a,b (

1 + θ3z
1 + θ4z

), where −1 ≤ θ4 ≤ θ2 < θ1 ≤ θ3 ≤ 1.(
− 1 ≤ θ2 < θ1 ≤ 1, z ∈ t, ϑ(0) = 0, |ϑ(z)| < 1, θ ∈ (0, 2π)

)
Proof. Since ϕ ∈ ν

κ>
p,q
a,b (

1 + θ1z
1 + θ2z

), then there occurs an analytic function ϑ : t → t
such that ( C

κ Ωp,q
a,b ϕ(z)

zρ

)ν

=

(
1 + θ1ϑ(z)
1 + θ2ϑ(z)

)
.

A computation implies that

C
κ Ωp,q

a,b ϕ(z) = zρ

(
1 + θ1ϑ(z)
1 + θ2ϑ(z)

)1/ν

.
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By Proposition 1, we have

ϕ(z) = ϕ(z) ∗
(

zρ +
∞

∑
n=ρ+1

(
(τ)κ Γ(τ)Σ−p

a,s+τ [qza]

(t)κ Γ(t)Σ−p
a,s+t[qza]

)
zn

)

∗
(

zρ +
∞

∑
n=ρ+1

(
(t)κ Γ(t)Σ−p

a,s+t[qza]

(τ)κ Γ(τ)Σ−p
a,s+τ [qza]

)
zn

)

=

(
zρ +

∞

∑
n=ρ+1

(
(τ)κ Γ(τ)Σ−p

a,s+τ [qza]

(t)κ Γ(t)Σ−p
a,s+t[qza]

)
ϕnzn

)

∗
(

zρ +
∞

∑
n=ρ+1

(
(t)κ Γ(t)Σ−p

a,s+t[qza]

(τ)κ Γ(τ)Σ−p
a,s+τ [qza]

)
zn

)

=
(
C
κ Ωp,q

a,b ϕ(z)
)
∗
(

zρ +
∞

∑
n=ρ+1

(
(t)κ Γ(t)Σ−p

a,s+t[qza]

(τ)κ Γ(τ)Σ−p
a,s+τ [qza]

)
zn

)

=

(
zρ

(
1 + θ1ϑ(z)
1 + θ2ϑ(z)

)1/ν
)
∗
(

zρ +
∞

∑
n=ρ+1

(
(t)κ Γ(t)Σ−p

a,s+t[qza]

(τ)κ Γ(τ)Σ−p
a,s+τ [qza]

)
zn

)
,

which completes the proof.
The assumption of second part implies that( C

κ Ωp,q
a,b ϕ(z)

zρ

)ν

≺ 1 + θ1z
1 + θ2z

,

which means that ( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν

6= 1 + θ1eiθ

1 + θ2eiθ .

By rearranging the above relation, we have(
(1 + θ2eiθ)

1
ν

(
C
κ Ωp,q

a,b ϕ(z)
)
− zρ(1 + θ1eiθ)

1
ν

)
6= 0.

Proposition 1 yields

(1 + θ2eiθ)
1
ν

(
zρ +

∞

∑
n=ρ+1

(
(τ)κ Γ(τ)Σ−p

a,s+τ [qza]

(t)κ Γ(t)Σ−p
a,s+t[qza]

)
zn

)
∗ ϕ(z)− zρ(1 + θ1eiθ)

1
ν 6= 0.

We proceed to show the last assertion. In view of the assumption ϕ ∈ ν
κ>

p,q
a,b (

1 + θ1z
1 + θ2z

),

we obtain ( C
κ Ωp,q

a,b ϕ(z)

zρ

)ν

≺ 1 + θ1z
1 + θ2z

.

However,
1 + θ1z
1 + θ2z

≺ 1 + θ3z
1 + θ4z(

− 1 ≤ θ4 ≤ θ2 < θ1 ≤ θ3 ≤ 1
)

.

Thus, we obtain

ϕ ∈ ν
κ>

p,q
a,b (

1 + θ3z
1 + θ4z

).
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4. Conclusions

A fractional differential operator in the open unit disk is presented for multivalent
analytic functions. We formulated the modified operator in two sub-classes of analytic
functions and studied the geometric behavior. Differential inequalities are presented using
the theory of subordination and superordination. Our main result is given in Theorem 3,
where the conditions of the sandwich inequality are presented. Moreover, Theorem 4
showed the convex combination of the differential operator and its corresponding integral,
which are dominated by ℘(z), which is dominated by the same analytic function ℘(z).
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