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Abstract: This work aims to obtain new transformations and auto-Backlund transformations for
generalized Liouville equations with exponential nonlinearity having a factor depending on the first
derivatives. This paper discusses the construction of Backlund transformations for nonlinear partial
second-order derivatives of the soliton type with logarithmic nonlinearity and hyperbolic linear parts.
The construction of transformations is based on the method proposed by Clairin for second-order
equations of the Monge—Ampere type. For the equations studied in the article, using the Backlund
transformations, new equations are found, which make it possible to find solutions to the original
nonlinear equations and reveal the internal connections between various integrable equations.

Keywords: nonlinear equations in partial derivatives; hyperbolic equations; Backlund transforma-
tions; Clairin’s method; differential relationships; the Liouville equation

1. Introduction

The study of Backlund transformations is one of the current topics in the theory of
partial differential equations. Such transformations are used to find solutions to nonlinear
differential equations. Due to the complexity of various nonlinear equations, there is no
single method for solving them. For integrable systems, effective methods have been
developed, such as the inverse scattering method [1,2], the Hirota method [3-5], the
Painleve method [6,7], Backlund transformations [8-11] and the mapping and deformation
method [2].

Bécklund transformations are an example of differential geometric structures gener-
ated by differential equations. They make it possible to obtain not only pairs of equations
but also a solution to one of them if the solution to the other is known. These transforma-
tions play an important role in integrable systems since they reveal internal connections
between various properties, such as the definition of symmetries [12,13] and the presence
of a Hamiltonian structure [14-16]. More recently, many studies have been carried out in
this area [11,17-19].

This article is a presentation of new results on transformations and auto-Backlund
transformations for equations of the Klein-Gordon type, using the method of constructing
transformations for the Liouville equation. The paper considers special cases of equations
with exponential-power nonlinearity having a factor depending on the first derivatives.
The construction of transformations is based on Clairin’s method [20].
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2. Methods
We consider the following nonlinear equation of the hyperbolic form:

Vin = f(v,0g,0n). (1)

The method developed by Clairin to construct Backlund transformations of a general
form is applicable when the functions z and v satisfy different partial differential equations.
The technique of constructing Backlund transformations is general to any hyperbolic
equation and completely repeats the construction for the Liouville equation.

Differential equations of the second order of the form

&M 2,2¢,2n) zee + (81,2, 26, 2n) Zen + f3(E10,2, 26, 20) Znn + fa(EM,2,2¢,20) = 0.

are called Monge-Ampere equations [21]. The Backlund transformation linking two
such second-order equations for the v and z functions is given by a pair of first-order
differential equations:

0z dv dv
aia - Fl (Z/z}/ i/ aT]) (2)
0z dv Jdv
% - FZ (Z/U/aa/ aﬂ) (3)

To define an explicit transformation type, it is necessary to find the functions F; and
F,. The integrability condition (the equality of the mixed second derivatives) requires that
the functions (2), (3) satisfy the relation

9%z _ 9%z _ 0
onoE,  9&am

Each of the variables z, z;, zy and, respectively, v, v, vy, depends on & and n. Given
the equality (2), we obtain

822 8F1 8F1 8F1 8F1 aFl
aE ~ am oz M T 3o O T g, ven T g, O @)
aZZ an an BFZ an an
a&aﬂ = g = EZ + %'Ua + EU&& + ﬁvng (5)

Using Formulas (2), (3) to exclude z; and z,, finally, we obtain the condition of
compatibility as

ob, oF 0F oF ob, oF oF; b,
——= — — == =—Unn — = — Fh—-F—===
< >UEE (E)vg doy, Ven+ doy, o T Gp e T gy n TR R =010
We consider the function z as a solution to some simple equation, the form of which is

defined below. Then, while at least one of the coefficients,

R R (3R _OR
duy” g dvg  duy )’
is not zero, Equation (6) is a partial differential equation for the function v.

Since Equation (1) contains vg,,, butnot vg ¢ or vy, from the condition of compatibility

(6), we expect that
ob _ aFlf() aﬂ_aﬂ#o

g vy vy Ovy

Then, we must assume

0z du
aa:Fl<Z’U,a£>/ (7)
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0z 0v
E =5 (z,v,an). (8)

Therefore, Equation (6) takes the form

oF, ok oL,  oR oF, . 35
o %2, %2, .00, (g%l _pd2_
(E)Ua 80n>v£n 30 e T gyt T hag, 0

The n-derivative of (7) is

9%z of oF; oF;
aﬂaa = gzn + gvn + Evm. (9)

Further reasoning depends on the type of equation under consideration. Let us
consider the following equations:

e = (a+bv)e’vg —vgoy, (10)
32001 5

= 142 — , 11

Une = o ¢ (1420)0 —vevy 11)
x21

Ung = @ev(vn —ve), (12)

Une = evyq —e “vg. (13)

These equations have a hyperbolic linear form on the left side and a nonlinear right
side depending on the function and the first derivatives to variables 1 and &, wherein the
derivatives vy, v¢ are included in equations only in the first degree, so the general form of
these equations is rewritten as

11
One = Q(v,vg, vy),

Here, a one in the exponent indicates that these variables are included in this equality
only to the first degree.

We assume that the Backlund transformations make it possible to move to the simplest
hyperbolic equation z¢,, = 0.

Using Equations (8)—(10), we obtain

fin =GP+ 30+ 31000k 0d) =0 (4

- 900,01 vy :
Take from (14) the derivative to vy. Then, w does not depend on vy, since vy,
m

comes into equality only in the first degree

P’k oFL 0F,  9*F oF,  9*R

0zdvy, 2 9z vy vy, on v + 9V vy

oF, 0Q(v,vl,0})
Q. ol ol 1 &M _

2
Taking into account equalities (7), (8), we have aavi; =0, gz% = 0 and then aiaf}n =0,
and equality remains

OR 9F, | 3R | 9R 90(vupoy)

09z dv,  dv v dvy

Having performed re-differentiation to v,,, we have

*Q (v, v}, o) 0
0v2 !
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PF 0F  OF PR PR ?2F 0Q(v, vy, vy)
0z0vy dvy 0z V3 VIV JVgIvy vy

=0.
Considering g% = 0, we obtain
n

oF °F, 0
0z 003
We conduct similar actions with equality (3). Differentiating to v twice, we obtain

ok, 82131 7
0 av

Therefore, the functions F; and F, have a linear form to vy, and v¢, respectively. Then,
we have

g% — f(z0)+ (z,v)g—z, (15)
0z v
P = fo(z,0) + pz(z,v)ﬁ. (16)

We write the compatibility condition of Equation (6) with the new conditions (15)
and (16):

(P = p2)Qv, 0}, o) — 0

(17)
_‘_a(flg;’lva)vn +(fHh+ pzvn)a(flgflva) —(fi+ Plva)a(ﬁgfﬂn) -0

After differentiating this expression to variable vy, and v, we proceed to the analysis
of the equation

Qv 0f,08)  dpa | Iy ap1 dp2

dvg vy v oo PPoz Pz T 0. (18)

(p1—p2)

: s 00,0 ,01 :
Further studies depend significantly on w, so let us move on to a detailed
£9Un

analysis of equality (18) for each equation studied separately.

3. Results
3.1. Bicklund Transformations for Nonlinear Equation

Let us perform the Béacklund transformation for nonlinear Equation (10).
20 (U,vé,vln )

Equation (18) for (4), (5), considering that goegon = —1 takes the form
91 9p1 op2 , Ip2
e L R T 19

It can be assumed that p; # p,, and we define the relationship between the functions
p1(z,v) and p2(z,v). We convert (19) to the following form:

opr—p2) . o0 p
90 (p1 Pﬂ*ﬁgar

then, if we assume p; — pp = €@ (z), then p; = p2 + e’ ¢(z), and for the function p;, we

have the equation
P2

0
v 29 rz
P2+ %0 (2)] 9z py + €% @(z) 0
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Obviously, if p2 + e’@(z) = 0, then p; = 0. This option could be considered but with
only one undefined function ¢(z) remaining, which reduces the possibility of varying the
unknowns in further reasoning, so calculate p; + e’ (z) # 0, and then

9, _,
0z pr +ev¢(z) '

This leads to the dependence m = 1(v) and the definition of functions p, and

p1 in the form

p2 = 1:1)(1520)50‘!)(2)/ p1= 1_111)(0)30(9(2)~

Now, Equation (17) will take the form

(3 00)0(z) = 4 e (2252 — 0@ % ) oe

A - AE P %L)ev(@(z)%—fl—f"g?) Flon=0.

We differentiate the last equation to the variable v,, and the same expression to the
variable vg; as a result, we obtain the system

(a4 bv)Po(z) % . —11)(0)30 (fza(giz) —olz )a£> —0, (20)
f28f1 flaf2 =0, 1)

V() daf d9(z) ofi _
T <<p(z)a; Al ) Doy 22)

We look for functions fi(z,v), f2(z,v) in the following form

fi(z,0) =1(0)81(2),  fa(2,0) = b2(0)g2(2).

We substitute these equations in the system (20)-(22) and isolate the logarithmic
derivatives In g», In g1, In @:

0+ 10)0(z) — ga() M2 1 P2 o (0 2 ) 0, @
(o ()2 (2) 5 (S5 ) <o @
gl(z)% - We”cp(z)gl (Z);—Z <ln ;((ZZ))> =0. (25)

One can choose a special form of functions g;(z), ¢(z) so that the system takes a
simpler form; then, the differential equations can be explicitly integrated. We calculate

21(z) = 9(z) =k1z, @(z) =koz, kq,ky = const,

and the system (23)—(25) will take the form

ko (a + bv)e*z all)azzfv) =0,
Py
klZW — 0
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As a result, simple differential equations are obtained for functions \,(v), P (v). Let
us define them:

Yy = %/ (a4 bv)e*do = :721(2{1 — b+ 2bv)e* +Cy, WP =k = const.

Now, the transformations (2), (3) take the form

0z ko o 00U

% kkyz + 1wl —11)(?))6 za—a, (26)
oz _ Thky o 2 o, W(o) do
%—2[4(2a b+ 2bv)e +C1}+kzezl—1b(v)an' (27)

Thus, the Backlund transformation is obtained in the form (26), (27). The system
(26), (27) is combined with any function ) (v). We consider the following option: {(v) = 2,
C1=0, k= k1 =1, ky= —2,and then the relations (26), (27) will take the form

C O S R 2
8&72+2€Z8£'8n74ezan <a 2b+bv)ze. (28)

Let us check whether it is possible to obtain Equation (10) from the system (28).
If we differentiate the first equality of the system (28) to the variable n and the second
to the variable &, we obtain

Zgn = Zn + 2°z0qvg +2e°2qvg + 26205,

1
Zgy = 4€°z0g vy + 4%z 0y + 46205 — 2(a + bv)ze*vg — (a - Eb + bv) zge®.

We subtract the upper equality from the lower one and collect similar terms:
1
(1+426%v )zn = 26°205y + 26205 vy — 2(a + bv)ze* v + {40n - <a - Eb + bv) ev] ezg.
We eliminate the derivatives z,), zg, using the relations (28). Canceling by non-zero
functions, we obtain Equation (10).

Let us see which equation goes to the original Equation (10) using transformations (28).
To do this, we convert Equation (28) to the form

dlnz de’ dlnz _ _de’ [ 1 2
Y_lJrZaa,i&n _2311 (a 2b+bv>e. (29)

Let us try to identify how the functions z(&,1) and v(§,n) are related, taking into
account that the functions satisfy Equation (10). Let us differentiate the second equality (29)
to the variable &;

(Inz), s =4(e") e —2(a+ bv)e*’vg

and replace the expression (a + bv)e’v; with the terms of Equation (10), then
(Inz), s =4(e”);g — 2(vng +vgon)e” =2(e7) e

Taking into account the first differential constraint (29), the derivatives can be omitted
up to a constant
Inz = 2e” + &.

Then, the function v(&,n) is expressed through z(&,n)

v=1In B(lnz — E,)] (30)
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Denoting Inz = w(&,n) and substituting (30) in (10), we obtain
1
wng:2<a+bln[ (w E)])(w—&)(wa—l). (31)
Theorem 1. Bicklund transformations
00 030 (L Ny B
3ﬂ_2eaﬂ (a 2b+bv>e , a£—1+2€ PR (32)

link Equations (10)—(31).

Equation (11) is a special case of (10), so the following conclusion can be formulated
for this equation.

Corollary 1. Bicklund transformations

Jw N aU Bw E)v K3221 9y
3t =142 3% e’ aTl Loy ve-’, (33)
link Equation (11) to the following equation:
03 X 1
S8 g~ 1w &) (3 + In| 3w - ©)] ) wen =0 9
o1
Theorem 2. For Equation (11), there is a Bicklund auto-transformation of the form
dg Jdv ,0g Jdv 3001 o
8-S =" —, 82 =2 — — =2 pe? 35
9. o S Cam S )

Proof of Theorem 2. Let us write the equality (35) in the following form:

des v Jv des v X32X21] o
el by = 2¢" —ve,
9 9¢, o om 8oy

and cross-differentiate. Equalizing the left parts gives

av dv e B v
a£8r| déon 8oy 9§ 4oy 0§

or Equation (11). J

9% X370 0(p1 OV X371 OV
v 3001 00 29 X32021 9V 20 _ g

Now, we rewrite the second equality (35) in the form

des _ _de’  agpom o2
om  on 811
and differentiate by &
8Zeg _ 9 aze” X372 X21 20(1 B 20) a'().
a‘l’]af, aT]aE, 80(11 aa

We replace the term %v e’ (1 + 2v) in the last equality with the remaining terms
from (11), and then

=2 -
ot~ “omot. ¢ \amee " agam

9%e8 B 9%e? ( %o v 80)
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which leads to the equality

%8 9%e?
MIE — MIE’
This means that the functions e$ and ¢ can differ only by arbitrary terms of the form
®(&) +¥(n), so
ef + (&) +b(n) = e (36)

If (&) =P (n) =0, then ¢ = v, and from equalities (35), we obtain Equation (11).
Let us determine what happensif ¢ (&) # 0, P(n) # 0. Let us perform substitution (33)
in Equation (11); then, we obtain

e, = %lel([eg + (&) + W)’ Infef + @(&) + (1))

Let us perform differentiation

e$(gne +8e8n) = g 228 + (&) + ()] Infef + @(&) + ()] (e8ge + '(£))
+ “§é°ffl (68 + @(&) + b (M)I(e3g: + ¢'(£))

and group the terms with a common derivative; we obtain

o8 (gne +8e8n) = g?x 2L [ef + @(£) + W(m)](2In[ef + (&) +W(n)] + 1) (€532 + ¢/ (8)),

here, ¢ (&), P(n) are arbitrary functions.

Corollary 2. Bicklund transformations

9q / _ val
aq ’ Uav X32 X21
1 _|_ — 26 —
- V'(n) o Say

associate Equation (11) with the equation

T = T2 g+ p(E) +b(m)] 2Inlg + @(&) + B (m)] + 10 + ' (£)),

here, 9 (&), b (n) are arbitrary functions.

Similarly, starting the transformation with a detailed analysis of equality (18), in each
case for the remaining studied Equations (12) and (13), the following theorems are proved:

Theorem 3. Bicklund transformations of the form
dv 1
ZUE'E' = ZU&& 16 € "(/Ug', (37)

We Jdv X21 o
Wegn = —— — e‘ws, 38

connect Equation (12) with the equation

(w?) g n = 4. (39)
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Theorem 4. Bicklund transformations of the form

ow dv , ow
= e, — =e

EI T

-0

connect Equation (13) with the equation

Wng + Wgwy = —1.

3.2. Applying Differential Couplings to Obtain Exact Solutions

Theorem 5. If Equation (39) has a solution
w=2n+E, (40)

then Equation (12) has a solution:

v:—lnlC— %21 (¢+m)|, C=const (41)

1603,

Proof of Theorem 5. We use the found transformations (37), (38) and substitute the known
solution (40) in them, and then system (37), (38) takes the form

v 01 5 Jdv o1
— = e, — = e
& 1603, om 1602,

v

from here, we find

- X271
e ?=C— (&+m)
2 7
16oc11

here, C is an arbitrary constant. As a result, the solution (41) of Equation (12) was found. [

Let us perform some transformations in Equation (39), multiplying both sides by w?:

and, using the Fourier method of separation of variables, we obtain a solution to Equation (39)
in the form .
w=e2M*T8) X\ = const.

Theorem 6. If Equation (39) has a solution
w= e%(”Jra), A = const (42)

then Equation (12) has a solution
1— oc221 AMt+3E]| 43)

1
v:1n7\+}\(n+£) —In
2 X
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Proof of Theorem 6. Using the found transformations (37), (38), we substitute the known

solution (42) into it, and then system (37), (38), after cancellation by %e%(“JF‘E), takes

the form A 3
0 X21 EU A —

2 98 1603,

dv X221 o
m 8’
X1

from the first linear partial differential equation, we find

(44)

A o
AL

v—1In
2
2 160,

w]:§a+mmx

where @(n) is an arbitrary function, and from the second equation of system (44), we
determine the form of the function @(n): @(n) = 2. O

Expressing the function v explicitly, we obtain the solution (43) of Equation (12).

Theorem 7. If Equation (12) has a solution

v=an+¢),
then Equation (39) has a solution
160(%1 X21 o x
w=— exp|— e*+8&) _ Zp !, 45
001 p 16060(%1 Zn (45)

Proof of Theorem 7. Using the found transformations (37), (38), we substitute the known
solution v = a(n + &) , and then we obtain the system of equations

X271
Inwg), = x — —=—*N+&),
(Inwe)e 1602,
[0 6 X21
lnwg), = — — —2 ex(M+&)
(Inwe)y = 7 1602,

which can be easily integrated over the corresponding variables

X271
I — qf — 21 ,x(n+E) , 46
nwg = o 160(0%6 + o) (46)
[0 8 X21
1 = o — 2L px(n+é) 4 , 47
nwe 2n 16ococ%le wiE) @7

where ¢ (1), ¥ (&) are the constants of integration (arbitrary functions). [J

Let us extend the definition of the functions ¢(n) and P(§) so that the obtained values
of the right-hand sides of the system (46), (47) coincide as follows:

g,

©
3
N—
|
S
<
—
m™m
N—
I

As a result, an expression for the function wy is defined:

oc(éJr%n)*o(ilee"‘(“*a)
wi —e 160(0411
We perform integration over &, and we obtain the unknown function w(&,n) (45). The
form of function (45) is shown from two angles in Figure 1 (for o = 1, % = —32).
11
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30
254
20
154
10 4 /
5
0
0 -5
-2 0
-4 5
F
(@) (b)
Figure 1. A 3D graph of the function (45) shown from two angles (a) and (b). Here, F = w(&,1).
Theorem 8. Equation (31) has a solution implicitly given in the form of a series
1 d (—1)" 1 X372 X271
Inln|z(w— ~—In"| = (w— = Cy,
n n{z(w E,)H-i—r; T 2(w £) 8ot (Y&+m)+C
where constants 'y, Cy are arbitrary constants.
The proof is carried out by simple verification.
Theorem 9. If (10) has a solution v = a, then (31) has a solution
w=E&— Maez"n. (48)

40(11

Proof of Theorem 9. We substitute v = a into the found differential links (34) and integrate
each equality.
w=&+ o),

_ 32001 o,
W=, e n+P(E).

We equate the obtained expressions for the function w and redefine arbitrary functions
@(n), W(&). As aresult, we obtain (48). O

Theorem 10. If Equation (11) has a solution v = 7, then Equation (34) has a solution

X322 2
—gen = X% 5y g 4
w = 4e 16oc11(n Jer " + & (49)
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Proof of Theorem 10. Substitute v = 7 into the found differential constraints (33) and
integrate each equality.

w=E&+ o),
_ g0 _ X32021 5 4y 2n
w = 4e 1600, (2n—1)e M +P(&).

We equate the obtained expressions for the function w and redefine arbitrary functions
©(m), W(&). As a result, we obtain (49) (Figure 2). [J

20

10

-10 4

-20

-30 -

I -5 —4

Figure 2. The plot is according to Formula (49) at G252t = 1. Here, F = w(&,m).

Theorem 11. Equation (11) has a solution implicitly given in the form of a series

n

o (—0)" om0y
1r1|v|+n;1 ol T 8ay (v&+1) + Cy, (50)

where constants y, Cy are arbitrary constants.

The proof is carried out by simple verification.

Solution (50) is a cylindrical surface with a guide shown in Figure 3.

Let us use the found auto-Backlund transformations (35) for Equation (11) and solution
(50). If we assume that g(&,m) = v(&,n), then using (35), we can find a new solution to
Equation (11). Substitute expression (50) into the left-hand side of (35):

K3pXp1 1 0 Jdv
8ot Y 0&
%3001 500 03001 o9
=2e" — — =",
80(11 aﬂ 80(11

Equating the left-hand sides, we obtain a linear first-order equation for the function

v(&,m)

v 10v  azong o

2% C Y& 8ag b
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o) 0 o)

“~ v <~

-
Figure 3. Cylindrical surface guide (50), wheren =1, 2, ..., 100.

To find the general solution of this equation, we find the first integrals of the system

80(11
YX32X21

2yE+n=Cy, +&=0C. (52)

) - CI
Here, F is any function.
Equation (11) is nonlinear; therefore, it is necessary to clarify the form of the function
F. Let us substitute expression (52) into Equation (11)

160(11 Fl Flz Fll < 1 Fl ) < Fl >
2—=Fp— —=Fn——| = + 2y—+1 1+ 20). 53
X001 [ phe- gz 7 E)\2g “( ) (53)

The general solution to equation (51) has the form

<2v£ +n,

Here, Fj is the derivative of F by the first component, and F; is the derivative of F by
the second component.

As one can see, equality (53) is not identically fulfilled; therefore, it is necessary to
require that one of the systems is fulfilled:

1.,k _ h __ 1
Y R0 £ = o

All the terms of the equalities are homogeneous, so we use the technique that allows
us to separate the arguments of the function. We represent F in the form

= X(C)Y(Ca),

where X depends on the first component C; of the function F, and Y on the second
component C; (52), and then the first equality of system (54) takes the following form (due
to the similarity of the first equalities of the systems, the result of the substitution for the
second system is written in parentheses):

X _ 1Y <X’_ 1Y )

X vY X 2yY
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Here, A is an arbitrary parameter.
The functions take the form
In|X| =AC;, In|Y| = —yAC,, (In|X| =ACy, In|Y|= —-2yACy),
which leads to the following kind of function
F(C1,Cp) = 2%, (F(Cy,G) = 07210, (55)
where
80(11 > (—Z))n
A(Cy — =A —-—|1
(C1—v&) <v£+n p—— n|v| + n; |l
811 = (—0)"
A(C;—2 =MM-A |
(rer-2r = an 2 200+ £

The connection between the components Cy, Cy, satisfying the second system (expres-
sion in brackets), led to the absence of dependence on the variable &, so this case is not
considered further.

The second equality of system (54) is satisfied identically. The dependence on A is
insignificant; therefore, we assume A = 1.

The following theorem is proved:

Theorem 12. Equation (11) has a solution

80(11
K32021

Info| + i (n_vrz!nD e

exp (v& +n -

The result of the theorem can be generalized.

Corollary 3. Equation (11) has a solution

80(11
F _
<V£ A K32 %21

[e9) _ n
Injo| + ) ( v)'
= n-n!

D =C, (56)

here, F is an arbitrary function.

The proof is carried out by simple verification.

4. Discussion

The considered equations refer to wave equations with a nonlinear right-hand side,
which has an exponential-power relationship. The exponential-power model is a multi-
plicative combination of exponential and power models. Finding exact solutions to such
equations is fraught with great difficulties since a change in variables does not bring the
equation to a linear form or simplification; therefore, it is necessary to use a modification
that differs from the mappings. Differential links are such a transformation. Backlund
transformations are a differential relationship of two equations. Recently, this approach
has made it possible to solve many interesting problems [8-11,14,17-19].

In addition, for a given solution of one equation, Backlund transformations make it
possible to determine, up to a finite number of constants, the solution of the second equa-
tion, and this connection works in two directions. Therefore, for Equations (12) and (39),
choosing a simple solution in the form w = 2n + &, and for Equation (39), using the con-
structed Backlund transformations (37), (38), a solution of Equation (12) was found in the
form (41) (application of differential constraints (Statements 1 and 2)). Using the same differ-
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ential constraints (37), (38) from the solution of Equation (12), an exact solution to Equation
(39) was obtained (application of differential constraints (Statement 3)). Similar results
were obtained for pairs of equations: Equations (10) and (31) and Equations (11) and (34).

An especially interesting case is when the Backlund transformations translate the equa-
tion into itself—auto-transformations. This property is typical for nonlinear equations with
soliton solutions [13]. The present article discusses the construction of auto-transformations
for Equation (11) (Section 3 (Results), Theorem 2). Differential constraints (35) made it
possible to construct a general solution (56) from solution (50).

5. Conclusions

For the equations studied in the article, new equations were found using Backlund
transformations, which make it possible to find solutions to the original nonlinear equations
and to identify internal connections between various integrable equations.

The present paper proves theorems on Backlund transformations of nonlinear hyper-
bolic partial differential equations of the second order of the Klein-Gordon class, which are
special cases of the Liouville equation, with exponential nonlinearity having a multiplier
depending on the function and its first derivatives. The transformations were constructed
using Clairin’s method. The new equations obtained with the help of differential connec-
tions can be used for further studies of equations of this type, as well as for solving many
applied problems in various fields of natural science.
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