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1. Introduction

The history of complex numbers dates all the way back to the 16th century and begins
with a period of ‘empirical’ discoveries and the derivation of surprising individual formu-
lae, from which people observed the possibility of working successfully with imaginary
numbers without being able to provide a satisfactory explanation. Later on, real masters
expanded their usage of complex numbers in various computations, and some of them pro-
vided the first descriptions of these numbers. The continued search for a firm mathematical
foundation, and with it a philosophical interpretation, lasted until the nineteenth century
and can be followed in detail in [1], where the interested reader will find not only all the
famous names involved until 1831, but also the remark that “in 1854 Richard Dedekind
. . . judged the situation differently”. Dedekind said at their Göttingen habilitation pre-
sentation in the presence of Gauss, ‘Until now, no theory of complex numbers has been
accessible that is absolutely free from criticism . . . or at least none has been published’.

The inexperienced reader may be referred to [2] for getting a first survey. Numerous
standard introductions to mathematical analysis such as [3] or textbooks such as [4,5] dis-
cuss in detail all the usual rules for working with complex numbers. Therein, applications
in physics and technique are considered, which represented corner stones in establishing
complex numbers. Various fascinating verifications of the applicability of mathematical
models to reality stimulated further theoretical and practical developments.

The classes of lp-complex numbers which are generalizations of ordinary complex
numbers are introduced for p > 0 in [6] and are defined here for p < 0. Closely following
the approach in [6], both the classes of three-complex numbers and a general three-complex
algebraic structure are introduced in [7].

Solving a quadratic equation within different realizations of an abstract complex
algebraic structure allows the derivation of numerous new solutions beyond those known
for the classical complex numbers. This will be shown in Section 2 of the present work
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for the lp-realization. It turns out that the squaring of vectors representing complex
numbers inside this realization may be shown rather nicely using pairings of lp-circles
|x|p + |y|p = rp

p of p-radius rp. These circles are level sets of the corresponding lp-norms
or antinorms |(x, y)T |p = (|x|p + |y|p)1/p if p ≥ 1 or p ∈ (0, 1], respectively. Exactly the
same analytical expression stands for a semi-antinorm if p < 0. This case is dealt with in
Section 3 where semi-antinorm related complex numbers are introduced. The analytical
definition of an elliptically vector multiplication and its geometric counterpart as well
as the classes of elliptically complex numbers are introduced and some of their basic
properties are considered in Section 4. This section might also serve as a short introduction
to usual complex numbers just choosing the parameters a = b = 1. The classes of complex
numbers considered in Section 5 are closely related to [p, q]-circles |x|

p

p + |y|q
q = r with

p 6= q, which are the level sets of certain probability densities. The search for an advanced
invariance property of such densities is presented in Section 6 and was one of author’s two
motivations for doing the studies on generalized complex numbers in [6,7] and the present
as well as another forthcoming one dealing with higher dimensions. The paper is finished
by a concluding remark in Section 7.

For avoiding line breaks in some formulas and expressions such as ((x, y)T)k we use
columns at some places.

A pair (x, y) of real numbers representing a complex number is often written as x + iy
or, alternatively, as an element of the real vector space R2.

Before we begin, let us emphasize that the same ordered pair or vector (x, y)T repre-
senting a complex number may have different properties if it belongs to different spaces
with different structures. This is because the axioms or rules of a space or algebraic structure
determine the properties of its elements, not the other way around.

2. More Solutions to Quadratic Equations

The equation with respect to the variable z from the set of real numbers R,

z2 + m · z + n = 0, m ∈ R, n ∈ R (1)

has the solutions z1/2 = −m
2

+
−
√

m2

4 − n if the radicand is non-negative. Let us otherwise
be given an abstract complex algebraic structure (C,⊕,�, ·, o, e, i) where C is a real vector
space with operations of addition and scalar multiplication ⊕ and ·, respectively, � is an
additional binary operation from C×C to C, (C,⊕) and (C,�) are Abelian groups with
neutral elements 0 and e, respectively, an element i from C solves the equation i� i = −e,
and distributivity of operations ⊕ and � holds. Then, the equation with respect to the
variable z from C,

z� z ⊕ m · z ⊕ n · e = o (2)

can be reformulated as z� z ⊕ m · z ⊕ m2

4 · e = (m2

4 − n) · e or (z⊕ m
2 · e)� (z⊕ m

2 · e) =
(n− m2

4 ) · i� i and its solutions are

z1/2 = −m
2
· e⊕
	

√
n− m2

4
· i (3)

with	 denoting the naturally defined subtraction. Thus, the general structure of the solutions
to Equation (2) does not depend on the concrete choice of the vector product rule �.

In the usual notation of complex numbers in which i =
√
−1 is the ‘imaginary unit’,

this means

z1/2 = −m
2
+
−

√
n− m2

4

√
−1 (4)

where, however, the operations + and - which combine the real number −m/2 with the
undefined quantity

√
n−m2/4

√
−1 are not intuitive for the novice reader, regardless

matter how well he may already be using them.
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Example 1. Let (C,⊕,�, ·, e, o, i) be the standard vector realization of the complex algebraic
structure where C = R2, o = (0, 0)T , e = (1, 0)T , i = (0, 1)T , ⊕ is the usual vector addition and
the standard vector multiplication is defined by(

x1
y1

)
�
(

x2
y2

)
=

(
x1x2 − y1y2
y1x2 + x1y2

)
meaning in the usual complex number writing that

(x1 + y1
√
−1) · (x2 + y2

√
−1) = x1x2 − y1y2 + (y1x2 + x1y2)

√
−1.

This multiplication means in the special case of two identical vectors(
x
y

)
�
(

x
y

)
=

(
x2 − y2

2xy

)
.

Let z =

(
−m/2

+
−

√
n−m2/4

)
= −m

2
+
−
√

n−m2/4 i denote the solutions of Equation (2).

Figure 1 shows an exemplary graphic illustration of where the vectors z, t = z � z and v =
t + mz = −ne may be located in the space R2.
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Figure 1. Geometry of quadratic equations with respect to standard vector multiplication. The
Euclidean circles have the radii

√
n = 1.5 and n = 2.25, respectively.

Example 2. Let us consider now the p-norm-antinorm realization (C,⊕, �p, ·, o, e, ip) of the
abstract complex algebraic structure where C, o, e,⊕ are as in Example 1, ip = (0, 1)T . Except if
(xl , yl)

T = o for at least one index l ∈ {1, 2}, the vector p-multiplication � = �p is defined for
every real p > 0 according to [6] by(

x1
y1

)
�p

(
x2
y2

)
=

[
(|x1|p + |y1|p)(|x2|p + |y2|p)
|x1x2 − y1y2|p + |x1y2 + y1x2|p

]1/p( x1
y1

)
�
(

x2
y2

)
. (5)

Moreover, we put o�p (x, y)T = o. This means in the special case of two identical vectors
(x, y)T 6= 0, (

x
y

)
�p

(
x
y

)
=

(|x|p + |y|p)2/p

(|x2 − y2|p + 2p|xy|p)1/p

(
x2 − y2

2xy

)
.

Let now z =

(
−m/2

+
−

√
n−m2/4

)
= −m

2
+
−
√

n−m2/4 ip denote the solutions of Equation (2).

For an exemplary number p ∈ (1, 2), Figure 2 shows a graphic illustration of where the vectors
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z, t = z�p z and v = t + mz = −ne are located in the space R2. As p changes, the shape of the
p-circles also changes. We note that the element i from C which appears in Equation (3) takes on the
meaning of ip introduced in [6], and recall the last remark at the end of the Introduction. A geometrical
view of Equation (5) which is given in [6] makes the associative nature of multiplication �p immediately
visible.
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Figure 2. Geometry of quadratic equations with respect to lp-vector multiplication. The exemplary
drawn p-circles (with 1 < p < 2) have radii of the sizes

√
n = 1.5 and n = 2.25, similar figures can be

drawn for p ∈ (0, 1] and p > 2.

Example 3. In the case of the so-called matrix realization of the abstract complex algebraic structure,

C is the vector space of 2× 2-matrices of the type x =

(
a −b
b a

)
, a ∈ R, b ∈ R endowed

with common matrix addition and multiplication ⊕ and �, respectively, e =

(
1 0
0 1

)
, o =(

0 0
0 0

)
and i =

(
0 −1
1 0

)
.

Example 4. If C is the vector space of linear functions f : R → R defined for real a and b by
f (x) = ax + b, x ∈ R then the sum of f and g where g(x) = cx + d, x ∈ R is defined by
( f + g)(x) = (a + c)x + b + d, e(x) = 1, o(x) = 0, i(x) = x and ( f � g)(x) = (ac− bd)x +
ad + bc. This way, another realization of (C,⊕,�, ·, 0, e, i) is obtained which we call a linear
function realization, and many more examples are possible.

The results of this section might encourage one to look at solutions of quadratic
equations from a broadly applied point of view. The question to be answered in the case
n > m2/4 is whether embedding the solution of a given quadratic Equation (1) in the
space (R2, |.|2) is always the natural one, or whether embedding it in one of the spaces
(R2, |.|p) with p 6= 2 is even an option. For example, it might seem very unprofessional to
an electric engineer to ask whether the current I and voltage U in an alternating current
circuit definitely satisfy the equation I2(t) + U2(t) = 1 in time or whether the equation
|I(t)|p + |U(t)|p = 1 for any p 6= 2 could also be an option; for a possible realization see
(7) below. From a mathematical point of view, however, this may be considered the usual
question of a suitable experiment to (as highly significant as possible) test the statistical null
hypothesis H0 : p = 2 versus the alternative hypothesis HA : p 6= 2, based on a suitable
data set.
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3. Semi-Antinorm Related Complex Numbers

The function |.|p : R2 → (0, ∞) defined by

|z|p = (|x|p + |y|p)1/p, z = (x, y)T ∈ R2

is a norm if p ≥ 1, an antinorm if 0 < p ≤ 1 and a semi-antinorm if p < 0, see
Figures 3 and 4. In the case of a semi-antinorm, the domain of definition is restricted
by the assumption

x 6= 0 and y 6= 0. (6)
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0
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Figure 3. Level one lines of norm (blue), antinorm (pink) and semi-antinorm (black) |z|p.
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Figure 4. Level r lines of the semi-antinorm z→ |z|−1 and level one lines of the semi-antinorms |z|p .

In [6], so-called lp-complex numbers are derived using the function |.|p for p > 0. It
turns out that only small technical changes are needed for adjusting this derivation to the
case p < 0. It is therefore sufficient to present the main steps of this derivation, here. Due
to the equivalence of the geometrical and the analytical approach we use the opportunity
for a slight reorganization of the material compared to [6]. Throughout this section, we
assume that p < 0 and assumption (6) is satisfied.

Definition 1. The vector p-product of z1 = (x1, y1)
T and z2 = (x2, y2)

T is defined by Equation (5),
the k′th p-power of vector z = (x, y)T and the p-exponential of z are defined by

zk = zk−1 �p z, k ≥ 2, z1 = z, z0 = (1, 0)T and exp[p](z) =
∞

∑
k=o

zk

k!
,

respectively.
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In this definition it is used that the norm convergence of the p-exponential of z follows
from the ratio test. We recall now that Euler’s formula may be written as

cos x (1, 0)T + sin x (0, 1)T = e
√
−1x.

Definition 2. The quantity eipx is defined as the central projection of the point cos x (1, 0)T +
sin x (0, 1)T into the p-unit circle Cp(1) = {(x, y)T : |(x, y)T |p = 1}.

It follows that the p-generalized Euler formula

eipx = cosp(x)(1, 0)T ⊕ sinp(x)(0, 1)T

is true where the p-generalized sine and cosine functions are defined by

sinp(ϕ) =
sin ϕ

Np(ϕ)
and cosp(ϕ) =

cos ϕ

Np(ϕ)

with
Np(ϕ) = (| sin ϕ|p + | cos ϕ|p)1/p , ϕ ∈ (0, 2π)∗ = (0, 2π) \ {π

2
, π,

3π

2
}.

A graphical illustration of these functions is given in Figures 5 and 6. Obviously, these
trigonometric functions satisfy the equation

| sinp(ϕ)|p + | cosp(ϕ)|p = 1. (7)

Definition 3. The p-complex exponential function exp(p) : R→ R2 is defined as

exp(p)(x) = exp[p](x
(

1
0

)
).

It follows from the p-generalized Euler formula that

eipx = N−1
p (x)exp(p)(x).

In the rest of this section, the analytical definition of the vector p-product for p < 0,
in Definition 1, will by expressed equivalently in a geometric way. For this purpose, we
define the lp-type polar coordinate transformation Polp : (0, ∞)× (0, 2π)∗ → R2 for the
present case p < 0 as (x, y)T = Polp[r, ϕ] with

x = r cosp(ϕ), y = r sinp(ϕ).

This transformation is almost everywhere invertible,

r = (|x|p + |y|p)1/p and ϕ = arctan
y
x

.

The semi-antinorm level r sets, or semi-antinorm circles of p-radius r,

Cp(r) = {z = (x, y)T : |z|p = r}, r > 0

are pairwise disjoint and their union is almost surely equal to R2, see Figure 4. The proof
of the following theorem follows [6] and is therefore be omitted here.
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Figure 5. The function Np for several values of p.
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Figure 6. The p-generalized sine and cosine functions, p < 0. For figures in case p > 0, see [7]. The
jumps that are seen in multiples of π/2 occur from +1 to −1, or vice versa.

Theorem 1. The vector p-product of z1 = Polp[r1, ϕ1] and z2 = Polp[r2, ϕ2] can be expressed
geometrically equivalently as z1 �p z2 = Polp[r1r2, ϕ1 + ϕ2] where the angle ϕ1 + ϕ2 is defined
modulo 2π.

The vector p-product is graphically illustrated in Figure 7.

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

r = 0.5
r = 0.9
r = 1.8

u

v

w

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

r = 1.5
r = 2
r = 3

z3

z2

z1

Figure 7. Vector p-products w = u�−1 v and z = z1 �−2/3 z2.

Remark 1. (a) Because of the assumption (6), those ϕ-angles that appear in this theorem do not
attain values that are multiples of π/2.

(b) In conclusion, let us name the invariance property that the semi-antinorm |.|p-value of a
vector in R2 is not changed when multiplied by a vector which has semi-antinorm |.|p-value
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one. In other words, for every r > 0, the Lie group on Cp(r) consists of all transformations
(x, y)T → (x, y)T �p z where z is an arbitrary element of Cp(1).

(c) The particular vector p-multiplication of a vector z ∈ R2 by e = (1, 0)T results in vector z.

Definition 4. For every p ∈ R, we call (R2,⊕,�p, ·, o, e, ip) a p-complex plane. In particular,
such plane is called a norm related complex plane if p ≥ 1, an antinorm related complex plane if
0 < p ≤ 1 and a semi-antinorm related complex plane if p < 0.

Consideration of the limiting situation p → 0 as well as cases of more general func-
tionals is left open, here.

4. Elliptical Complex Numbers

The studies in [6,7] and so far in the present paper suggest that there is always a
vector analytical, a complex analytical and a geometric component of the material when
introducing a new kind of generalized complex numbers. These components define the
structure of this section.

4.1. Vector Analysis

Let a > 0, b > 0 and |z|(a,b) =
(
( x

a )
2 + ( y

b )
2)1/2 the (a, b)-norm of z = (x, y)T ∈ R2.

Definition 5. If at least one of the vectors zi = (xi, yi)
T ∈ R2, i = 1, 2 is equal to o = (0, 0)T

then we define the elliptical vector (a, b)-product to be o, otherwise

z1 �(a,b) z2 = |z1|(a,b)|z2|(a,b)
z1 � z2

|z1 � z2|(a,b)
. (8)

This vector-product is commutative and associative and means in the particular case
of two identical vectors(

x
y

)
�(a,b)

(
x
y

)
=

( x
a )

2 + ( y
b )

2(
( x2−y2

a )2 + ( 2xy
b )2

)1/2

(
x2 − y2

2xy

)
.

Moreover, z� z = (−z)� (−z) while (w)2 6= (−w)2 for a basis number in [8].
The structure of the product in Equation (8) is obviously very similar to that in

Equation (5) and the particular product z1 �(1,1) z2 = z1 � z2 is just the usual complex
number multiplication. The elliptical vector (a, b)-multiplication satisfies

|z1 �(a,b) z2|(a,b) = |z1|(a,b) · |z2|(a,b) (9)

and
(A1z1)�(a,b) (A2z2) = (A1 A2)(z1 �(a,b) z2), Ai ∈ R, i = 1, 2. (10)

Equation (9) means that the squares of the (a, b)-elliptical radii of z1, z2 and the product
z = z1 �(a,b) z2 satisfy the equation r2 = r2

1r2
2, that is

(
x
a
)2 + (

y
b
)2 =

(
(

x1

a
)2 + (

y1

b
)2
)(

(
x2

a
)2 + (

y2

b
)2
)

. (11)

The (a, b)-multiplicative neutral element is (a, 0)T and the (a, b)-multiplicative inverse
element of z = (x, y)T 6= o is

z−1
(a,b) =

1
|z|2

(a,b)

(
x
−y

)
.
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Definition 6. We define the elliptical vector(a, b)-division of z1 ∈ R2 by z2 ∈ R2, z2 6= o by

z1 �(a,b) z2 = z1 �(a,b) (z2)
−1
(a,b).

This vector-division can be represented more explicitly as

z1 �(a,b) z2 =
|z1|(a,b)

|z2|(a,b)

z1 � z2

|z1 � z2|(a,b)
with z1 �(a,b) z2 =

(
x1x2 + y1y2
y1x2 − x1y2

)
. (12)

For z ∈ R2, we put z(0|a,b) =

(
a
0

)
and define the k’th elliptical vector power (or k’th

vector (a, b)-power) by z(k|a,b) = z(k−1|a,b) �(a,b) z, k = 1, 2, . . .

Example 5. The elliptical vector (a, b)-multiplication and k’th elliptical vector power satisfy the
following particular rules (

0
1

)
�(a,b)

(
0
1

)
= − a

b2

(
1
0

)
, (13)

(
1
0

)
�(a,b)

(
0
1

)
=

1
a

(
0
1

)
, (14)

(
0
1

)(2k|a,b)

= (−1)k a
b2k

(
1
0

)
and

(
0
1

)(2k+1|a,b)

= (−1)k 1
b2k

(
0
1

)
, k = 1, 2, . . . . (15)

We introduce now a new type of exponential function. The ratio test ensures norm
convergence of the following sum.

Definition 7. The elliptical (a, b)-exponential function exp(a,b) : R→ R2 is defined by

exp(a,b)(x) =
∞

∑
k=0

xk

k!

(
0
1

)(k|a,b)

.

Theorem 2. The geometric (a, b)-exponential function allows the trigonometric representation

exp(a,b)

(
t
a

(
0
1

))
= a cos

(
t

ab

)(
1
0

)
+ b sin

(
t

ab

)(
0
1

)
, t ∈ R.

Proof. The norm convergent series expansion

exp(a,b)

(
t
a

(
0
1

))
=

(
0
1

)(0)

+
t
a

(
0
1

)(1)

+
t2

2!a2

(
0
1

)(2)

+
t3

3!a3

(
0
1

)(3)

+ . . .

can be re-arranged as

exp(a,b)

(
t
a

(
0
1

))
= a

[
1− t2

2!(ab)2 +
t4

4!(ab)4 −
t6

6!(ab)6 + . . .
](

1
0

)

+b
[

t
ab
− t3

3!(ab)3 +
t5

5!(ab)5 −
t7

7!(ab)7 + . . .
](

0
1

)
.
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4.2. Complex Analysis

With ⊕ denoting usual vector addition, every vector z = (x, y)T ∈ R2 can be repre-
sented as

z =
x
a

(
a
0

)
⊕ y

b

(
0
b

)
=

x
a
e+

y
b

i(a,b)

where e = (a, 0)T is the (a, b)-multiplicative neutral element and i(a,b) = (0, b)T is called
the (a, b)-imaginary unit. Adopted to usual notion of complex numbers, this reads

z =
x
a
+

y
b

i(a,b).

Equation (13) may be rewritten as

i(a,b) �(a,b) i(a,b) = −e

or i2(a,b) = −1, for short. Elliptical vector (a, b)-multiplication of z1 by z2 can be written in
this sense as( x1

a
+

y1

b
i(a,b)

)
�(a,b)

( x2

a
+

y2

b
i(a,b)

)
=

(( x1
a )

2 + ( y1
b )

2)1/2(( x2
a )

2 + ( y2
b )

2)1/2

(( x1x2−y1y2
a )2 + ( y1x2+x1y2

b )2)1/2

×[(x1x2 − y1y2) + (y1x2 + x1y2)i(a,b)].

In other words,

(ξ1 + η1i(a,b))�(a,b) (ξ2 + η2i(a,b)) =
(ξ2

1 + η2
1)

1/2(ξ2
2 + η2

2)
1/2

((aξ1ξ2 − b2

a η1η2)2 + (a(η1ξ2 + ξ1η2))2)1/2

×[(a2ξ1ξ2 − b2η1η2) + ab(η1ξ2 + ξ1η2)i(a,b)]

(16)

where ξl and ηl are the coordinates of zl with respect to the basis {(a, 0)T , (0, b)T}.
Theorem 2 reads alternatively as the following generalization of Euler’s formula

exp(a,b)(i(a,b)
t

ab
) = cos(

t
ab

) + sin(
t

ab
)i(a,b). (17)

Definition 8. For every pair (a, b) with a > 0, b > 0, we call the complex algebraic structure
C(a,b) = (R2, ⊕, �(a,b), ·, o, e, i(a,b)) the (a, b)-elliptical complex plane.

Obviously, C(1,1) is the usual complex plane.

Example 6. Let t = π(a, b) = abπ be the ellipse number, then

exp(a,b)(i(a,b)π) + 1 = 0.

4.3. Geometric View

It is easily seen that the elliptical vector (a, b)-multiplication by an (a, b)-unit vector
leaves the (a, b)-norm of a given vector invariant, that is if |z2|(a,b) = 1 then we have
|z1 �(a,b) z2|(a,b) = |z1|(a,b). Thus, the Lie group on an arbitrary ellipse

E(a,b)(r) = {z ∈ R2 : |z|(a,b) = r}, r > 0
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is the set of transformations
(

x
y

)
→
(

x
y

)
�(a,b) z with z satisfying |z|(a,b) = 1. This

can also be described using suitable coordinates. To this end, let the (a, b)-elliptical polar
coordinate transformation Pol(a,b) : [0, ∞)× [0, 2π)→ R2 be defined by

(x, y)T = Pol(a,b)[r, ϕ] = (ra cos(a,b)(ϕ), rb sin(a,b)(ϕ))T

where generalized trigonometric functions are defined as

cos(a,b)(ϕ) =
cos ϕ

aN(a,b)(ϕ)
and sin(a,b)(ϕ) =

sin ϕ

bN(a,b)(ϕ)

with
N(a,b)(ϕ) = |(cos ϕ, sin ϕ)|(a,b),

see Figure 8.

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

cos
(1,2)

(x)

cos
(1,3)

(x)

cos
5/4,1/3

(x)

cos
(4/3,3)

(x)

cos
1/4,1/3

(x)

0 1 2 3 4 5 6

-3

-2

-1

0

1

2

3
sin

(1,2)
(x)

sin
(1,3)

(x)

sin
5/4,1/3

(x)

sin
(4/3,3)

(x)

sin
1/4,1/3

(x)

Figure 8. The elliptical trigonometric functions cos(a,b) and sin(a,b).

This transformation is a.e. invertible with

r = |(x, y)T |(a,b) and ϕ = arctan
y
x

.

Theorem 3. For any two elements from R2, zi = Pol(a,b)[ri, ϕi], i = 1, 2 the elliptical vector
(a, b)-product can be represented as

z1 �(a,b) z2 = Pol(a,b)[r1r2, ϕ1 + ϕ2] (18)

where the angle ϕ1 + ϕ2 is to be chosen modulo 2π.

Proof. It follows from

|Pol(a,b)[r1r2, ϕ1 + ϕ2]|(a,b) = |z1|(a,b)|z2|(a,b)

and, with |z| = |z|(1,1) = |z|2,

r1r2(a cos(a,b)(ϕ1 + ϕ2), b sin(a,b)(ϕ1 + ϕ2))
T =

|z1|(a,b)|z2|(a,b)

|z1||z2|N(a,b)(ϕ1 + ϕ2)
z1 � z2

that

N(a,b)(ϕ1 + ϕ2) =
|z1 � z2|(a,b)

|z1||z2|
,

thus
Pol(a,b)[r1r2, ϕ1 + ϕ2] = |z1|(a,b)|z2|(a,b)

z1 � z2

|z1 � z2|(a,b)
.
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For an analog geometric background of lp-complex and three-complex numbers, see [6,7].

Remark 2. Distributivity of vector addition and multiplication is missing in the complex algebraic
structure (R2,⊕,�(a,b), ·, 0, e, i(a,b)).

Remark 3. If one considers scaling z → z̃ = ( x
a , y

b )
T and usual complex vector multiplication

z̃1 � z̃2 = ( x1x2
a2 −

y1y2
b2 , x1y2+y1x2

ab )T then |z̃1 � z̃2|2 = |z̃1|2 for all z̃2 satisfying |z̃2|2 = 1. This
invariance property is closely related to that of orthogonal transformations in the complex plane
letting the absolute value of complex numbers invariant. Nevertheless, the present approach to
elliptical complex numbers cannot be traced back to ordinary complex numbers this way because
z̃1 � z̃2 is not equal to z1 �(a,b) z2 according to (8), in general, and does therefore not allow the
geometric interpretation in (18).

5. Complex Numbers Related to Matrix Homogeneous Functionals

In the present section we start with a geometric consideration for introducing an-
other vector multiplication and turn over only later to its analytical formulation and the
corresponding complex analysis. To this end, let p > 0, q > 0 be real numbers and
Pol[p,q] : (0, ∞)× [0, 2π) → R2 \ {(0, 0)T} the [p, q]-generalized or [p, q]-spherical polar
coordinate transformation defined by

z = (x, y)T = Pol[p,q](r, ϕ) = ((pr)1/p cospq, q(ϕ), (qr)1/q sinpq, p(ϕ))T

with

cosλ,γ(ϕ) = sign(cos ϕ)| cosλ(ϕ)|γ, sinλ,γ(ϕ) = sign(sin ϕ)| sinλ(ϕ)|γ

where
cosλ(ϕ) =

cos ϕ

Nλ(ϕ)
and sinλ(ϕ) =

sin ϕ

Nλ(ϕ)

as well as
Nλ(ϕ) = (| sin ϕ|λ + | cos ϕ|λ)1/λ.

The a.e. defined inverse coordinate transformation satisfies

r = |(x, y)T |[p,q] and ϕ = arctan[sign(xy)(
p
q
)1/(pq) |y|1/p

|x|1/q ]

where the functional

|(x, y)T |[p,q] =
|x|p

p
+
|y|q

q

is a norm if p = q ≥ 1 and an antinorm if p = q ∈ (0, 1]. It is reasonable therefore to
assume that p 6= q throughout this section.

The functional |(., .)|[p,q] is not homogeneous with respect to the multiplication of a
vector by real or at least positive real numbers, in general, but is homogeneous with respect
to the multiplication of a vector by certain diagonal matrices. To be specific, let the r-level
set of the functional |(., .)|[p,q],

C[p,q](r) = {(x, y)T : |(x, y)T |[p,q] = r}, r > 0

denote a “[p, q]-circle” of “[p, q]-radius” r and

Dp,q(r) = diag(r1/p, r1/q)
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a specific diagonal matrix. Because of

C[p,q](r) = Dp,q(r)C[p,q](1), r > 0,

the function |(., .)|[p,q] : (x, y)T → |(x, y)T |[p,q] is called matrix homogeneous. Figures 9
and 10 show level sets C[p,q](r) of the function |(., .)|[p,q] for various values of [p, q] and r.

p=2,q=1

-0.15 -0.1 -0.05 0 0.05 0.1
-0.15

-0.1

-0.05

0

0.05

0.1

Figure 9. [p, q]-circles C[p,q](r) for smaller and larger [p, q]-radii show change of shape and orientation
as r changes.

p=2,q=3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3 p=.2,q=.75

-20 -10 0 10 20
-25

-20

-15

-10

-5

0

5

10

15

20

25

Figure 10. C[p,q](r) for various values of [p, q] and running [p, q]-radius r.

Due to change of shape of C[p,q](r) as r changes we call {C[p,q](r), r > 0} a dynamic
family of [p, q]-circles. Corresponding lp,q-circle numbers are normalizing constants of
certain probability density generating functions.

Definition 9. We define the [p, q]-circle related vector multiplication, or [p, q]-vector multiplica-
tion, for short, of z1 = Pol[p,q](r1, ϕ1) by z2 = Pol[p,q](r2, ϕ2) as

z1 �[p,q] z2 = Pol[p,q](r1r2, ϕ1 + ϕ1).

For a graphical illustration of this vector multiplication, see Figure 11.
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Theorem 4. The [p, q]-vector multiplication of z1 = Pol[p,q](r1, ϕ1) by z2 = Pol[p,q](r2, ϕ2)

allows the analytical representation z1 �[p,q] z2 = (V, W)T with

V = ξ
(

p|z1|[p,q]|z2|[p,q]

)1/p
(
|z1|2|z2|2
|z1 �2 z2|pq

)q
, W = η

(
q|z1|[p,q]|z2|[p,q]

)1/q
(
|z1|2|z2|2
|z1 �2 z2|pq

)p

and

ξ = sign(1− γ1γ2)
|1− γ1γ2|q[

(1 + γ2
1)(1 + γ2

2)
]q/2 and η = sign(γ1 + γ2)

|γ1 + γ2|p[
(1 + γ2

1)(1 + γ2
2)
]p/2

where

γk = sign(xkyk)(
p
q
)1/(pq) |yk|1/p

|xk|1/q , k = 1, 2.

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

r = 1.3
r = 2.1
r = 3.73u

v

w

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

r = 0.9
r = 3.1
r = 2.79

z2

z1

z3

Figure 11. Vector [p, q]-products w = u�[3, 0.7] v and z3 = z1�[1.7, 0.3] z2.

Proof. It follows from Definition 9 that both

|z1 �[p,q] z2|[p,q] = |z1|[p,q]|z2|[p,q]

and

|z1 �[p,q] z2|[p,q] =
|z1|[p,q]|z2|[p,q]

Npq
pq (ϕ1 + ϕ2)

(| cos(ϕ1 + ϕ2)|pq + | sin(ϕ1 + ϕ2)|pq).

Because the vector product of usual complex numbers allows the representation

z1 �2 z2 = |z1|2|z2|2
(

cos(ϕ1 + ϕ2)
sin(ϕ1 + ϕ2)

)
it follows that

|z1 �[p,q] z2|[p,q] =
|z1|[p,q]|z2|[p,q]

Npq
pq (ϕ1 + ϕ2)

|z1 �2 z2|
pq
pq

|z1|
pq
2 |z2|

pq
2

.

Thus,

Npq(ϕ1 + ϕ2) =
|z1 �2 z2|pq

|z1|2|z2|2
(19)

and

z1 �[p,q] z2 =

(
|z1 �2 z2|

−q
pq (pr1r2)

1/p|z1|
q
2|z2|

q
2 · ξ

|z1 �2 z2|
−p
pq (qr1r2)

1/q|z1|
p
2 |z2|

p
2 · η

)
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with rk = |zk|[p,q], k = 1, 2 and

ξ = sign(cos(ϕ1 + ϕ2))| cos(ϕ1 + ϕ2)|q, η = sign(sin(ϕ1 + ϕ2))| sin(ϕ1 + ϕ2)|p.

Standard relationships for trigonometric functions ultimately provide the result.

The following remark is an immediate consequence of this proof.

Remark 4. For every r > 0, the set of transformations(
x
y

)
→
(

x
y

)
�[p,q] z where |z|[p,q] = 1

builds the Lie group on the [p, q]-circle C[p,q](r).

We additionally note that the [p, q]-radii of z1, z2 and z = z1�[p,q] z2 satisfy the equation
r = r1r2, that is

|x|p
p

+
|y|q

q
=

(
|x1|p

p
+
|y1|q

q

)(
|x2|p

p
+
|y2|q

q

)
. (20)

The following definition summarizes our consideration.

Definition 10. For every pair of positive real numbers p and q with p 6= q, we call the algebraic
structure (R2, ⊕, �[p,q], ·) the [p, q]-dynamic complex plane.

6. Invariant Probability Densities

A probability density φ defined in R2 is said to be invariant with respect to transfor-
mation T : R2 → R2 if it satisfies the equation

φ(T(x, y)) = φ(x, y) for all (x, y)T ∈ R2.

Invariant densities have interesting stochastic properties which, however, are outside
the scope of the present work. Instead, some basic geometric properties of such densities
are disclosed here at hand of three examples in which we use the knowledge provided in
Sections 4 and 5.

Example 7. Let p 6= q satisfy p > 0 and q > 0. A [p, q]-spherical distribution is uniquely
determined by the distribution of its generating variate R, say. Moreover, if a [p, q]-spherical
distribution has a density φ then it is of the form φ = φg;[p,q],

φg;[p,q](x, y) = C(g; [p, q])g(|(x, y)T |[p,q]), (x, y)T ∈ R2

where g : [0, ∞)→ [0, ∞) is a density generating function satisfying

0 <

∞∫
0

r1/p+1/q−1g(r)dr < ∞

and C(g; [p, q]) is a normalizing constant. The Gamma type density generating function is

g(r) = I[0,∞)(r)r
N−1e−κr.

With g0(r) = e−r, the density φg0;[2,1] is that of the two-dimensional Gauss–Laplace law
which is a symmetrized variant of the Gauss-exponential distribution. More particular cases are
Kotz type densities, power exponential densities, c.f. Figure 12, and Pearson type VII densities. Let
z be any element from C[p,q](1). Then, according to Section 5, the following invariance property
holds,

φ(z�[p,q] (x, y)T) = φ((x, y)T) for all (x, y)T ∈ R2.
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Example 8. Let a > 0, b > 0 and φ = φg;(a,b) denote an axes-aligned (a, b)-elliptically contoured
probability density,

φg;(a,b)(x, y) = C(g; (a, b))g(|(x, y)T |(a,b)), (x, y)T ∈ R2.

If z ∈ E(a,b)(1) then, according to Section 4,

φ(z�(a,b) (x, y)T) = φ((x, y)T) for all (x, y)T ∈ R2.

Figure 12. Power exponential density φ(x, y) = C[p,q] · e−|x|
p/p−|y|q/q for particular values of [p, q].

Example 9. Let p > 0 and assume we are given a function g : R+ → R+ and a constant Cp,g
such that φ = φg,p is an l2,p-symmetric density in R2,

φg,p(x, y) = Cp,g · g(|x|p + |y|p), (x, y) ∈ R2.

According to [6] , for any z ∈ R2 with |z|p = 1,

φ(z�p (x, y)T) = φ((x, y)T) for all (x, y)T ∈ R2.

7. Concluding Remarks

One of the empirical discoveries of the sixteenth century by Cardan was that although
the system of equations a · b = 40, a + b = 10, has no solution with real numbers a and b,
formal setting a = 5 +

√
−15, b = 5−

√
−15 and accepting the usual rules nevertheless
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seems to provide a solution. There are five axioms needed for developing a mathematical
theory that reflects this observation in a completely strong way. First of all, one must assume
that one can give an explanation for the formal symbol or quantity

√
−1. Furthermore

one assumes that positive homogeneity
√
−x =

√
x
√
−1, x > 0 holds for the new symbol

or number
√
−x and that the formal sum x + y

√
−1 is explained. Finally, the product

(a + b
√
−1)(c + d

√
−1) should be explained formally as in calculating with real numbers,

but using the equation
√
−1 ·

√
−1 = −1. The first axiom ensures that not a whiff of

mysticism or a lack of pedantry remains so that the existence of a tangible mathematical
structure in which

√
−1 is explained is guaranteed. In the third axiom the addition of

qualitatively different elements x and y
√
−1 should be explained.

The current concrete realizations of abstract complex algebraic structures satisfy all of
these axioms, as shown in Section 2. Three new complex algebraic structures or complex
planes are introduced in Sections 3–5. An application in the study of an advanced invariance
property of certain probability densities is presented in Section 6.

All figures in this paper are drawn using Matlab.
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