
����������
�������
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Józef Banaś and Rafał Nalepa *

Department of Nonlinear Analysis, Rzeszów University of Technology, al. Powstańców Warszawy 8,
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Abstract: The aim of the paper is to introduce the Banach space consisting of real functions defined
on a locally compact and countable at infinity metric space and having increments tempered by
a modulus of continuity. We are going to provide a condition that is sufficient for the relative
compactness in the Banach space in question. A few particular cases of that Banach space will
be discussed.

Keywords: modulus of continuity; space of functions with tempered increments; locally compact
metric space; metric space countable at infinity; relative compactness

1. Introduction

In the present paper, we intend to consider the Banach space consisting of real functions
that are defined on a metric space being locally compact and countable at infinity. We will
discuss, further on, in detail some classes of metric spaces of such a type. Moreover, we will
assume that the considered real functions have increments tempered by a given modulus
of continuity. It turns out that the described function space can be normed by a suitable
defined norm which is complete; i.e., the mentioned function space creates the Banach
space under that norm.

Next, we will formulate a theorem containing a condition sufficient for relative com-
pactness in the above-described Banach space.

We will discuss a few particular cases of the mentioned Banach space. Namely, we will
consider the space consisting of functions satisfying the Lipschitz or the Hölder condition
on a given locally compact and countable at infinity metric space. For example, as that
metric space, we can consider the half-axis R+, the set of real numbers R, or the Euclidean
space Rk.

It is worthwhile mentioning that in earlier papers, we considered the case when as the
above-mentioned metric space we took the metric space R+.

Finally, let us pay attention to the fact that the Banach function space described above
with the metric space taken as R+ finds a lot of applications in the theory of functional
integral equations (cf. [1–5], among others). We expect that also the Banach space stud-
ied in this paper finds some applications in the theory of functional, differential, and
integral equations.

Moreover, let us also pay attention to the fact that the results of the paper have some
connections with recently published papers concerning fractional differential and integral
equations (cf. [6,7], for example).

2. Locally Compact and Countable at Infinity Metric Spaces

In the theory of topological spaces, there are considered spaces being locally compact
and which are called countable at infinite or σ−compact. Let us recall [8] that a topological
space X is said to be countable at infinity if X can be represented as the union of a sequence
of compact subsets of X.
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On the other hand, we can encounter a topological space being countable at infinity
but not locally compact (cf. [8]).

In this paper, we restrict ourselves to the case of metric spaces. In such a case, we can
start with the following definition [9].

Definition 1. Let X be a given metric space (with a metric d). We say that X satisfies the condition

(z) if there exists a sequence (Gn) of open sets in X such that X =
∞⋃

n=1
Gn and Gn ⊂ Gn+1 for

n = 1, 2, . . . (the symbol A denotes the closure of the set A). Moreover, Gn is a compact set for
n = 1, 2, . . . .

It can be shown [9] that a metric space X satisfies condition (z) if and only if it is
locally compact and separable.

Let us pay attention to the fact that the concept of a metric space satisfying condition
(z) can be defined equivalently in the following way suggested by the definition of a space
being locally compact and countable at infinity.

Indeed, we have the following well-known theorem [8].

Theorem 1. Let X be a metric space that is locally compact and countable at infinity. Then, there

exists a sequence (Un) of relatively compact and open subsets of X such that X =
∞⋃

n=1
Un and

Un ⊂ Un+1 for n = 1, 2, . . . .

As an immediate consequence of Theorem 1, we infer that any metric space that is
locally compact and countable at infinity satisfies condition (z). Obviously, the converse
implications is also true.

Thus, we have the following useful conclusion.

Theorem 2. A metric space (X, d) satisfies condition (z) if and only if it is locally compact and
countable at infinity.

Proof. First, let us assume that the metric space X satisfies condition (z). Then, in view of
the above-mentioned result from [9], the space X is locally compact. Furthermore, keeping
in mind that X satisfies condition (z), we infer that there exists a sequence of open subsets

(Gn) of the space X such that Gn is compact and X =
∞⋃

n=1
Gn. Obviously, this implies that

X =
∞⋃

n=1
Gn; thus, the space X is countable at infinity.

Conversely, let us assume that X is locally compact and countable at infinity. Then,
according to Theorem 1, we have that there exists a sequence (Un) of open and relatively

compact subsets of X such that X =
∞⋃

n=1
Un. Hence, we deduce that Un is compact. This

allows us to conclude that the space X satisfies condition (z).
The proof is complete.

For our further purposes, the following corollary will be very crucial.

Corollary 1. Let (X, d) be a metric space that is locally compact and countable at infinity. Then,
there exists an increasing sequence (Kn) (i.e., Kn ⊂ Kn+1 for n = 1, 2, . . .) of compact subsets of X

such that X =
∞⋃

n=1
Kn.

In what follows, we will often base our considerations on Corollary 1.
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3. The Space of Functions Defined on a Locally Compact and Countable at Infinity
Metric Space with Increments Tempered by a Modulus of Continuity

This section is devoted to introducing and studying the Banach space consisting of real
functions defined on a locally compact and countable at infinity metric space and having
increments tempered by a given modulus of continuity.

To this end, consider a function ω : R+ → R+ (R+ = [0, ∞)) such that ω(0) = 0,
ω(ε) > 0 for ε > 0. Moreover, we will assume that ω is nondecreasing on R+. Any such
function will be called a modulus of continuity.

In what follows, we will also assume that the modulus of continuity is continuous at
ε = 0; i.e., ω(ε)→ 0 as ε→ 0.

Let us observe (cf. [1,3]) that the functions ωL(ε) = ε and ωα(ε) = εα (α ∈ (0, 1] is
fixed) can serve as examples of moduli of continuity.

Now, let us take a metric space (X, d) which is locally compact and countable at
infinity (cf. Section 2). For a given modulus of continuity ω = ω(ε), consider the linear
space Cω(X) consisting of functions x : X → R such that there exists a constant kx > 0
(depending on the function x) such that

|x(u)− x(v)| 6 kxω(d(u, v))

for all u, v ∈ X. In other words, we have that x ∈ Cω(X) if and only if the quantity

sup
{
|x(u)− x(v)|

ω(d(u, v))
: u, v ∈ X, u 6= v

}
is finite.

Obviously, the set Cω(X) forms a linear space over the field of real numbers R.
Let us notice that functions belonging to the linear space Cω(X) are uniformly contin-

uous on the metric space X. On the other hand, if we take a real function x = x(u) which is
defined and uniformly continuous on the metric space X, then for any number ε > 0, we
can define the quantity ν(x, ε) by the following formula

ν(x, ε) = sup{|x(u)− x(v)| : u, v ∈ X, d(u, v) 6 ε}.

The function ν = ν(x, ε) is well defined in view of assumption on uniform continuity
of the function x and is said to be the modulus of continuity of the function x.

Let us notice that the function x = x(u) is an element of the space Cω(X) if and only
if the modulus of continuity of x is majorized by the modulus of continuity ω(ε); i.e., there
exists a constant kx > 0 such that

ν(x, ε) 6 kxω(ε)

for any ε > 0.
Further on, let us fix an arbitrary element u0 ∈ X. Next, for an arbitrary function

x ∈ Cω(X), we define the quantity ||x||ω by the following formula

||x||ω = |x(u0)|+ sup
{
|x(u)− x(v)|

ω(d(u, v))
: u, v ∈ X, u 6= v

}
. (1)

Observe that ||x||ω < ∞ for any x ∈ Cω(X). We can also show that || · ||ω is a norm in
the space Cω(X); i.e., Cω(X) forms a real normed space with the norm defined by (1).
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Remark 1. Notice that up to now, we have not utilized the assumption on the local compactness
and the countability at infinity of the metric space (X, d). Indeed, in the definition of the normed
space Cω(X), we can dispense with the mentioned assumption. Nevertheless, this assumption plays
an essential role in the forthcoming theorem.

Theorem 3. Let (X, d) be a metric space that is locally compact and countable at infinity. Then,
the space Cω(X) is the Banach space with the norm defined by (1).

Proof. Let us take a Cauchy sequence (xn) in the space Cω(X). This means that the
following condition is satisfied:

∀
ε>0
∃

n0∈N
∀

n,m∈N
n,m>n0

[|xn(u0)− xm(u0)|

+ sup
{
|[xn(u)− xm(u)]− [xn(v)− xm(v)]|

ω(d(u, v))
: u, v ∈ X, u 6= v

}]
6 ε. (2)

Hence, in particular, we obtain

∀
ε>0
∃

n0∈N
∀
n∈N

n>n0

sup
{
|[xn(u)− xn(v)]− [xn0(u)− xn0(v)]|

ω(d(u, v))
: u, v ∈ X, u 6= v

}
6 ε

or, equivalently

∀
ε>0
∃

n0∈N
∀
n∈N

n>n0

∀
u,v∈X
u 6=v

|[xn(u)− xn(v)]− [xn0(u)− xn0(v)]|
ω(d(u, v))

6 ε.

The above established fact implies that for an arbitrarily fixed ε > 0, there exists a
natural number n0 such that for any number n ∈ N, n > n0 and for u, v ∈ X, u 6= v,
the following inequality is satisfied

|[xn(u)− xn(v)]− [xn0(u)− xn0(v)]| 6 εω(d(u, v)).

Hence, we obtain

|xn(u)− xn(v)| 6 |xn0(u)− xn0(v)|+ εω(d(u, v)), (3)

for u, v ∈ X, n ∈ N, and n > n0.
Now, keeping in mind Corollary 1, we can find an increasing sequence (Kp) of compact

subsets of the metric space X such that X =
∞⋃

p=1
Kp.

Thus, let us fix a number p ∈ N; i.e., let us fix a compact set Kp of the above established
sequence (Kp). On the base of inequality (3), we deduce that the functions from the set
{xn : n > n0} are equicontinuous on the set Kp. Obviously, this implies that the functions
of the sequence (xn) are equicontinuous on the set Kp.

In the similar way, putting in (3) v = u0 (or utilizing inequality (2)), we infer that

|xn(u)| 6 |xn(u0)|+ |xn0(u)− xn0(u0)|+ εω(d(u, u0)).

Hence, in virtue of (2) we get

|xn(u)| 6 |xn0(u0)|+ kn0 ω(d(u, u0)) + ε(1 + ω(d(u, u0))).



Axioms 2022, 11, 11 5 of 9

From the above inequality, we deduce that the functions of the set {xn : n > n0} are
equibounded on the set Kp. Obviously, this allows us to infer that the functions from the
sequence (xn) are equibounded on the set Kp.

The above established properties of the functions of the sequence (xn) and the Ascoli–
Arzelá theorem allows us to conclude that the sequence (xn) is relatively compact on the set
Kp for any p ∈ N. Thus, applying the diagonal procedure, we can select from the sequence
(xn) a subsequence (xkn), which converges nearly uniformly on the metric space X. This
means that the subsequence (xkn) is uniformly convergent on each set Kp to a function
x = x(u) defined on X.

Next, let us take into account inequality (3) being valid for n ∈ N, n > n0 and for
arbitrary u, v ∈ X. Fixing u and v and passing with n→ ∞, from that inequality, we get

|x(u)− x(v)| 6 |xn0(u)− xn0(v)|+ εω(d(u, v)). (4)

On the other hand, keeping in mind that xn0 ∈ Cω(X), we deduce that there exists a
constant kn0 > 0 such that

|xn0(u)− xn0(v)| 6 kn0 ω(d(u, v)) (5)

for u, v ∈ X.
Now, joining (4) and (5), we derive the following estimate

|x(u)− x(v)| 6 (kn0 + ε)ω(d(u, v))

for u, v ∈ X. This shows that x ∈ Cω(X).
In what follows, taking into account inequality (2), for an arbitrarily fixed ε > 0 and

for a natural number n0 chosen according to (2), we have that

|xn(u0)− xm(u0)|

+ sup
{
|[xn(u)− xm(u)]− [xn(v)− xm(v)]|

ω(d(u, v))
: u, v ∈ X, u 6= v

}
6 ε,

for n, m ∈ N, n > n0, m > n0.
Letting in the above inequality with m→ ∞, we obtain the following estimate

|xn(u0)− x(u0)|

+ sup
{
|[xn(u)− x(u)]− [xn(v)− x(v)]|

ω(d(u, v))
: u, v ∈ X, u 6= v

}
6 ε.

This shows that lim
n→∞

||xn − x||ω = 0.

Thus, the function x = x(u) is the limit of the function sequence (xn) with respect to
the norm || · ||ω of the space Cω(X) defined by (1). The proof is complete.

In what follows, let us mention that as the modulus of continuity ω = ω(ε) indicated
in our earlier considerations conducted in this paper, we can take the function ωL(ε) = ε.
In this case, the function space CωL(X) represents the space consisting of functions x : X →
R satisfying the Lipschitz condition on the metric space X (locally compact and countable
at infinity). Thus, x ∈ CωL(X) if and only if there exists a constant kx > 0 such that

|x(u)− x(v)| 6 kxd(u, v)

for arbitrary u, v ∈ X.
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If we take as the modulus of continuity, the modulus generated by the Hölder
condition—i.e., if we take the function ωα(ε) = εα (where α is a fixed number such that
α ∈ (0, 1])—then the suitable space Cωα(X) consists of functions x : X → R such that there
exists a constant kx > 0 (depending on the function x) such that

|x(u)− x(v)| 6 kx(d(u, v))α

for arbitrary u, v ∈ X.
Now, let us pay attention to some particular cases of the metric space (X, d) being

locally compact and countable at infinity. The simple example of such a metric space is the
set R+ with the natural metric d(t, s) = |t− s|. Such a case was considered in paper [3].

Further, let us observe that if we take a metric space (X, d) with the metric d generated
by a norm i.e., if X is a normed space, then the assumption on the local compactness of
X implies that X is finite dimensional. In the real case, we get that X is isometric to the
Euclidean space Rk. Hence, we conclude that the most natural metric space X being locally
compact and countable at infinity seems to be the Euclidean space Rk.

Thus, it is natural to consider as the most representable Banach space Cω(X) the space
Cω(Rk), where the metric in Rk can be considered as the Euclidean metric or a metric
equivalent to that metric.

In our further consideration, it is reasonable to consider as the Banach space Cω(X)
the space Cω(Rk), where ω(ε) = ε or ω(ε) = εα for α ∈ (0, 1).

4. A Sufficient Condition for Relative Compactness in the Space Cω(Rk)

In this section, we are going to describe a criterion being a sufficient condition for
relative compactness in the Banach space Cω(X), where X (with a metric d) is a metric
space being locally compact and countable at infinity. The space Cω(X) of such a type was
described in detail in Section 3.

In view of Corollary 1, we will assume in this section that (Kn) is a sequence of
nonempty and compact subsets of X such that the sequence (Kn) is increasing (i.e.,

Kn ⊂ Kn+1 for n = 1, 2, . . .) and X =
∞⋃

n=1
Kn.

Taking into account the practical utility of the space Cω(X), we restrict ourselves to
the case when X = Rk, since only in such a case we are in a position to apply such a
criterion for relative compactness in a concrete situation (cf. Section 3). Thus, in this section,
we will consider the Banach space Cω(Rk) described in the previous section. Obviously,
in this case, instead of the sequence (Kn) of compact subset of Rk such that Kn ⊂ Kn+1

for n = 1, 2, . . . and Rk =
∞⋃

n=1
Kn, it will be convenient to take the family of balls {BT}T>0

centered at the zero point θ = (0, 0, . . . , 0) ∈ Rk and with radius T > 0. To fix our
attention, we will consider in the Euclidean space Rk the classical maximum metric; i.e., if
u = (ui), v = (vi) ∈ Rk, then we take dm(u, v) = max{|ui − vi| : i = 1, 2, . . . , k}.

Now, we are prepared to formulate the announced sufficient condition.

Theorem 4. Let A be a bounded subset of the space Cω(Rk) satisfying the following to conditions:

(i)

∀
T>0
∀
ε>0
∃
δ>0
∀

x∈A
∀

u,v∈BT
u 6=v

[
dm(u, v) 6 δ =⇒ |x(u)− x(v)|

ω(dm(u, v))
6 ε

]
,

(ii)

∀
ε>0
∃

T>0
∀

x∈A
∀

u,v∈Rk\BT
u 6=v

|x(u)− x(v)|
ω(dm(u, v))

6 ε.

Then, the set A is relatively compact in the space Cω(Rk).
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Proof. Let us fix arbitrarily a number ε > 0. Further, choose a number T > 0 according to
condition (ii). Next, keeping in mind condition (i), we can find a number δ > 0. Consider
the set A|BT

= {x|BT
: x ∈ A}, where the symbol x|BT

denotes the restriction of the function
x to the set BT . Taking into account the fact that the set A|BT

satisfies condition (i), in view
of Theorem 4 in [1], we infer that the set A|BT

is relatively compact in the space Cω(BT).
This means that there exists a finite ε

2−net of this set in the space Cω(BT) which consists of
functions z1, z2, . . . , zm being restrictions of functions z1, z2, . . . , zm belonging to the space
Cω(Rk) i.e., zi(u) = zi|BT

(u) for u ∈ BT and for i = 1, 2, . . . , m. This implies (cf. Lemma 2.6
in [3]) that there exists a finite ε−net of the set A that consists of functions y1, y2, . . . , ym;
i.e., there exist functions y1, y2, . . . , ym being restrictions of functions y1, y2, . . . , ym belonging
to the space Cω(Rk), which forms an ε−net of the set A.

Now, let us take an arbitrary function x(u) = x ∈ A. Then, taking into account the
above reasonings, we infer that there exists a number j ∈ {1, 2, . . . , m} such that

||x− yj||Cω(BT)
6 ε.

This means that the following inequality is satisfied

|x(u0)− yj(u0)|

+ sup
{ |[x(u)− yj(u)]− [x(v)− yj(v)]|

ω(dm(u, v))
: u, v ∈ BT , u 6= v

}
< ε. (6)

Next, let us choose a number T > 0 to the number ε > 0 according to condition (ii).
Then, for arbitrary u, v ∈ Rk \ BT , u 6= v, we have the following inequality

|x(u)− x(v)|
ω(dm(u, v))

6 ε, (7)

which is satisfied for any function x ∈ A.
Now, taking the function yj = yj(u), which was chosen previously to the function

x = x(u), for u, v ∈ Rk \ BT , u 6= v, we get:

|[x(u)− yj(u)]− [x(v)− yj(v)]|
ω(dm(u, v))

=
|[x(u)− x(v)]− [yj(u)− yj(v)]|

ω(dm(u, v))

6
|x(u)− x(v)|
ω(dm(u, v))

+
|yj(u)− yj(v)|

ω(dm(u, v))
.

Hence, taking into account (7) and the fact that yj ∈ A we obtain

|[x(u)− yj(u)]− [x(v)− yj(v)]|
ω(dm(u, v))

6 2ε. (8)

Further, let us assume that u, v ∈ Rk are such that u ∈ B̊T (the symbol B̊T denotes
the interior of the ball BT), v ∈ Rk \ BT , and dm(u, v) < δ. Let us consider the segment uv
joining the points u and v. Denote by wT the intersection of the segment uv with the sphere
ST = {z ∈ BT : dm(z, θ) = T}. Then ,

dm(u, v) = dm(u, wT) + dm(wT , v).

Consequently, we have
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1
ω(dm(u, v))

6
1

ω(dm(u, wT))
, (9)

1
ω(dm(u, v))

6
1

ω(dm(v, wT))
. (10)

Then, keeping in mind (9) and (10), for a fixed function x ∈ A, we obtain:

|x(u)− x(v)|
ω(dm(u, v))

6
|x(u)− x(wT)|

ω(dm(u, v))
+
|x(wT)− x(v)|

ω(dm(u, v))

6
|x(u)− x(wT)|
ω(dm(u, wT))

+
|x(wT)− x(v)|
ω(dm(v, wT))

.

Consequently, in view of condition (i) and inequality (7), we deduce the follow-
ing estimate

|x(u)− x(v)|
ω(dm(u, v))

6 2ε. (11)

Next, taking into account the fact that yj ∈ A for j ∈ {1, 2, . . . , m}, we arrive at the
following inequality

|yj(u)− yj(v)|
ω(dm(u, v))

6 ε (12)

for u ∈ B̊T and v ∈ Rk \ BT .
Further, in virtue of (11) and (12), we get

|[x(u)− yj(u)]− [x(v)− yj(v)]|
ω(dm(u, v))

6
|x(u)− x(v)|
ω(dm(u, v))

+
|yj(u)− yj(v)|

ω(dm(u, v))
6 2ε + 2ε = 4ε. (13)

Finally, combining (6), (8), and (13), we conclude that for any x ∈ A there exists a
function yj (j ∈ {1, 2, . . . , m}) such that the following inequality holds

||x− yj||Cω(Rk) 6 5ε.

This means that the functions y1, y2, . . . , ym form a finite 5ε−net of the set A in the
space Cω(Rk). Thus, the set A is relatively compact in the space Cω(Rk).

The proof is complete.

5. Conclusions and Final Remarks

The results obtained in the paper can be treated as the platform for further study
concerning the construction of suitable measures of noncompatness in the space Cω(Rk).
Particularly, we can look both for criteria for relative compactness in the space Cω(Rk)
and measures of noncompactness constructed on the basic of such criteria which will be
more convenient in applications to the theory of integral equations as well as the theory of
partial differential equations considered in the space Cω(Rk). In paper [3], we investigated
an integral equation in the space Cω(Rk), where ω(ε) = εα was the Hölder modulus of
continuity. It is worthwhile mentioning that the integral equation considered in [3] has a
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rather very simple form. Moreover, the integral equation investigated in paper [5] has also
rather simple form.

Therefore, the present paper and the result contained in Theorem 4 create the challenge
for further investigations, which can be conducted in spaces of the type Cω(Rk) and which
can be applied to the theory of integral equations of several variables and to the theory of
partial differential equations.

The authors of this paper obtained a few tentative results in the indicated direction,
which will be published in forthcoming papers.
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