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Abstract: The asymptotic behavior of resolvents of a proper convex lower semicontinuous function
is studied in the various settings of spaces. In this paper, we consider the asymptotic behavior of the
resolvents of a sequence of functions defined in a complete geodesic space. To obtain the result, we
assume the Mosco convergence of the sets of minimizers of these functions.
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1. Introduction

The notion of the resolvent for convex functions is one of the most important subjects in
the convex minimization problems. We have proposed various resolvents in many spaces
and have studied their properties. Moreover, the asymptotic behavior of resolvents at
infinity includes crucial problems in studying the properties of resolvents. There are results
on the asymptotic behavior of the resolvent of convex functions at infinity. For example, in
a Hilbert space H, for a proper lower semicontinuous convex function f : H → ]−∞, ∞], a
resolvent J f : X → X is defined by the following:

J f (x) = argmin
y∈H

{
f (y) + ‖y− x‖2

}
for all x ∈ X. As the asymptotic behavior of this resolvent, the following result is found.

Theorem 1 (See [1]). Let H be a Hilbert space and f : H → ]−∞, ∞] a proper lower semicontinu-
ous convex function. For each x ∈ X, if

{
Jµn f x

}
is bounded by some sequence {µn} ⊂ ]0, ∞[ such

that µn → ∞, then argmin f 6= ∅ and

lim
λ→∞

Jλ f x = Pargmin f x.

On the other hand, geodesic spaces are metric spaces which have some convex struc-
tures. In geodesic spaces, many types of resolvents are also proposed and studied. A
complete CAT(0) space, which is an example of a geodesic space, is a generalization of
Hilbert spaces. In this space, the following resolvent is proposed (see [2]). Let X be a com-
plete CAT(0) space and f : X → ]−∞, ∞] a proper lower semicontinuous convex function.
We define the resolvent J f : X → X of f by the following equation:

J f (x) = argmin
y∈H

{
f (y) + d(y, x)2

}
for all x ∈ X. For this resolvent, we can also consider asymptotic behavior at infinity and
have results similar to Theorem 1 (see [3]). In these cases, a convex function f is fixed. In a
Banach space, the convergence of a sequence for resolvents of maximal monotone operators
has been considered in many papers. For example, see [4–10].
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Therefore, we will also consider the convergent sequence of convex functions { fn}
and their resolvents. We characterize the convergence of a sequence of convex functions by
using the set convergence of minimizers. Mosco convergence is one of the useful notions of
set convergence. It is defined in Banach spaces and complete admissible CAT(κ) spaces.
See [11–13] for more details.

This paper considers the asymptotic behavior of the resolvents of a given convergent
sequence of convex functions on a complete CAT(0) space and a complete admissible
CAT(1) space. As a convergence of a sequence of convex functions { fn}, we suppose that
{argmin fn}, the sequence of sets of minimizers of fn, is convergent in the sense of Mosco.

2. Preliminaries

Let X be a metric space. For x, y ∈ X, cxy : [0, d(x, y)] → X is called a geodesic with
the endpoints x and y if cxy : [0, d(x, y)]→ X satisfies the following:

cxy(0) = x;

cxy(d(x, y)) = y;

d(cxy(u), cxy(v)) = |u− v| for u, v ∈ [0, d(x, y)].

We say that X is a uniquely geodesic space if there exists cxy uniquely for each x, y ∈ X.
For x, y ∈ X, a geodesic segment [x, y] joining x and y is an image of cxy defined by [x, y] =
cxy([0, d(x, y)]). A convex combination z between x and y is a point of [x, y] such that
d(x, z) = (1− t)d(x, y) and d(z, y) = td(x, y), and we denote this z by tx⊕ (1− t)y. Let X
be a uniquely geodesic space and x1, x2, x3 ∈ X. A geodesic triangle4(x1, x2, x3) ⊂ X with
vertices x1, x2, x3 is defined by 4(x1, x2, x3) = [x1, x2] ∪ [x2, x3] ∪ [x3, x1]. For a geodesic
triangle 4(x1, x2, x3), a comparison triangle 4(x1, x2, x3) ⊂ R2 is defined as a triangle
whose vertices x1, x2, x3 satisfy ‖x1 − x2‖ = d(x1, x2), ‖x2 − x3‖ = d(x2, x3), ‖x3 − x1‖ =
d(x3, x1). Furthermore, for p ∈ [xi, xj] (i, j = 1, 2, 3 and i 6= j), a comparison point p of
p is a point on [xi, xj] such that ‖p− xi‖ = d(p, xi). X is called a CAT(0) space if for
any geodesic triangle4(x1, x2, x3), any p, q ∈ 4(x1, x2, x3), and their comparison points
p, q ∈ 4(x1, x2, x3), the following holds:

d(p, q) ≤ ‖p− q‖.

Let X be a geodesic space and4(x1, x2, x3) a geodesic triangle on X. In the same way
as above, we define a comparison triangle4(x1, x2, x3) ⊂ S2. X is called a CAT(1) space
if for any geodesic triangle 4(x1, x2, x3) with d(x1, x2) + d(x2, x3) + d(x3, x1) < 2π, any
p, q ∈ 4(x1, x2, x3), and their comparison points p, q ∈ 4(x1, x2, x3), it holds that:

d(p, q) ≤ dS2(p, q).

An admissible CAT(1) space is a CAT(1) space such that the distance of any two
points is smaller than π/2. Let X be an admissible CAT(1) space and {xn} a sequence
of X. The sequence {xn} is said to be spherically bounded if there exists y ∈ X such that
sup d(xn, y) < π/2 for all n ∈ N.

We describe the fundamental properties of complete CAT(0) spaces and complete
admissible CAT(1) spaces. The following inequalities are called parallelogram laws.

Theorem 2 (See [3,14]). Let X be a complete CAT(0) space, x, y, z ∈ X, and t ∈ [0, 1]. Then,

d(tx⊕ (1− t)y, z)2 ≤ td(x, z)2 + (1− t)d(y, z)2 − t(1− t)d(x, y)2.

Theorem 3 (See [14]). Let X be a complete admissible CAT(1) space, x, y, z ∈ X, and t ∈ [0, 1].
Then,

cos d(tx⊕ (1− t)y, z) sin d(x, y) ≥ cos d(x, z) sin td(x, y) + cos d(y, z) sin(1− t)d(x, y).
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In particular, for t = 1/2, it holds that:

cos d
(

1
2

x⊕ 1
2

y, z
)

cos
d(x, y)

2
≥ 1

2
cos d(x, z) +

1
2

cos d(y, z),

or equivalently, that:

− log cos d
(

1
2

x⊕ 1
2

y, z
)

≤ 1
2
(− log(cos d(x, z))) +

1
2
(− log(cos d(y, z)) + log cos

d(x, y)
2

.

Let X be a metric space and {xn} a bounded sequence in X. For x ∈ X, we assign the
following equation:

r(x, {xn}) = lim sup
n→∞

d(x, xn), r({xn}) = inf
x∈X

r(x, {xn}).

Then, if x ∈ X satisfies r(x, {xn}) = r({xn}), it is called an asymptotic center of {xn}.
Moreover, if for any subsequence of {xn} its asymptotic center is a unique point x, we say
that {xn} is ∆-convergent to x. Any bounded sequences in complete CAT(0) space have
a ∆-convergent subsequence. Likewise, any spherically bounded sequences in complete
admissible CAT(1) have a ∆-convergent subsequence. See [15–17].

Let X be a complete CAT(0) or complete admissible CAT(1) space, and C a closed
convex subset of X. Then, for x ∈ X, there exists a unique x0 ∈ C such that:

d(x0, x) = inf
y∈C

d(y, x).

We define PC : X → C by the following:

PC(x) = argmin
y∈C

d(y, x).

for x ∈ X. This PC is called a metric projection onto C and has the following properties. If
X is a complete CAT(0) space, then

d(x, PCx)2 + d(PCx, y)2 ≤ d(x, y)2

for all y ∈ C and x ∈ X. If X is a complete admissible CAT(1) space, then

cos d(x, PCx) cos d(PCx, y) ≥ cos d(x, y)

for all y ∈ C and x ∈ X.
Let C1, C2, C3, . . . be nonempty closed convex subsets of a complete CAT(0) or complete

admissible CAT(1) space X. We define the sets d-Li Cn and ∆-Ls Cn as follows: v ∈ d-Li Cn
if and only if there exists {vn} such that vn → v and vn ∈ Cn for each n; w ∈ ∆-Ls Cn if and
only if there exists a bounded sequence {wi} such that w ∈ AC{wi} and wi ∈ Sni for each i.
If a closed convex subset C0 of X satisfies the following:

d-Li Cn ⊂ C0 ⊂ ∆-Ls Cn,

we say that {Cn} converges to C0 in the sense of Mosco and denote M-limn→∞ Cn = C0.

3. Main Results

Let f1, f2, f3, . . . be the proper convex lower semicontinuous functions on a CAT(0) or
complete admissible CAT(1) space X. As the convergence of a sequence of convex functions
{ fn}, we suppose the following conditions:

(a) M-limn→∞ argmin fn = argmin f ;
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(b) For all b ∈ X, there exists {bn} such that bn → b and lim supn→∞ fn(bn) ≤ f (b);
(c) For any subsequence { fni} of { fn} and a ∆-convergent sequence {ci} whose ∆-limit is

c ∈ X, it holds that f (c) ≤ lim infi→∞ fni (ci).

We consider the asymptotic behavior of a resolvent on CAT(0) space. Let X be a
complete CAT(0) space, f : X → ]−∞, ∞] a proper convex lower semicontinuous function,
and x ∈ X. We say that a function ϕ : [0, ∞[→ R satisfies the condition (A) if the following
conditions hold:

• ϕ is increasing;
• ϕ is continuous;
• ϕ(d(·, x)) is strictly convex for all x ∈ X;
• ϕ(t)− kt→ ∞ as t→ ∞, for all constants k ∈ R.

If ϕ satisfies the condition (A), then the function f (·) + ϕ(d(·, x)) has a unique mini-
mizer. We define a resolvent J f of f with ϕ by the following equation:

J f (x) = argmin
y∈X

{ f (y) + ϕ(d(y, x))}

for x ∈ X. For example, ϕ1(t) = t2 and ϕ2(t) = tanh t sinh t satisfies these conditions. If
we define the resolvent with ϕ1(t) = t2, it is the resolvent described in the Introduction.
For complete CAT(−1) spaces, which are a special case of CAT(0) spaces, the resolvent with
ϕ2(t) = tanh t sinh t is defined and studied in [18].

Now we describe the asymptotic behavior of resolvents for a sequence of convex
functions satisfying (a), (b), and (c).

Theorem 4. Let X be a complete CAT(0) space, { fn} a sequence of proper convex lower semicon-
tinuous functions from X to ]−∞, ∞], f a proper convex lower semicontinuous function from X
to ]−∞, ∞], and {λn} ⊂ ]0, ∞[ an increasing sequence diverging to ∞. If { fn} and f satisfy the
conditions (a), (b), and (c), then for x ∈ X, we have:

lim
n→∞

Jλn fn x = Pargmin f x.

Proof. Let x ∈ X. We put xn = Jλn fn x and p = Pargmin f x. Since p ∈ argmin f0 ⊂
d-Li argmin fn from the condition (a), there exists {an} such that an ∈ argmin fn for each n
and an → p. Since points an and xn are minimizers of fn and fn(·) + ϕ(d(·, x)), respectively,
then we have the follwing equation:

fn(an) +
1

λn
ϕ(d(xn, x)) ≤ fn(xn) +

1
λn

ϕ(d(xn, x))

≤ fn(an) +
1

λn
ϕ(d(an, x)).

Thus, we get ϕ(d(xn, x)) ≤ ϕ(d(an, x)), which is equivalent to d(xn, x) ≤ d(an, x).
Since {an} is a convergent sequence, and {an} is bounded, this implies that {xn} is also
bounded. Take a subsequence {xni} of {xn} arbitrarily. There exists a ∆-convergent
subsequence {xni j} of {xni} to some q ∈ X. From the condition (b), there exists {bn} such
that bn → p and lim supn→∞ fn(bn) ≤ f (p). Furthermore, using the condition (c), we get

lim infj→∞ fni j(xni j) ≤ f (q) as xni j
∆
⇀ q. From the definition of the resolvent, we have the

following equation:

fni j(xni j) +
1

λni j

ϕ(d(xni j , x)) ≤ fni j(bni j) +
1

λni j

ϕ(d(bni j , x)).
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By the boundedness of {d(xn, x)} and {d(an, x)}, letting j→ ∞, we have the following:

f (q) ≤ lim inf
j→∞

fni j(xni j) ≤ lim inf
j→∞

fni j(bni j) ≤ lim sup
j→∞

fni j(bni j) ≤ f (p).

This implies that q ∈ argmin f . Since d(xni j , x) ≤ d(ani j , x), we let j → ∞ again and
get the following:

d(p, x) ≤ d(q, x) ≤ lim inf
j→∞

d(xni j , x) ≤ lim sup
j→∞

d(xni j , x) ≤ lim
j→∞

d(ani j , x) = d(p, x).

Hence, we have q = p and d(xni j , x) → d(p, x). Since ani j is a minimizer of fni j and
fni j is convex, we have the following equations:

fni j(xni j) +
1

λni j

ϕ(d(xni j , x))

≤ fni j

( xni j ⊕ ani j

2

)
+

1
λni j

ϕ

(
d
( xni j ⊕ ani j

2
, x
))

≤
fni j(xni j) + fni j(ani j)

2
+

1
λni j

ϕ

(
d
( xni j ⊕ ani j

2
, x
))

≤ fni j(xni j) +
1

λni j

ϕ

(
d
( xni j ⊕ ani j

2
, x
))

,

and hence,

d(xni j , x) ≤ d
( xni j ⊕ ani j

2
, x
)

.

From the parallelogram law of CAT(0) space, we get the following:

d(xni j , x)2 ≤ d
( xni j ⊕ ani j

2
, x
)2

≤ 1
2

d(xni j , x)2 +
1
2

d(ani j , x)2 − 1
4

d(xni j , ani j)
2.

Since both {d(ani j , x)} and {d(xni j , x)} are convergent to d(p, x), we have:

d(xni j , ani j)
2 ≤ 2(d(ani j , x)2 − d(xni j , x)2)→ 0

which implies that xni j → p. Then, any subsequence {xni} of {xn} has a convergent
subsequence {xni j}, which tends to p. From these facts, we get a desired result.

From this theorem, we have the following corollaries. Suppose fn = f for all n ∈ N.
Then { fn} obviously satisfies the conditions (a), (b), and (c).

Corollary 1. Let X be a complete CAT(0) space, f a proper convex lower semicontinuous function
from X to ]−∞, ∞], and ϕ : [0, ∞[→ R a function satisfying the condition (A). For a positive real
number λ, define Jλ f : X → X by the following equation:

Jλ f (a) = argmin
y∈X

{λ f (y) + ϕ(d(y, a))}

for a ∈ X. Then, for each x ∈ X,

lim
λ→∞

Jλ f x = Pargmin f x.

Let {Cn} be a sequence of nonempty closed convex subsets which converges to C in
the sense of Mosco. If { fn} = {iCn} and f = iC, then argmin fn = Cn and argmin f = C,
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where iC is the indicator function of C. Since {Cn} converges to C, {iCn} and iC satisfy the
condition (a). They also satisfy the conditions (b) and (c).

Corollary 2. Let X be a complete CAT(0) space, {Cn} a sequence of nonempty closed convex
subsets of X, and C a nonempty closed convex subset of X. If {Cn} converges to C in the sense of
Mosco, then for each x ∈ X,

lim
n→∞

PCn x = PCx.

Similarly, we consider asymptotic behavior of a resolvent on CAT(1) space. Let X be a
complete admissible CAT(1) space. We say ϕ : [0, π/2[→ R satisfies the condition (B) if the
following hold:

• ϕ is increasing;
• ϕ is continuous;
• ϕ(d(·, x)) is strictly convex for all x ∈ X;
• ϕ(t)→ ∞ as t→ π/2.

Then, the set argminy∈X { f (y) + ϕ(d(y, x))} is a singleton for all x ∈ X, and we
define J f in a similar way. For example, ϕ3(t) = tan t sin t and ϕ4(t) = − log cos t satisfy
the conditions above. On complete admissible CAT(1) spaces, resolvents by using these
functions are defined and their properties are studied in [19,20].

We consider that the asymptotic behavior of resolvents for a sequence of convex
functions satisfies (a), (b), and (c).

Theorem 5. Let X be a complete admissible CAT(1) space, { fn} a sequence of proper convex lower
semicontinuous functions from X to ]−∞, ∞], f a proper convex lower semicontinuous function
from X to ]−∞, ∞], and {λn} ⊂ ]0, ∞[ an increasing sequence diverging to ∞. If { fn} and f
satisfy the conditions (a), (b), and (c), then for x ∈ X,

lim
n→∞

Jλn fn x = Pargmin f x.

Proof. In the same way as the proof of Theorem 5, if we take {xni j}with the same procedure,
it hold that d(xni j , x)→ d(p, x) and

d(xni j , x) ≤ d
( xni j ⊕ ani j

2
, x
)

.

From the parallelogram law of CAT(1) space, we get the following equations:

− log(cos d(xni j , x)) ≤ − log
(

cos d
( xni j ⊕ ani j

2
, x
))

≤ 1
2
(− log(cos d(xni j , x))) +

1
2
(− log(cos d(ani j , x)))

− 1
4
(− log(cos d(xni j , ani j))).

Then, we have

− log(cos d(xni j , ani j)) ≤ 2(− log(cos d(xni j , x))− log(cos d(ani j , x))).

This implies that xni j → p, and we get Jλn fn x → Pargmin f x.

As well as for the case of CAT(0) spaces, we obtain the following corollaries in CAT(1)
spaces.
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Corollary 3. Let X be a complete admissible CAT(1) space, f a proper convex lower semicontinuous
function from X to ]−∞, ∞], and ϕ : [0, π/2[→ R a function satisfying the condition (B). For a
positive real number λ, define Jλ f : X → X by the following equation:

Jλ f (a) = argmin
y∈X

{λ f (y) + ϕ(d(y, a))}

for a ∈ X. Then, for each x ∈ X, we have:

lim
λ→∞

Jλ f x = Pargmin f x.

Corollary 4. Let X be a complete admissible CAT(1) space, {Cn} a sequence of nonempty closed
convex subsets of X, and C a nonempty closed convex subset of X. If {Cn} converges to C in the
sense of Mosco, then for each x ∈ X, we have:

lim
n→∞

PCn x = PCx.

4. Applications to Hilbert Spaces

Finally, we consider the applications of our results to the case of a Hilbert space.
Because the class of complete CAT(0) spaces includes that of Hilbert spaces, we can get
some results in Hilbert spaces directly. The definitions of conditions for functions ϕ and
{ fn} are applied to those in CAT(0) spaces.

Theorem 6. Let H be a Hilbert space, { fn} a sequence of proper convex lower semicontinuous
functions from X to ]−∞, ∞], f a proper convex lower semicontinuous function from X to ]−∞, ∞],
and {λn} ⊂ ]0, ∞[ an increasing sequence diverging to ∞. Suppose { fn} and f satisfy the
conditions (a), (b), and (c), and ϕ : [0, ∞[→ R satisfies the condition (A). Define Jλn fn : X → X by
the following:

Jλn fn(a) = argmin
y∈X

{λn fn(y) + ϕ(‖y− a‖)}

for a ∈ X. Then, for each x ∈ X

lim
n→∞

Jλn fn x = Pargmin f x.

Using this result, we can get following famous theorems. First, if we consider the case
that a convex function is fixed and ϕ(t) = t2, we can get Theorem 1. Next, considering the
case that convex functions are the indicator functions of some convex sets, we obtain the
following theorem.

Theorem 7 (See [21]). Let H be a Hilbert space, {Cn} a sequence of nonempty closed convex
subsets of X, and C a nonempty closed convex subset of X. If {Cn} converges to C in the sense of
Mosco, then for each x ∈ X,

lim
n→∞

PCn x = PCx.

In conclusion, we summarize the results in this paper. For a given sequence { fn} of
proper lower semicontinuous functions converging to f in the sense of the conditions (a),
(b), and (c), we consider the corresponding sequence of resolvents {Jλn fn} with a positive
real sequence {λn} diverging to ∞. The main results imply the pointwise convergence of
this sequence to the metric projection onto argmin f in the setting of a CAT(0) and a CAT(1)
space, respectively. We can apply them to the asymptotic behavior of the resolvent for a
single function at ∞, and a convergence theorem for a sequence of metric projections.
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