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Abstract: The geometric approach to generalized complex and three-dimensional hyper-complex
numbers and more general algebraic structures being based upon a general vector space structure and
a geometric multiplication rule which was only recently developed is continued here in dimension
four and above. To this end, the notions of geometric vector product and geometric exponential
function are extended to arbitrary finite dimensions and some usual algebraic rules known from usual
complex numbers are replaced with new ones. An application for the construction of directional
probability distributions is presented.
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1. Introduction

Quaternions, going back to Hamilton 1843, and the work of Gauss being unpublished
until 1900, are four-dimensional hyper-complex numbers x = x1 + x2i + x3 j + x4k where
x1, ..., x4 are real numbers and i, j, k are the fundamental quaternion units satisfying the
Hamilton rules

i2 = j2 = k2 = −1 (1)

and
ijk = −1, (2)

for example see [1,2]. Four alternative four-dimensional types of hyper-complex numbers
are introduced in [3]. The rules of the so-called circular and hyperbolic fourcomplex
numbers defined there are

i2 = j2 = −1, k2 = 1, ij = ji = −k, ik = ki = j, jk = kj = i (3)

and
i2 = j2 = k2 = 1, ij = ji = k, ik = ki = j, jk = kj = i, (4)

respectively, and so-called planar and polar fourcomplex numbers satisfy similar rules.
In each of the mentioned cases, the product of the two hyper-complex numbers x and
x′ = x′1 + x′2i + x′3 j + x′4k can be obtained by applying the mentioned rules together with
the usual algebraic rules, known from the real and usual complex numbers, to the product

xx′ = (x1 + x2i + x3 j + x4k)(x′1 + x′2i + x′3 j + x′4k). (5)

On the one hand, out of habit, one could consider this approach to be natural, on the
other hand, one could also ask for a content-related motivation for it.
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Another approach to multidimensional hyperbolic complex numbers is presented
in [4]. In [5], a complex vector is dealt with as a sum of a vector and a so-called bivector.
Moreover, numerous applications in electromagnetic theory and quantum mechanics are
given there.

Bicomplex numbers studied in [6–8] are applied to quantum mechanics and quantum
fields in [9–11] and can be represented as

w = z1 + z2i2

where z1 and z2 are elements of independent complex planes possessing imaginary units i1
and i2 which satisfy

i21 = i22 = −1

and
i1i2 = j, i1 j = −i2, i2 j = −i1.

Here, j satisfies
j2 = 1

and is called a hyperbolic unit. For another application of bicomplex numbers we refer to
the work in [12].

There are always several ways of generalizing or transferring a mathematical statement
that is valid in one-dimensional to higher dimensions. If one specializes in (5), for example,
x3 = x4 = 0, the result is very reminiscent of the usual complex plane. The decisive
question in a generalization process is which of the properties valid in the one-dimensional
case should also apply in the higher-dimensional case.

In the language of the usual complex numbers, the four-complex numbers under
consideration here also formally satisfy the rules (1) and

ij = ik = jk = −1 (6)

as well as a further specific algebraic rule which, inter alia, does not allow the implementa-
tion of all the usual conclusions from (1) and (6) as for complex numbers. The main aim
of a study which was started in [13–15] and is continued here is to exemplarily show that
there are infinitely many systems of generalized complex numbers of every dimension, and
how to construct some of them in a largely standardized way. While complex numbers of
dimension three were dealt with in [14], the present work deals with complex numbers in
dimensions four and above. The general structure of a vector space and a multiplication
rule being different from (5) and being specifically chosen in each case form the basic
elements of our constructions. Based upon a respective multiplication rule, a generalized
exponential function is introduced and with its help the Euler formula is generalized. The
question of which multiplication rule is appropriate in which application area depends to a
considerable extent on our detailed knowledge of the given situation or even requires an
experimental answer, which, however, is outside the scope of the present work.

If x = x1 + x2i and x′ = x′1 + x′2i denote usual complex numbers then the product
used in [13] in the case p = 2 is

x� x′ =
(

x1x′1 − x2x′2
x1x′2 + x′1x2

)
, (7)

and if x = x1 + x2i + x3 j and x′ = x′1 + x′2i + x′3 j are three-complex numbers then the
corresponding multiplication rule defined in [14] is

x� x′ = S(x, x′)

 x1x′1 − ξξ ′[
x1
ξ +

x′1
ξ ′

]( x2x′2 − x3x′3
x2x′3 + x3x′2

)  (8)
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with
S(x, x′) = I[0,π](ϕ(x) + ϕ(x′))− I(π,2π)(ϕ(x) + ϕ(x′)) (9)

and

ϕ(x) = arctan
ξ

x1
, ξ =

√
x2

2 + x2
3 , ϕ(x′) = arctan

ξ ′

x′1
, ξ ′ =

√
x′2

2 + x′3
2. (10)

Note that, for every p > 0, p-generalizations of the multiplication rules (7) and (8)
are also introduced in [13,14], respectively. The technical background of the derivation of
these rules consists in using spherical and lp-spherical coordinates according to [16,17],
respectively. While Euclidean unit circles and unit spheres play a certain role in the vi-
sualization of complex numbers of various dimensions, their role in the visualization of
p-generalized complex numbers is taken over by lp-circles and lp-spheres. In this frame-
work, multiplication is a superposition of movements along longitudes and latitudes of
lp-spheres and scalings along rays through the origin. Its inversion, therefore, allows a
geometrical explanation of the corresponding division rules.

With regard to the general structural properties, we emphasize that the multiplica-
tion rule of quaternions is not commutative, but the rule for the four-complex numbers
considered here is.

Multidimensional constructions of complex structures follow the same line as in
dimensions two up to four. The definition of the finite-dimensional spherical geometric
vector product which is the heart of the present construction of multi-complex structures is
addressed in Section 7 of the present work and is possibly even more of interest for vector
analysis in general than just for the present straightforward constructions.

Finally, we note that, as discussed in Remark 4 in [14], the notion of a division algebra
does not apply to a situation where common multiplication of complex numbers is replaced
with a new one as in the present case. That is why the classical classification of real division
algebras presented in [18] does not apply to the present framework but instead could serve
as an orientation for some future work in the present new field of work.

The rest of the paper is structured as follows. We introduce an abstract four-complex
algebraic structure in Section 2 and subsequently give a proof of the existence of realizations
of it by presenting suitable examples. To be more specific, we define four-complex numbers
in Section 3, present their probabilistic application in Section 4 and a geometric look at
them in Section 5, study classes of l4

p-complex numbers, p > 0, in Section 6 and the finite-
dimensional spherical geometric vector product in Section 7. Multi-complex numbers are
introduced in Section 8. The paper is completed by a short discussion in Section 9 and
Appendix A providing additional material dealing with some consequences from filling a
gap of mathematical rigor in the widespread literature on complex numbers.

2. The Abstract Four-Complex Structure

Let V be a four-dimensional vector space endowed with an addition⊕ : V×V → V, a
scalar multiplication • : V×R→ V and an additional vector multiplication~ : V×V → V.
Assume that addition and vector multiplication are commutative and that addition is also
associative. Let further o and e denote neutral elements with respect to addition and vector
multiplication, respectively, and assume that there exist elements i, j and k of V satisfying

i~ i = j~ j = k~ k = i~ j = i~ k = j~ k = −e.

Then C4 = (V,⊕, •,~, o, e, i, j, k) is called a four-complex structure.

Remark 1. Following standard notation in complex number theory, i, j and k might be called the
imaginary units of the four-complex structure C4.
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3. Four-Complex Numbers

We are going now to prove that there exists a realization of the four-complex structure
introduced in the previous section. To this end, let R4 be the four-dimensional Euclidean
space, x = x1e� x2i� x3j� x4k the standard orthonormal basis representation of x ∈ R4 with

e = (1, 0, 0, 0)T , i = (0, 1, 0, 0)T , j = (0, 0, 1, 0)T , k = (0, 0, 0, 1)

and x1 � x2 = (x1,1 + x1,2, x2,1 + x2,2, x3,1 + x3,2, x4,1 + x4,2) where xl = (x1,l , x2,l , x3,l , x4,l)
T ,

l = 1, 2 the common (component-wise) vector addition. Then (R4,�) is an Abelian
group with the neutral element 0 = (0, 0, 0, 0)T , and the additive inverse element of
x = (x1, x2, x3, x4)

T is −x = (−x1,−x2,−x3,−x4)
T .

The following definition makes use of the notation

ξ1,l =
√

x2
2,l + x2

3,l + x2
4,l , ξ2,l =

√
x2

3,l + x2
4,l , l = 1, 2,

and, for m = 1, 2,

Sm(x1, x2) = I[0,π](arctan
ξm,1

xm,1
+ arctan

ξm,2

xm,2
)− I(π,2π)(arctan

ξm,1

xm,1
+ arctan

ξm,2

xm,2
)

where IA(.) denotes the indicator function of the set A.

Definition 1. Unless for

(x3,l , x4,l) = (0, 0) or (x2,l , x3,l , x4,l) = (0, 0, 0) for at least one value of l ∈ {1, 2} (11)

the geometric vector product of x1 and x2 is defined by

x1 � x2 = S1(x1, x2)



x1,1x1,2 − ξ1,1ξ1,2

S2(x1, x2)
[

x1,1
ξ1,1

+
x1,2
ξ1,2

]


x2,1x2,2 − ξ2,1ξ2,2

[
x2,1
ξ2,1

+
x2,2
ξ2,2

] x3,1x3,2 − x4,1x4,2

x3,1x4,2 + x4,1x3,2





. (12)

Moreover, we put

(x1, x2, x3, x4)
T � (t, 0, 0, 0)T = |t|(x1, x2, x3, x4)

T , t ∈ R (13)

and
(x1, x2, x3, x4)

T � (u, v, 0, 0)T = (x1u− |x2|v, x1v + |x2|u, 0, 0)T , t ∈ R. (14)

Because of its symmetric structure, this product is commutative.
The specialization of the vector product from Section 2, ~ = �, applies to the rest of

the present section. Let ||.|| denote the Euclidean norm in R4.

Remark 2. If ||x2|| = 1 then ||x1 � x2|| = ||x1||. That is, the set of all maps x → x� x2, x ∈ R3

with ||x2|| = 1 is the Lie group on the sphere {x : ||x|| = ||x1||}.

Definition 2. The q’th geometric power of vector x and its complex exponential are defined as

x0 = e, xq = xq−1 � x, q = 1, 2, ... and ex� =
∞
∑

q=0

xq

q! , respectively.

Example 1. If x = x2i+ x3j+ x4k then

x2q = (−1)q(x2
2 + x2

3 + x2
4)

qe and x2q+1 = (−1)q(x2
2 + x2

3 + x2
4)

qx (15)



Axioms 2022, 11, 22 5 of 19

for q = 0, 1, 2, ....

Example 2. Further particular multiplication results are

i� i = j� j = k� k = i� j = i� k = j� k = −e. (16)

Remark 3. Let λ be a positive real number, then

x1 � (λx2) = λx1 � x2

which means that the geometric vector product is positively homogeneous.

Theorem 1. The following Euler type formulas are true:

eτh
� = cos τe+ sin τh, h ∈ {i, j, k},

ex1i+x2j+x3k
� = (cos

√
x2

1 + x2
2 + x2

3)e+ (sin
√

x2
1 + x2

2 + x2
3)

x1i+ x2j+ x3k√
x2

1 + x2
2 + x2

3

,

ex1i
� � ex2j

� = cos(x1 + x2)e+ sin(x1 + x2)j,

ex1i
� � ex3k

� = cos(x1 + x3)e+ sin(x1 + x3)k,

ex2j
� � ex3k

� = cos(x2 + x3)e− sin(x2 + x3)i.

(17)

Proof. The proof of this theorem immediately follows that of Theorem 1 in [14] and is
therefore omitted here.

One of the obvious conclusions from this theorem is that

ex1i+x2j
� = (cos

√
x2

1 + x2
2 )e+ (sin

√
x2

1 + x2
2 )

x1i+ x2j√
x2

1 + x2
2

.

Example 3. For x = (x1, x2, x3, x4)
T ∈ R4, x 6= o, let x̃ = 1

||x||2 (−x1, x2,−x3, x4)
T , then

− (x� x̃) = e (18)

and
−(x� x̃) 6= x� (−x̃).

Definition 3. Following [14], we call x̃ the negative-inverse of x.

Example 4. The following particular result is true:

x1 � x̃2 =
S1(x1, x̃2)

||x2||2


−x1,1x1,2 − ξ1,1ξ1,2

S2(x1, x̃2)
[

x1,1
ξ1,1
− x1,2

ξ1,2

] x2,1x2,2 − ξ2,1ξ2,2[
x2,1
ξ2,1

+
x2,2
ξ2,2

]( −x3,1x3,2 − ξ4,1ξ4,2
ξ3,1ξ4,2 − x4,1x3,2

) 
. (19)

Definition 4. Unless condition (11) is met, the geometric vector ratio, x1 devided by x2, is defined by

x1 � x2 =
S∗1
||x2||2



x1,1x1,2 + ξ1,1ξ1,2

S∗2
[

x1,2
ξ1,2
− x1,1

ξ1,1

]


x2,1x2,2 + ξ2,1ξ2,2

[
x2,2
ξ2,2
− x2,1

ξ2,1

] x3,1x3,2 + x4,1x4,2

−x3,1x4,2 + x4,1x3,2





(20)
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where

S∗m = I[0,π](arctan
ξm,1

xm,1
− arctan

ξm,2

xm,2
)− I[−π,0)(arctan

ξm,1

xm,1
− arctan

ξm,2

xm,2
), m = 1, 2.

Definition 5. (R4,�, •,�, o, e, i, j, k) is called the space of four-complex numbers.

The following proposition summarizes the results of this section.

Proposition 1. The space of four-complex numbers is a realization of the general four-complex
algebraic structure C4.

Remark 4. Following Section 5 in [14], it is obvious how to construct many more realizations
of the four-complex algebraic structure C4 by modifying its underlying vector space and the
multiplication rule.

4. Directional Probability Laws

A generalized Euler type formula was used in [14] for the derivation of a class of
directional probability laws on the Euclidean unit sphere in the three-dimensional Euclidean
space R3. In this section, we construct probability distributions on the Euclidean unit sphere

S3 = {(x1, x2, x3, x4)
T ∈ R4 : x2

1 + x2
2 + x2

3 + x2
4 = 1}

in the four-dimensional Euclidean space R4. The construction method makes use of the
second formula in Equation (17), but a modified method could also use one of the other
formulas. Let (Ω,A, P) denote a probability space and (X, Y, Z)T : Ω → R3 a random
vector defined on it. The random vector

κ = eXi+Yj+Zk
�

takes its values on S3 and allows each of the following representations

κ = κ1e+ κ2i+ κ3j+ κ4k where κ2
1 + κ2

2 + κ2
3 + κ2

4 = 1, (21)

κ = cos Re+ sin R
Xi+ Yj+ Zk

R
(22)

and
κ = cos Φ1e+ sin Φ1[cos Φ2i+ sin Φ2〈cos Φ3j+ sin Φ3k〉 ] (23)

where R =
√

X2 + Y2 + Z2 and the random angles Φ1 and Φ2 take values in the interval
[0, π], and Φ3 in [0, 2π). The Equation (22) is due to the second Euler-type formula in (17)
and (23) corresponds to the spherical coordinate transformation when the radius variable
is equal to one. The random vector

U = (
X
R

,
Y
R

,
Z
R
)T

can be considered as the central projection of (X, Y, Z)T onto the unit sphere

S2 = {(x1, x2, x3)
T ∈ R3 : x2

1 + x2
2 + x2

3 = 1}

in R3. If (X, Y, Z)T follows a spherical distribution law then U is uniformly distributed with
respect to the Euclidean surface content measure on S2. The role of the random angular
variable Φ1 : Ω→ [0, π) in Equation (23) is taken over by the radius variable R in (22),

Φ1 =

{
R if 0 ≤ R < π

R− lπ if lπ ≤ R < (l + 1)π, l = 1, 2, ...
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In other words,

Φ1 = R(mod π)

=
∞

∑
l=0

(
√

X2 + Y2 + Z2 − lπ)I[lπ,(l+1)π)(
√

X2 + Y2 + Z2).

In case (X, Y, Z)T has a three-dimensional normal distribution N3(µ, Σ) with expecta-
tion µ and covariance matrix Σ, the distribution of U is called projected normal or angular
Gaussian or offset normal distribution, and that of Rw = R(mod π) is a wrapped non-
central Chi-square distribution.

5. Geometric View

The aim of this section is to approach the four-complex numbers from a geometrical
point if view. In this context, it should be remembered that geometrical considerations also
form a basis of a classification of hyper-complex numbers. Let M4 = [0, ∞)× [0, π]×2 ×
[0, 2π). A well-known way to define a spherical coordinate transformation Pol(4) : M4 →
R4 is to put

Pol(4)(r, ϕ1, ϕ2, ϕ3) = r


cos ϕ1
sin ϕ1 cos ϕ2
sin ϕ1 sin ϕ2 cos ϕ3
sin ϕ1 sin ϕ2 sin ϕ3

 =


x1
x2
x3
x4

 = x.

Even though there holds Pol(4)(1, 0, ϕ2, ϕ3) = e for all ϕ2, ϕ3, this transformation is a.e.
invertible with the inverse transformation Pol−1

(4)(x1, x2, x3, x4) allowing the representations

r =
√

x2
1 + x2

2 + x2
3 + x2

4,

cos ϕ1 =
x1

r
, sin ϕ1 =

√
x2

2 + x2
3 + x2

4

r
, ϕ1 = arctan

√
x2

2 + x2
3 + x2

4

x1
,

cos ϕ2 =
x2√

x2
2 + x2

3 + x2
4

, sin ϕ2 =

√
x2

3 + x2
4√

x2
2 + x2

3 + x2
4

, ϕ2 = arctan

√
x2

3 + x2
4

x2
,

cos ϕ3 =
x3√

x2
3 + x2

4

, sin ϕ3 =
x4√

x2
3 + x2

4

, ϕ3 = arctan
x4

x3
.

(24)

Example 5. The transformations Pol(4) and Pol−1
(4) give the following particular results:

Pol(4)(t,
π

2
, 0, 0) = t · i, Pol−1

(4)(i) = (1,
π

2
, 0, 0),

Pol(4)(t,
π

2
,

π

2
, 0) = t · j, Pol−1

(4)(j) = (1,
π

2
,

π

2
, 0)

and
Pol(4)(t,

π

2
,

π

2
,

π

2
) = t · k, Pol−1

(4)(k) = (1,
π

2
,

π

2
,

π

2
).

Definition 6. The spherical coordinate product of the vectors Pol(4)(rl , ϕ1,l , ϕ2,l , ϕ3,l), l = 1, 2, is
defined as

Pol(4)(r1, ϕ1,1, ϕ2,1, ϕ3,1) ∗ Pol(4)(r2, ϕ1,2, ϕ2,2, ϕ3,2)

=Pol(4)(r1r2, ϕ1,1 � ϕ1,2, ϕ2,1 � ϕ2,2, ϕ3,1 B ϕ3,2)
(25)
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where
ψ � ϑ = (ψ + ϑ)I[0,π](ψ + ϑ) + (ψ + ϑ− π)I(π,2π)(ψ + ϑ) (26)

and
ψB ϑ = (ψ + ϑ)I[0,2π](ψ + ϑ) + (ψ + ϑ− 2π)I(2π,4π)(ψ + ϑ). (27)

Theorem 2. The spherical coordinate product of the vectors Pol(4)(rl , ϕ1,l , ϕ2,l , ϕ3,l) = (x1,l ,
x2,l , x3,l , x4,l)

T = xl , l = 1, 2 according to Definition 6 coincides with their geometric vector
product according to Definition 1.

Proof. According to Definition 6, the spherical coordinate product of the two vectors
Pol(4)(r1, ϕ1,1, ϕ2,1, ϕ3,1) and Pol(4)(r2, ϕ1,2, ϕ2,2, ϕ3,2) equals

Pol(4)(r1r2, ϕ1,1 � ϕ1,2, ϕ2,1 � ϕ2,2, ϕ3,1 B ϕ3,2)

=r1r2[I[0,π](ϕ1,1 + ϕ1,2)


cos(ϕ1,1 + ϕ1,2)
sin(ϕ1,1 + ϕ1,2) cos(ϕ2,1 � ϕ2,2)
sin(ϕ1,1 + ϕ1,2) sin(ϕ2,1 � ϕ2,2) cos(ϕ3,1 B ϕ3,2)
sin(ϕ1,1 + ϕ1,2) sin(ϕ2,1 � ϕ2,2) sin(ϕ3,1 B ϕ3,2)



+ I(π,2π)(ϕ1,1 + ϕ1,2)


cos(ϕ1,1 + ϕ1,2 − π)
sin(ϕ1,1 + ϕ1,2 − π) cos(ϕ2,1 � ϕ2,2)
sin(ϕ1,1 + ϕ1,2 − π) sin(ϕ2,1 � ϕ2,2) cos(ϕ3,1 B ϕ3,2)
sin(ϕ1,1 + ϕ1,2 − π) sin(ϕ2,1 � ϕ2,2) sin(ϕ3,1 B ϕ3,2)

].

By (26) and (27), and with regard to the fact that the sine and cosine functions are
2π−periodic, we have that

Pol(4)(r1r2, ϕ1,1 � ϕ1,2, ϕ2,1 � ϕ2,2, ϕ3,1 B ϕ3,2)

= r1r2[I1,1 I2,1


cos(ϕ1,1 + ϕ1,2)
sin(ϕ1,1 + ϕ1,2) cos(ϕ2,1 + ϕ2,2)
sin(ϕ1,1 + ϕ1,2) sin(ϕ2,1 + ϕ2,2) cos(ϕ3,1 + ϕ3,2)
sin(ϕ1,1 + ϕ1,2) sin(ϕ2,1 + ϕ2,2) sin(ϕ3,1 + ϕ3,2)



+I1,1 I2,2


cos(ϕ1,1 + ϕ1,2)
sin(ϕ1,1 + ϕ1,2) cos(ϕ2,1 + ϕ2,2 − π)
sin(ϕ1,1 + ϕ1,2) sin(ϕ2,1 + ϕ2,2 − π) cos(ϕ3,1 + ϕ3,2)
sin(ϕ1,1 + ϕ1,2) sin(ϕ2,1 + ϕ2,2 − π) sin(ϕ3,1 + ϕ3,2)



+I1,2 I2,1


cos(ϕ1,1 + ϕ1,2 − π)
sin(ϕ1,1 + ϕ1,2 − π) cos(ϕ2,1 + ϕ2,2)
sin(ϕ1,1 + ϕ1,2 − π) sin(ϕ2,1 + ϕ2,2) cos(ϕ3,1 + ϕ3,2)
sin(ϕ1,1 + ϕ1,2 − π) sin(ϕ2,1 + ϕ2,2) sin(ϕ3,1 + ϕ3,2)



+I1,2 I2,2


cos(ϕ1,1 + ϕ1,2 − π)
sin(ϕ1,1 + ϕ1,2 − π) cos(ϕ2,1 + ϕ2,2 − π)
sin(ϕ1,1 + ϕ1,2 − π) sin(ϕ2,1 + ϕ2,2 − π) cos(ϕ3,1 + ϕ3,2)
sin(ϕ1,1 + ϕ1,2 − π) sin(ϕ2,1 + ϕ2,2 − π) sin(ϕ3,1 + ϕ3,2)

]

with
Il,1 = I[0,π](ϕl,1 + ϕl,2), Il,2 = I(π,2π)(ϕl,1 + ϕl,2), l = 1, 2.

Because of the relationships cos(ψ − π) = − cos ψ and sin(ψ − π) = − sin ψ for
ψ ∈ (π, 2π), it follows that
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Pol(4)(r1r2, ϕ1,1 � ϕ1,2, ϕ2,1 � ϕ2,2, ϕ3,1 B ϕ3,2)

= r1r2


[I1,1 I2,1 + I1,1 I2,2 − I1,2 I2,1 − I1,2 I2,2] cos(ϕ1,1 + ϕ1,2)

I∗

 sin(ϕ1,1 + ϕ1,2) cos(ϕ2,1 + ϕ2,2)
sin(ϕ1,1 + ϕ1,2) sin(ϕ2,1 + ϕ2,2) cos(ϕ3,1 + ϕ3,2)
sin(ϕ1,1 + ϕ1,2) sin(ϕ2,1 + ϕ2,2) sin(ϕ3,1 + ϕ3,2)




= r1r2[I1,1 − I1,2]


[I2,1 + I2,2] cos(ϕ1,1 + ϕ1,2)

[I2,1 − I2,2]

 sin(ϕ1,1 + ϕ1,2) cos(ϕ2,1 + ϕ2,2)
sin(ϕ1,1 + ϕ1,2) sin(ϕ2,1 + ϕ2,2) cos(ϕ3,1 + ϕ3,2)
sin(ϕ1,1 + ϕ1,2) sin(ϕ2,1 + ϕ2,2) sin(ϕ3,1 + ϕ3,2)




= r1r2[I1,1 − I1,2]


c1,1c1,2 − s1,1s1,2

[I2,1 − I2,2](s1,1c1,2 + c1,1s1,2)

 c2,1c2,2 − s2,1s2,2
(s2,1c2,2 + c2,1s2,2)(c3,1c3,2 − s3,1s3,2)
(s2,1c2,2 + c2,1s2,2)(s3,1c3,2 + c3,1s3,2)




where I∗ = [I1,1 I2,1 − I1,1 I2,2 − I1,2 I2,1 + I1,2 I2,2] and cv,l = cos ϕv,l , sv,l = sin ϕv,l for
v = 1, 2, 3 and l = 1, 2. Inverse spherical coordinate transformation yields

Pol(4)(r1r2, ϕ1,1 � ϕ1,2, ϕ2,1 � ϕ2,2, ϕ3,1 B ϕ3,2)

= [I1,1 − I1,2]


x1,1x1,2 − ξ1,1ξ1,2

I2,1−I2,2
ξ1,1ξ1,2

(ξ1,1x1,2 + x1,1ξ1,2)

 x2,1x2,2 − ξ2,1ξ2,2

(ξ2,1x2,2 + x2,1ξ2,2)
x3,1x3,2−x4,1x4,2

ξ2,1ξ2,2

(ξ2,1x2,2 + x2,1ξ2,2)
x4,1x3,2+x3,1x4,2

ξ2,1ξ2,2




proving that (25) and (12) describe the same multiplication.

Remark 5. (a) The spherical coordinate multiplication

x = Pol(4)(r, ϕ1, ϕ2, ϕ3)→ Pol(4)(r, ϕ1, ϕ2, ϕ3)� e = x (28)

defines the identical map, the map

x→ x� i = Pol(4)(r, ϕ1 +
π

2
, ϕ2, ϕ3)

enlarges the angle between x and e by π/2.

(b) Let Π2,3,4 and Π3,4 denote the results of orthogonally projecting x into the subspaces of R4

spanned by i, j and k or by j and k, respectively. The map

x→ x� j = Pol(4)(r, ϕ1 +
π

2
, ϕ2 +

π

2
, ϕ3)

both enlarges the angle between x and e by π/2 and that between Π2,3,4 and i also by π/2. Moreover,
the map

x→ x� k = Pol(4)(r, ϕ1 +
π

2
, ϕ2 +

π

2
, ϕ3 +

π

2
)

enlarges each of the angles between x and e, Π2,3,4 and i as well as that between Π3,4 and j by π/2.

Remark 6. The space of four-complex numbers may be alternatively represented as

({Pol(4)(r, ϕ1, ϕ2, ϕ3), ϕl ∈ [0, π), l = 1, 2, ϕ3 ∈ [0, 2π), r > 0},�, •, ∗, o, e, i, j, k)
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with elements e, i, j, k satisfying the equations in (16) and (18). In this consideration, the radius
parameter r is multiplicative and the three angular parameters ϕ1, ϕ2, ϕ3 are additive upon the
spherical coordinate multiplication.

Remark 7. If x = Pol(4)(r, ϕ1, ϕ2, ϕ3) then x̃ = Pol(4)(r, π − ϕ1, ϕ2, π − ϕ3), thus (18), illus-
trating Example 3 from a geometric point of view.

Definition 7. The spherical coordinate vector ratio, vector Pol(4)(r1, ϕ1,1, ϕ2,1, ϕ3,1) divided by
the vector Pol(4)(r2, ϕ1,2, ϕ2,2, ϕ3,2), is defined as

Pol(4)(r1, ϕ1,1, ϕ2,1, ϕ3,1)÷ Pol(4)(r2, ϕ1,2, ϕ2,2, ϕ3,2)

= Pol(4)(
r1

r2
, ϕ1,1 ? ϕ1,2, ϕ2,1 ? ϕ2,2, ϕ3,1 − ϕ3,2)

(29)

where

ϕl ? ϑl = (ϕl − ϑl)I[0,π](ϕl − ϑl) + (ϕl − ϑl + π)I[−π,0)(ϕl − ϑl), l = 1, 2.

Theorem 3. The spherical coordinate ratio of the two vectors Pol(4)(rl , ϕ1,l , ϕ2,l , ϕ3,l) =
(x1,l , x2,l , x3,l , x4,l) = xl , l = 1, 2 according to Definition 7 coincides with their geometric vec-
tor ratio according to Definition 4.

Proof. The proof of this theorem is quite similar to that of Theorem 2 and therefore be
omitted here.

6. Classes of Four-Complex Numbers

Matrix, polynomial, and variable basis representations of three-complex numbers have
been considered in [14] and can be proved for four-complex numbers, too, showing that
there exist many more realizations of the four-complex structure introduced in Section 2.
Such representations allow numerous modifications which may be of particular interest in
specific applied situations and are left to the reader. The purpose of this section is to go one
step further in discussing the existence of fundamentally different types of realizations of
the general four-complex structure. We recall that according to Section 3, multiplying two
four-complex numbers who’s radius variables attain the value one means a movement on
the Euclidean unit sphere. That’s why we speak of this case as of the Euclidean one, while
the present section deals with non-Euclidean cases whenever p 6= 2.

We start this section with an analytical consideration. Let p > 0. For x = (x1, ..., x4)
T ,

from now on let

ξ1 = (|x2|p + |x3|p + |x4|p)1/p, ξ2 = (|x3|p + |x4|p)1/p

and

Γl = |
(

ξl,1xl,2 + xl,1ξl,2
xl,1xl,2 − ξl,1ξl,2

)
|p, l = 1, 2, Γ3 = |

(
x4,1x3,2 + x3,1x4,2
x3,1x3,2 − x4,1x4,2

)
|p.

Definition 8. Unless condition (11) is met, the geometric vector p-product x1 �p x2 of the vectors
xl = (x1,l , ..., x4,l)

T , l = 1, 2 is defined by the equation

Γ1

S1(x1, x2)|x1|p|x2|p
x1 �p x2

=


x1,1x1,2 − ξ1,1ξ1,2

S2(x1,x2)ξ1,1ξ1,2

[
x1,1
ξ1,1

+
x1,2
ξ1,2

]
Γ2

 x2,1x2,2 − ξ2,1ξ2,2
ξ2,1ξ2,2

Γ3

[
x2,1
ξ2,1

+
x2,2
ξ2,2

]( x3,1x3,2 − x4,1x4,2
x3,1x4,2 + x4,1x3,2

) 
, (30)

otherwise (13) or (14) apply.
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We now move on to a more geometrical consideration. Let the l4,p-spherical coordinate
transformation SPH4,p : M4 → R4 be defined by

x =


x1
x2
x3
x4

 = SPH4,p(r, ϕ1, ϕ2, ϕ3) = r


cosp(ϕ1)
sinp(ϕ1) cosp(ϕ2)
sinp(ϕ1) sinp(ϕ2) cosp(ϕ3)
sinp(ϕ1) sinp(ϕ2) sinp(ϕ3)


where, with Np(ϕ) = (| cos ϕ|p + | sin ϕ|p)1/p, the lp-trigonometric functions

cosp(ϕ) = cos ϕ/Np(ϕ) and sinp(ϕ) = sin ϕ/Np(ϕ)

are introduced in [16]. This transformation is a.e., invertible with the inverse transformation
SPH−1

4,p (x1, x2, x3, x4) allowing the representations

r = (|x1|p + |x2|p + |x3|p + |x4|p)1/p = |x|p,

cos ϕ1 =
Np(ϕ1)x1

r
, sin ϕ1 =

Np(ϕ1)ξ1

r
, ϕ1 = arctan

ξ1

x1
,

cos ϕ2 =
Np(ϕ2)x2

ξ1
, sin ϕ2 =

Np(ϕ2)x2

ξ1
, ϕ2 = arctan

ξ2

x2
,

cos ϕ3 =
Np(ϕ3)x3

ξ2
, sin ϕ3 =

Np(ϕ3)x4

ξ2
, ϕ3 = arctan

x4

x3

(31)

where |x|p denotes the lp-norm or, according to [19], the lp-antinorm of x if p ≥ 1 or
0 < p ≤ 1, respectively.

Definition 9. The spherical coordinate p-product of the vectors xl = SPH4,p(rl , ϕ1,l , ϕ2,l , ϕ3,l),
l = 1, 2 is defined as

SPH4,p(r1, ϕ1,1, ϕ2,1, ϕ3,1) ∗p SPH4,p(r2, ϕ1,2, ϕ2,2, ϕ3,2)

= SPH4,p(r1r2, ϕ1,1 � ϕ1,2, ϕ2,1 � ϕ2,2, ϕ3,1 B ϕ3,2)
(32)

where � and B are defined as in (26) and (27), respectively.

Theorem 4. The spherical coordinate p-product of the vectors xl = SPH4,p(rl , ϕ1,l , ϕ2,l , ϕ3,l),
l = 1, 2 according to Definition 9 coincides with their geometric vector p-product according to
Definition 8.

Proof. We start from the representation

SPH4,p(r1r2, ϕ1,1 � ϕ1,2, ϕ2,1 � ϕ2,2, ϕ3,1 B ϕ3,2)

= r1r2diag(Θ1, Θ2, Θ3, Θ3)Pol(4)(1, ϕ1,1 � ϕ1,2, ϕ2,1 � ϕ2,2, ϕ3,1 B ϕ3,2)
(33)

where
Θ1 =

1
Np(ϕ1,1 � ϕ1,2)

, Θ2 =
Θ1

Np(ϕ2,1 � ϕ2,2)
, Θ3 =

Θ2

Np(ϕ3,1 B ϕ3,2)
.

Let $l = ||xl ||, l = 1, 2 then

SPH4,p(r1r2, ϕ1,1 � ϕ1,2, ϕ2,1 � ϕ2,2, ϕ3,1 B ϕ3,2)

=
r1r2

$1$2
diag(Θ1, Θ2, Θ3, Θ3)Pol(4)($1$2, ϕ1,1 � ϕ1,2, ϕ2,1 � ϕ2,2, ϕ3,1 B ϕ3,2).

(34)

It follows from the properties of the trigonometric functions that

Np(ϕl,1 � ϕl,2) = Np(ϕl,1 + ϕl,2), l = 1, 2
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and
Np(ϕ3,1 B ϕ3,2) = Np(ϕ3,1 + ϕ3,2).

Moreover,

Np(ϕl,1 + ϕl,2) = (|sl,1cl,2 + sl,2cl,1|p + |cl,1cl,2 − sl,1sl,2|p)1/p

where sl,m = sin ϕl,m and cl,m = cos ϕl,m, l = 1, 2, 3, m = 1, 2. Note that

Np(ϕ1,1 + ϕ1,2) =
Np(ϕ1,1)Np(ϕ1,2)Γ1

r1r2

and

Np(ϕl,1 + ϕl,2) =
Np(ϕl,1)Np(ϕl,2)Γl

ξl,1ξl,2
, l = 2, 3.

Due to the representations

x1,l = rl cosp(ϕ1,l) and x1,l = $l cos ϕ1,l , l = 1, 2

we have that
Np(ϕ1,l) = rl/$l , l = 1, 2.

Similarly,

x2,l = rl sinp(ϕ1,l) cosp(ϕ2,l) and x2,l = $l sin ϕ1,l cos ϕ2,l , l = 1, 2

yields Np(ϕ1,l)Np(ϕ2,l) = rl/$l , l = 1, 2, thus

Np(ϕ2,l) = 1, l = 1, 2.

Also, the representations

x3,l = rl sinp(ϕ1,l) sinp(ϕ2,l) cosp(ϕ3,l) and x3,l = $l sin ϕ1,l sin ϕ2,l cos ϕ3,l

result in Np(ϕ1,l)Np(ϕ2,l)Np(ϕ3,l) = rl/$l , l = 1, 2, thus

Np(ϕ3,l) = 1, l = 1, 2.

So we get

Θ1 =
$1$2

Γ1
, Θ2 = Θ1

ξ1,1ξ1,2

Γ2
, Θ3 = Θ2

ξ2,1ξ2,2

Γ3

and

SPH4,p(r1r2,ϕ1,1 � ϕ1,2, ϕ2,1 � ϕ2,2, ϕ3,1 B ϕ3,2)

=


$1$2
Γ1

0 0 0

0 $1$2ξ1,1ξ1,2
Γ1Γ2

0 0

0 0 $1$2ξ1,1ξ1,2ξ2,1ξ2,2
Γ1Γ2Γ3

0

0 0 0 $1$2ξ1,1ξ1,2ξ2,1ξ2,2
Γ1Γ2Γ3


· r1r2

$1$2
Pol(4)($1$2, ϕ1,1 � ϕ1,2, ϕ2,1 � ϕ2,2, ϕ3,1 B ϕ3,2)

=
r1r2

Γ1


1 0 0 0
0 ξ1,1ξ1,2

Γ2
0 0

0 0 ξ1,1ξ1,2ξ2,1ξ2,2
Γ2Γ3

0

0 0 0 ξ1,1ξ1,2ξ2,1ξ2,2
Γ2Γ3


· Pol(4)($1$2, ϕ1,1 � ϕ1,2, ϕ2,1 � ϕ2,2, ϕ3,1 B ϕ3,2)

(35)



Axioms 2022, 11, 22 13 of 19

from where the result follows.

It is not hard now to check that the present number systems possess properties like (16).
The results of this section can then be easily summarized as follows.

Proposition 2. For every p greater than zero, the space (R4,�, •,�p, o, e, i, j, k) is a realization of
the four-complex algebraic structure C4.

7. The Spherical Geometric Vector Product in Higher Dimensions

According to the method developed in [13,14] and continued in the previous sections,
the key point for constructing multi-complex algebraic structures is the definition of a
suitable geometric vector product. Such a definition is introduced and verified here.

For m = 1, 2, let xm = (x1,m, . . . , xn,m)T ∈ Rn and

ξl,m =
√

x2
l+1,m + ... + x2

n,m, l = 0, ..., n− 2, ξn−1,m = xn,m,

and note that ξ0,m = rm is the Euclidean norm of the vector xm. Let further

Pl(x1, x2) = (
x1,1

ξ1,1
+

x1,2

ξ1,2
) · · · (

xl−1,1

ξl−1,1
+

xl−1,2

ξl−1,2
), l = 2, ..., n− 1

and
Dl(x1, x2) = xl,1xl,2 − ξl,1ξl,2, l = 1, ..., n− 2.

Finally, we put

Sq(x1, x2) =
q

∏
l=1

S∗l (x1, x2), q = 1, ..., n− 2

where the sign S∗l (x1, x2) is defined as S∗l (x1, x2) = Il,1 − Il,2 with Il,1 = I[0,π](ϕl,1 + ϕl,2),

Il,2 = I(π,2π)(ϕl,1 + ϕl,2) and ϕl,m = arctan ξl,m
xl,m

, l = 1, ..., n− 1, m = 1, 2.

Definition 10. Unless for

(xn−1,m, xn,m) = (0, 0), ..., (x2,m, ..., xn,m) = (0, ..., 0) for at least one value of m ∈ {1, 2},

the spherical geometric vector product of x1 and x2 is defined by

x1 � x2 =



S1(x1, x2)D1(x1, x2)
S2(x1, x2)P2(x1, x2)D2(x1, x2)
...
Sn−2(x1, x2)Pn−2(x1, x2)Dn−2(x1, x2)
Sn−2(x1, x2)Pn−1(x1, x2)(xn−1,1xn−1,2 − xn,1xn,2)
Sn−2(x1, x2)Pn−1(x1, x2)( xn,1xn−1,2 + xn−1,1xn,2 )


. (36)

Moreover, in particular, we put

(x1, ..., xn)
T � (t, 0, ..., 0)T = |t|(x1, x2, ..., xn)

T , t ∈ R. (37)

Let Mn = [0, ∞) × [0, π]×(n−2) × [0, 2π) and define the usual n-dimensional polar
coordinate transformation Pol(n) : Mn → Rn by x1 = r cos ϕ1, x2 = r sin ϕ1 cos ϕ2, . . . ,
xn−1 = r sin ϕ1 . . . sin ϕn−2 cos ϕn−1 and xn = r sin ϕ1 . . . sin ϕn−1.
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Definition 11. The spherical coordinate product of the vectors Pol(n)(rm, ϕ1,m, . . . , ϕn−1,m),
m = 1, 2, is defined as

Pol(n)(r1,ϕ1,1, . . . , ϕn−1,1) ∗ Pol(n)(r2, ϕ1,2, . . . , ϕn−1,2)

=Pol(n)(r1r2, ϕ1,1 � ϕ1,2, . . . , ϕn−2,1 � ϕn−2,2, ϕn−1,1 B ϕn−1,2)
(38)

where ψ � ϑ and ψB ϑ are introduced in (26) and (27), respectively.

Theorem 5. The spherical coordinate product of the vectors Pol(n)(rm, ϕ1,m, . . . , ϕn−1,m) =

(x1,m, . . . , xn,m)T = xm, m = 1, 2 according to Definition 11 coincides with their geometric vector
product according to Definition 10.

Proof. According to Definition 11, the spherical coordinate product of the two vectors
Pol(n)(r1, ϕ1,1, . . . , ϕn−1,1) and Pol(n)(r2, ϕ1,2, . . . , ϕn−1,2) allows the representation

Pol(n)(r1r2, ϕ1,1 � ϕ1,2, . . . , ϕn−2,1 � ϕn−2,2, ϕn−1,1 B ϕn−1,2)/(r1r2)

=



cos(ϕ1,1 � ϕ1,2)
sin(ϕ1,1 � ϕ1,2) cos(ϕ2,1 � ϕ2,2)
sin(ϕ1,1 � ϕ1,2) sin(ϕ2,1 � ϕ2,2) cos(ϕ3,1 � ϕ3,2)
...
sin(ϕ1,1 � ϕ1,2) . . . sin(ϕn−3,1 � ϕn−3,2) cos(ϕn−2,1 � ϕn−2,2)
sin(ϕ1,1 � ϕ1,2) . . . sin(ϕn−3,1 � ϕn−3,2) sin(ϕn−2,1 � ϕn−2,2) cos(ϕn−1,1 B ϕn−1,2)
sin(ϕ1,1 � ϕ1,2) . . . sin(ϕn−3,1 � ϕn−3,2) sin(ϕn−2,1 � ϕn−2,2) sin(ϕn−1,1 B ϕn−1,2)


.

On using the notation cl,m = cos ϕl,m and sl,m = sin ϕl,m, m = 1, 2 we have

cos(ϕl,1 � ϕl,2) =(cl,1cl,2 − sl,1sl,2)[Il,1 − Il,1], l = 1, ..., n− 2

cos(ϕn−1,1 B ϕn−1,2) =cn−1,1cn−1,2 − sn−1,1sn−1,2
(39)

and

sin(ϕl,1 � ϕl,2) =(sl,1cl,2 + cl,1sl,2)[Il,1 − Il,2], l = 1, ..., n− 2

sin(ϕn−1,1 B ϕn−1,2) =sn−1,1cn−1,2 + cn−1,1sn−1,2.
(40)

With Sl = Sl(x1, x2), l = 1, ..., n− 2, it follows that

Pol(n)(r1r2, ϕ1,1 � ϕ1,2, . . . , ϕn−2,1 � ϕn−2,2, ϕn−1,1 B ϕn−1,2)/(r1r2)

=



S1(c1,1c1,2 − s1,1s1,2)
S2(s1,1c1,2 + c1,1s1,2)(c2,1c2,2 − s2,1s2,2)
S3(s1,1c1,2 + c1,1s1,2)(s2,1c2,2 + c2,1s2,2)(c3,1c3,2 − s3,1s3,2)
...
Sn−2(s1,1c1,2 + c1,1s1,2) . . . (sn−3,1cn−3,2 + cn−3,1sn−3,2)(cn−2,1cn−2,2 − sn−2,1sn−2,2)
Sn−2(s1,1c1,2 + c1,1s1,2) . . . (sn−2,1cn−2,2 + cn−2,1sn−2,2)(cn−1,1cn−1,2 − sn−1,1sn−1,2)
Sn−2(s1,1c1,2 + c1,1s1,2) . . . (sn−2,1cn−2,2 + cn−2,1sn−2,2)(sn−1,1cn−1,2 + cn−1,1sn−1,2)


.

By inverse n-dimensional polar coordinate transformation,

c1,m =
x1,m

ξ1−1,m
, s1,m =

ξ1,m

ξ1−1,m
, m = 1, 2, l = 1, ..., n− 1. (41)

Thus,
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Pol(n)(r1r2, ϕ1,1 � ϕ1,2, . . . , ϕn−2,1 � ϕn−2,2, ϕn−1,1 B ϕn−1,2)

= r1r2



S1
x1,1x1,2−ξ1,1ξ1,2

r1r2

S2
ξ1,1x1,2+x1,1ξ1,2

r1r2

x2,1x2,2−ξ2,1ξ2,2
ξ1,1ξ1,2

S3
ξ1,1x1,2+x1,1ξ1,2

r1r2

ξ2,1x2,2+x2,1ξ2,2
ξ1,1ξ1,2

x3,1x3,2−ξ3,1ξ3,2
ξ2,1ξ2,2

...
Sn−2

ξ1,1x1,2+x1,1ξ1,2
r1r2

· · · ξn−3,1xn−3,2+xn−3,1ξn−3,2
ξn−4,1ξn−4,2

xn−2,1xn−2,2−ξn−2,1ξn−2,2
ξn−3,1ξn−3,2

Sn−2
ξ1,1x1,2+x1,1ξ1,2

r1r2
· · · ξn−2,1xn−2,2+xn−2,1ξn−2,2

ξn−3,1ξn−3,2

xn−1,1xn−1,2−ξn−1,1ξn−1,2
ξn−2,1ξn−2,2

Sn−2
ξ1,1x1,2+x1,1ξ1,2

r1r2
· · · ξn−2,1xn−2,2+xn−2,1ξn−2,2

ξn−3,1ξn−3,2

ξn−1,1xn−1,2+xn−1,1ξn−1,2
ξn−2,1ξn−2,2



(42)

=



S1(x1,1x1,2 − ξ1,1ξ1,2)

S2(
x1,2
ξ1,2

+
x1,1
ξ1,1

)(x2,1x2,2 − ξ2,1ξ2,2)

S3(
x1,2
ξ1,2

+
x1,1
ξ1,1

)(
x2,2
ξ2,2

+
x2,1
ξ2,1

)(x3,1x3,2 − ξ3,1ξ3,2)

...
Sn−2(

x1,2
ξ1,2

+
x1,1
ξ1,1

) · · · ( xn−3,2
ξn−3,2

+
xn−3,1
ξn−3,1

)(xn−2,1xn−2,2 − ξn−2,1ξn−2,2)

Sn−2(
x1,2
ξ1,2

+
x1,1
ξ1,1

) · · · ( xn−2,2
ξn−2,2

+
xn−2,1
ξn−2,1

)(xn−1,1xn−1,2 − ξn−1,1ξn−1,2)

Sn−2(
x1,2
ξ1,2

+
x1,1
ξ1,1

) · · · ( xn−2,2
ξn−2,2

+
xn−2,1
ξn−2,1

)(ξn−1,1xn−1,2 + xn−1,1ξn−1,2)


(43)

from where the result follows.

8. Multi-Complex Numbers

Having defined the geometric vector product in higher dimensions, we are now in
a position to introduce the notion of a multi-complex structure. Thereby, we restrict our
consideration to the particular case where the basic vector space is just the Euclidean
vector space Rn. To this end, the definitions of the geometric vector power and its complex
exponential function can be taken over from Definition 2 word for word for the higher
dimensional case. Let e = (1, 0T

n−1)
T , il = (0T

l , 1, 0T
n−l−1)

T , l = 1, ..., n− 2, in−1 = (0T
n−1, 1)T .

Example 6. Particular multiplication results are

il � im = −e, l 6= m.

Example 7. If x = x2i1 + ... + xnin−1 and ξ =
√

x2
2 + ... + x2

n then

x2q = (−1)qξ2q e, x2q+1 = (−1)qξ2q x, q = 0, 1, 2, ... .

Example 8. The following Euler type formulas are true:

eτh
� = (cos τ)e+ (sin τ)h, τ ∈ R, h ∈ {i1, ..., in−1}

and
ex� = (cos ξ)e+ (sin ξ)

x

ξ

where x and ξ are as in Example 7.

Definition 12. Let Rn be the n-dimensional Euclidean vector space endowed with the common
vector addition � and the geometric vector product � according to Definition 10. Then Cn =
(Rn,⊕, �, 0n, en, i1, ..., in−1) is called the space of n-complex numbers, 0n and en are accordingly
the neutral elements of addition and multiplication, and i1, ..., in−1 are called the imaginary units of
this space.
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9. Discussion

In the previous section, the definition of a four-complex algebraic structure given in
Section 2 was extended to higher dimensions. In all of these cases, the questions of the
existence and uniqueness of realizations of such algebraic structures arise immediately.
For dimensions two and three, these questions were answered in [13,14]. In the case of
dimension two and p = 2, some authors do not explicitly state that the multiplication is
linked to a (5) analog calculation rule. However, to state this explicitly leads in a certain
way to the introduction of the vector product (7), which was generalized for dimensions
three and four in Formulas (8) and (12), respectively. A multivariate generalization of this
geometric vector product is given in Section 7 and serves as the key instrument for the
construction of multi-complex structures. It is indicated in the text close to Formula (6)
and in Remark 3 that, consequently, some of the usual algebraic rules known from usual
complex numbers are replaced with new ones, here. This is the reason why the classification
of real division algebras according to [18] does not apply, here.

Funding: The APC was funded by Deutsche Forschungsgemeinschaft and Universität Rostock within
the funding programme Open Access Publishing.
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Appendix A

As noted in [14,15], numerous theoretically and practically significant results in con-
nection with complex numbers have been derived on a partly non-rigorous or ’alchemical’
basis over a historically long period of time. An often even today met in the literature lack
of rigor in the presentation of (usual) complex numbers was closed in [13] by a completely
formally correct introduction of these numbers as a particular realization of a general alge-
braic structure. The consequences of this for the formally completely correct representation
of some applications of complex numbers will be discussed in this section.

Different possibilities to represent systems of mathematical objects that are called
complex numbers were derived during the centuries. A system of complex numbers will be
considered here to be an algebraic structure C2 = (C,⊕,�, o, e, i) where C is a non-empty
set and ⊕,� are commutative and associative binary operations acting from C×C to C
in a way such that (C,⊕) and (C,�) are Abelian groups with neutral elements o and e,
respectively, and the two elements e and i from C satisfy the equation i� i = −e.

For simplicity, we restrict our consideration throughout this section to the most classi-
cal case where

C = {
(

x
y

)
, x ∈ R, y ∈ R},

(
x
y

)
⊕
(

x′

y′

)
=

(
x + x′

y + y′

)
,

(
x
y

)
�
(

x′

y′

)
=

(
xx′ − yy′

xy′ + x′y

)
and where + and − mean addition and subtraction of real numbers. For other realizations
of C2 and for its generalizations Cp, p > 0, see [13].

Appendix A.1. Solutions to Quadratic Equations

The equation x2 + px + q = 0, x ∈ R where p and q are real constants has no solution
for x if q− p2/4 > 0. For this case, let us consider the equation(

x
y

)
�
(

x
y

)
+ p

(
x
y

)
+ qe = 0,

(
x
y

)
∈ R2.
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In other words, we consider the equation system

x2 − y2 + px + q = 0,

2xy + py = 0

which, for y 6= 0, has the solutions(
x
y

)
∈ {
(

−p/2√
−p2/4 + q

)
,
(

−p/2
−
√
−p2/4 + q

)
}.

The traditional way to write this result is to call x1 = −p/2 + i
√
−p2/4 + q as well

as x2 = −p/2− i
√
−p2/4 + q the solutions of the first equation in this section. Here,

however, the quantity i =
√
−1 is mathematically not defined, which, if one does not

consider the historical development, is actually an absurdity for an exact science. The use
of the usual way of dealing with i, clearly, remains unaffected by this remark. The key
point of the present approach is its consequent start from a vector space consideration
in combination with the introduction of the product �. For a more general approach to
quadratic equations, we refer to [15].

Appendix A.2. Derivatives of Complex Valued Functions

Let D be an open subset of C. We call a function f : D → C differentiable in z0 ∈ D if
the ratio ( f (z)− f (z0))� (z− z0) approaches a limit as z approaches zo. In this case, it is
natural to write

f ′(z0) = lim
z→z0

( f (z)− f (z0))� (z− z0).

Hereby, the ratio of two complex numbers zl = (xl , yl)
T , l = 1, 2 is defined according

to [13] as

z1 � z2 =
||z1||
||z2||

(
x1x2 + y1y2
x2y1 − y2x1

)
∣∣∣∣∣∣∣∣( x1x2 + y1y2

x2y1 − y2x1

)∣∣∣∣∣∣∣∣
with ||z||meaning the Euclidean norm of the vector z ∈ R2. We remark that

z�
(

1
0

)
= z,(

x
y

)
�
(

0
1

)
=

(
y
−x

)
=

(
cos α sin α
− sin α cos α

)(
x
y

)
|α=π/2.

While the first of these two divisions describes the identical map, the second one
means a clockwise rotation through π/2.

The function f will be called holomorphic in D if it is differentiable in every z0 from
D. If such function is given by

f (
(

x
y

)
) =

(
u(x, y)
v(x, y)

)
,
(

x
y

)
∈ D

then it follows that the well known Cauchy-Riemann differential equations hold. To prove
this, we consider points zl = z0 + zl,h, l = 1, 2 where

z1,h =

(
h
0

)
and z2,h =

(
0
h

)



Axioms 2022, 11, 22 18 of 19

with values of h tending to zero, and denote partial derivatives with respect to x or y of a
function w(x, y) by wx and wy, respectively. Then

( f (z1)− f (z0))� (z1 − z0) =

(
u(x0 + h, y0)− u(x0, y0)
v(x0 + h, y0)− v(x0, y0)

)
� z1,h

=

(
ux(x0 + δh, y0)
vx(x0 + δh, y0)

)
� e→

(
ux(x0, y0)
vx(x0, y0)

)
, h→ 0

where δ is a certain number from the interval (0, 1). Similarly,

( f (z2)− f (z0))� (z2 − z0) =

(
u(x0 + h, y0)− u(x0, y0)
v(x0 + h, y0)− v(x0, y0)

)
� z2,h

=

(
uy(x0 + δh, y0)
vy(x0 + δh, y0)

)
� (0, 1)T →

(
vy(x0, y0)
−uy(x0, y0)

)
, h→ 0.

Appendix A.3. Avoiding a Computational Conflict

The basis for the complex algebraic structure C2 property

i� i = −e

is commonly written in usual (mathematically alchemical) terms of complex numbers as
√
−1 ·
√
−1 = −1.

Using notation
√
−1 = (−1)1/2 and hoping or assuming (in a certain mathematically

non-rigorous sense) that calculation rules from the real number system can be used for the
non-defined quantity

√
−1 leads to the well known two contradictory results

(−1)1/2 · (−1)1/2 = (−1)1/2+1/2 = −1 and (−1)1/2 · (−1)1/2 = ((−1) · (−1))1/2 = 1.

Occasionally, authors comment on this conflict with a completely unusual call for
mathematics to be vigilant, but without giving an in-depth explanation. Acting within C2,
however, does not provoke such a conflict.

Appendix A.4. Factorization of Characteristic Functions of Sums of Independent Random Variables

The characteristic function of a random variable x is defined as

ϕx(t) = Eeitx =

(
E cos(tx)
E sin(tx)

)
, t ∈ R.

Let x1 and x2 be independent random variables defined on a joint probability space, then

ϕx1+x2(t) = E
(

cos(tx1) cos(tx2)− sin(tx1) sin(tx2)
cos(tx1) sin(tx2) + sin(tx1) cos(tx2)

)
= E

(
cos(tx1)
sin(tx1)

)
�
(

cos(tx2)
sin(tx2)

)
=
∫ [∫

eitz1 � eitz2 Px2(dx2)

]
Px1(dx1)

= ϕx1(t)� ϕx2(t) = ϕx1(t)ϕx2(t)

(A1)

reproving a well-known property of characteristic functions based upon the completely
correct mathematical definition of the notion of complex numbers given in [13].



Axioms 2022, 11, 22 19 of 19

Appendix A.5. Why Imaginary Numbers Are no More Imaginary

At the hand of some examples, we have seen in the previous sections that several basic
mathematical statements that commonly make use of the imaginary unit i =

√
−1 can be

reformulated in a verifiable mathematically fully formally correct manner without making
use of i. By studying a particular realization of an abstract algebraic complex structure
in combination with a product suitably defined on it, the imaginary (or ’mathematically
alchemical’) character of the imaginary unit has disappeared. To conclude this section,
with certain equal rights, one could say that negative numbers are not ’negative’ in a
corresponding sense.
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