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Abstract: The leapfrog schemes have been developed for unconditionally stable alternating-direction
implicit (ADI) finite-difference time-domain (FDTD) method, and recently the complying-divergence
implicit (CDI) FDTD method. In this paper, the formulations from time-collocated to leapfrog
fundamental schemes are presented for ADI and CDI FDTD methods. For the ADI FDTD method, the
time-collocated fundamental schemes are implemented using implicit E-E and E-H update procedures,
which comprise simple and concise right-hand sides (RHS) in their update equations. From the
fundamental implicit E-H scheme, the leapfrog ADI FDTD method is formulated in conventional
form, whose RHS are simplified into the leapfrog fundamental scheme with reduced operations
and improved efficiency. For the CDI FDTD method, the time-collocated fundamental scheme is
presented based on locally one-dimensional (LOD) FDTD method with complying divergence. The
formulations from time-collocated to leapfrog schemes are provided, which result in the leapfrog
fundamental scheme for CDI FDTD method. Based on their fundamental forms, further insights
are given into the relations of leapfrog fundamental schemes for ADI and CDI FDTD methods. The
time-collocated fundamental schemes require considerably fewer operations than all conventional
ADI, LOD and leapfrog ADI FDTD methods, while the leapfrog fundamental schemes for ADI and
CDI FDTD methods constitute the most efficient implicit FDTD schemes to date.

Keywords: alternating direction implicit (ADI); computational electromagnetics; divergence;
finite-difference time-domain (FDTD); implicit scheme; leapfrog scheme; unconditionally stable;
fundamental scheme

1. Introduction
One of the most popular methods in computational electromagnetics is the finite-

difference time-domain (FDTD) method [1,2]. It is a leapfrog explicit scheme that involves
time-staggered electric (E) and magnetic (H) fields update with time step size limited by
the Courant–Friedrichs–Lewy (CFL) stability constraint. To overcome the CFL constraint,
unconditionally stable FDTD methods have been developed. They include alternating
direction implicit (ADI) FDTD [3–6], split-step (SS) and locally one-dimensional (LOD)
FDTD [7–16], Crank–Nicolson (CN)-based approximate FDTD methods [17–21], etc. (Note
that [17] has pointed out a potential instability in [22].) Many of the unconditionally stable
methods have been adapted directly from the classical implicit schemes for parabolic, ellip-
tic and hyperbolic equations [23–29]. In their conventional update procedures involving
time-collocated fields, they have matrix operators at not only the left-hand sides (LHS)
(making them implicit), but also the right-hand sides (RHS). Despite the unconditional
stability, these update procedures often lead to complicated equations with substantial
floating-point operations (flops) that would lower the overall efficiency gain. To reduce
the flops and improve the efficiency, we have developed the fundamental implicit schemes
that feature simple, concise and matrix-operator-free RHS [30]. The fundamental schemes
enable efficient implementations for ADI, LOD, SS, CN and many classical implicit schemes.
Moreover, they provide a unified formulation for simplification and interlinking of the
conventional implicit FDTD schemes through physical and auxiliary field vectors [31].

Thus far, most conventional and fundamental implicit schemes involve time-collocated
electric and magnetic fields at full- and half-integer (or arbitrary intermediate) time-indices.
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Alternatively, there exists a leapfrog scheme for the ADI FDTD method that involves time-
staggered electric and magnetic fields [32–35]. Further developments of the leapfrog scheme
have been carried out including several recent works [36–46]. Although the leapfrog ADI
FDTD method is (slightly) more efficient than the conventional time-collocated one, the
RHS of its update procedures are still complicated for comprising some products of matrix
operator partitions. Unlike the leapfrog explicit FDTD method, analyses of the divergence
properties show that the leapfrog ADI FDTD method does not have complying divergence
and violates Gauss’s law just like many other implicit schemes [47]. To address the diver-
gence issue, the divergence-preserving ADI FDTD method [48] and the fundamental LOD
FDTD method with complying divergence have been developed [11]. While satisfying
Gauss’s law, the latter method exploits the efficient fundamental scheme and finds useful
applications. Meanwhile, both complying-divergence implicit (CDI) FDTD methods in-
volve time-collocated electric and magnetic fields. Recently, a leapfrog scheme for the CDI
FDTD method has been introduced that involves time-staggered fields [49]. It has implicit
update procedures in the form of fundamental scheme with RHS free of operators, and
explicit update procedures that are compatible with those of leapfrog explicit FDTD method.
The leapfrog CDI FDTD method has featured many advantages including unconditional
stability, complying divergence, simplicity and efficient leapfrog update procedures.

While the fundamental schemes (with matrix-operator-free RHS) have been useful
for simplifications of many implicit FDTD methods, the leapfrog schemes (with time-
staggered fields) have been achieved only for ADI and CDI FDTD methods so far. Moreover,
most fundamental schemes have been applied for time-collocated fields, so their relations
and transformations to leapfrog schemes remain unclear. In this paper, we present the
formulations from time-collocated to leapfrog fundamental schemes for ADI and CDI FDTD
methods. In Section 2, for the ADI FDTD method, the time-collocated fundamental schemes
are implemented using implicit E-E and E-H update procedures, with the latter involving
magnetic field in the second implicit update procedure. In these implementations, the
update equations comprise simple and concise RHS that contain only the intrinsic matrix
operator partitions, but without their complicated products that exist in the conventional
form. From the fundamental implicit E-H scheme, the leapfrog ADI FDTD method is
formulated in conventional form, whose RHS still involve considerable operations due
to the products of matrix operator partitions. Using auxiliary variables, the RHS are
simplified resulting in the leapfrog fundamental scheme for ADI FDTD method with
reduced operations and improved efficiency. In Section 3, for the CDI FDTD method, the
time-collocated fundamental LOD FDTD method with complying divergence is presented.
It turns out that the method may be more aptly regarded as the time-collocated fundamental
scheme for CDI FDTD method, in view of the close connection to the recent leapfrog CDI
FDTD method. In particular, the formulations from time-collocated to leapfrog schemes
are provided, which result in the leapfrog fundamental scheme for CDI FDTD method.

2. From Time-Collocated to Leapfrog Fundamental Schemes for ADI FDTD Method
2.1. Time-Collocated Fundamental Schemes for ADI FDTD Method

The conventional ADI FDTD method is a second-order implicit FDTD scheme and
comprises two update procedures as [5](

I6 −
∆t
2

A
)

un+ 1
2

a =

(
I6 +

∆t
2

B
)

un
a (1)(

I6 −
∆t
2

B
)

un+1
a =

(
I6 +

∆t
2

A
)

un+ 1
2

a . (2)

Here, ua’s denote the physical field vectors that are time-collocated at full- (n, n + 1)
and half-integer (n + 1

2 ) time indices: ua =
[
Ea Ha

]T
=
[
Eax, Eay, Eaz, Hax, Hay, Haz

]T .
The subscripts ‘a’ signify the quantities for ADI FDTD that may be different from the
subsequent ones (for CDI FDTD or others). I6 is the 6 × 6 identity matrix, A and B are the
matrix operators given specifically by
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A =

[
0 A12

A21 0

]
, B =

[
0 B12

B21 0

]
(3)

A12 =

 0 0 1
ε

∂
∂y

1
ε

∂
∂z 0 0
0 1

ε
∂

∂x 0

, A21 =

 0 1
µ

∂
∂z 0

0 0 1
µ

∂
∂x

1
µ

∂
∂y 0 0

 (4)

B12 =

 0 −1
ε

∂
∂z 0

0 0 −1
ε

∂
∂x

−1
ε

∂
∂y 0 0

, B21 =

 0 0 −1
µ

∂
∂y

−1
µ

∂
∂z 0 0

0 −1
µ

∂
∂x 0

 (5)

(0 is the 3 × 3 zero matrix). Note that (1) and (2) are implicit update equations due to
the presence of LHS matrix operators that are no longer identity (or diagonal). Moreover,
their RHS also have matrix operators that would result in substantial operations as well.
This can be seen from the implementation of (1) and (2) using their update equations in
terms of matrix operator partitions (4) and (5) as(

I3 −
∆t2

4
A12A21

)
En+ 1

2
a = En

a +
∆t2

4
A12B21En

a +
∆t
2
(
A12 + B12

)
Hn

a (6)

Hn+ 1
2

a = Hn
a +

∆t
2

A21En+ 1
2

a +
∆t
2

B21En
a (7)(

I3 −
∆t2

4
B12B21

)
En+1

a = En+ 1
2

a +
∆t2

4
B12A21En+ 1

2
a +

∆t
2
(
A12 + B12

)
Hn+ 1

2
a (8)

Hn+1
a = Hn+ 1

2
a +

∆t
2

A21En+ 1
2

a +
∆t
2

B21En+1
a (9)

where I3 is the 3 × 3 identity matrix. As is evident from the RHS of (6)–(9), there are
multiple sums and complicated products of the matrix operator partitions, e.g., A12B21 &
B12A21, etc. These would make the calculations more cumbersome and increase the flops
count considerably.

2.1.1. Fundamental Implicit E-E Scheme for ADI FDTD Method
In the conventional ADI FDTD method, all terms and operations at the right-hand

sides are calculated as they are, without identifying nor omitting any possible repeated
ones in the update equations. To reduce the flops and improve the efficiency, one can
introduce some auxiliary variables whose judicious exploitation would bypass the repeated
terms and operations in the intermediate steps without incurring extra memory space. To
that end, we have developed the fundamental ADI FDTD method, or in short, FADI FDTD
method, which comprises the following update procedures:

vn = un
a − vn− 1

2 (10)(
1
2

I6 −
∆t
4

A
)

un+ 1
2

a = vn (11)

vn+ 1
2 = un+ 1

2
a − vn (12)(

1
2

I6 −
∆t
4

B
)

un+1
a = vn+ 1

2 . (13)

Through the auxiliary field vectors v’s at full- and half-integer time indices:
v =

[
e h

]T , the RHS of (10)–(13) become free of any matrix operator and contain only
vectors. If there exist nonzero initial fields, the auxiliary field vector is initialized with

v− 1
2 =

(
1
2

I6 −
∆t
4

B
)

u0
a. (14)
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Upon substituting the matrix operator partitions (4) and (5), the implementation
of (10)–(13) can be carried out using the update equations as follows [50]:

en = En
a − en− 1

2 (15)(
1
2

I3 −
∆t2

8
A12A21

)
En+ 1

2
a = en +

∆t
2

A12hn (16)

hn+ 1
2 = hn +

∆t
2

A21En+ 1
2

a (17)

en+ 1
2 = En+ 1

2
a − en (18)(

1
2

I3 −
∆t2

8
B12B21

)
En+1

a = en+ 1
2 +

∆t
2

B12hn+ 1
2 (19)

hn+1 = hn+ 1
2 +

∆t
2

B21En+1
a . (20)

Notice that the RHS of (15)–(20) become simpler, concise and contain only each of
the intrinsic matrix operator partitions, i.e., A12, A21, B12, B21. There is no more sum nor
product of the matrix operator partitions like before in (6)–(9), e.g., no more A12B21 &
B12A21, etc. Furthermore, the main implicit update procedures correspond to the physical
electric fields Ea’s in (16) and (19). Therefore, (15)–(20) can be aptly regarded as the
fundamental implicit E-E scheme for the ADI FDTD method, where ‘E-E’ signifies the
electric fields in both first and second implicit update procedures, cf. (16) and (19).

To recover the physical magnetic fields Ha’s, one can simply sum the auxiliary ones as

Hn+ 1
2

a = hn + hn+ 1
2 , Hn+1

a = hn+ 1
2 + hn+1. (21)

In most cases, such output of Ha is not always required but only when necessary
after certain simulation duration, since having Ea is rather sufficient to determine many
parameters. Thus, the main iterations of (15)–(20) can be executed continually and efficiently
without the output (21) except when needed.

2.1.2. Fundamental Implicit E-H Scheme for ADI FDTD Method
Alternative to the above implementation, one can carry out the implicit procedures

using the update equations firstly for physical electric field and secondly for physical
magnetic field as follows [51]:

en = en− 1
2 +

∆t
2

B12Hn
a (22)(

1
2

I3 −
∆t2

8
A12A21

)
En+ 1

2
a = en +

∆t
2

A12hn (23)

en+ 1
2 = En+ 1

2
a − en (24)

hn+ 1
2 = hn +

∆t
2

A21En+ 1
2

a (25)(
1
2

I3 −
∆t2

8
B21B12

)
Hn+1

a = hn+ 1
2 +

∆t
2

B21en+ 1
2 (26)

hn+1 = Hn+1
a − hn+ 1

2 . (27)

Again like (15)–(20), the RHS of (22)–(27) are simple, concise and contain only each of
the intrinsic matrix operator partitions without their sum nor product. However, unlike (16)

and (19) previously, the main implicit update procedures (23) and (26) correspond to En+ 1
2

a
and Hn+1

a , respectively. Therefore, (22)–(27) can be aptly regarded as the fundamental
implicit E-H scheme for ADI FDTD method, where ‘E-H’ signifies the electric and magnetic
fields in the first and second implicit update procedures, respectively, cf. (23) and (26).
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To recover the remaining physical electric and magnetic fields, one can sum the
auxiliary ones when necessary as

Hn+ 1
2

a = hn + hn+ 1
2 , En+1

a = en+ 1
2 + en+1. (28)

For nonzero initial fields, the time-staggered auxiliary fields should be initialized with[
I3

∆t
2 A12

−∆t
2 B21 I3

][
e−

1
2

h0

]
=

[
1
2 I3 − ∆t2

8 A12A21
∆t
2 A12

0 1
2 I3 +

∆t2

8 B21B12

][
E− 1

2
a

H0
a

]
. (29)

This is expressed in terms of E− 1
2

a and H0
a for the time-staggered initial physical fields

in place of (14) for the time-collocated ones. Besides the fundamental implicit E-H and
E-E schemes presented in the current and previous subsections, other alternative implicit
procedures are also possible, such as fundamental implicit H-E and H-H schemes, etc.

2.2. From Time-Collocated to Leapfrog Schemes for ADI FDTD Method
While the leapfrog ADI FDTD method has been derived before from the conventional

ADI FDTD method, it is not clear how the derivation should proceed from the fundamental
scheme that involves intermediate auxiliary fields. Here, we shall formulate the leapfrog
scheme from the fundamental implicit E-H scheme for ADI FDTD method, since both
schemes involve time-staggered physical electric and magnetic fields. To that end, substi-
tuting (24) at one time step backward into (22), as well as (25) into (27) at one time step
backward yields the auxiliary electric and magnetic fields at n as

en = En− 1
2

a − en−1 +
∆t
2

B12Hn
a (30)

hn = Hn
a − hn−1 − ∆t

2
A21En− 1

2
a . (31)

Upon using (30) and (31), (23) can be manipulated as follows:(
1
2

I3 −
∆t2

8
A12A21

)
En+ 1

2
a

= en +
∆t
2

A12hn (32)

= En− 1
2

a − en−1 +
∆t
2

B12Hn
a +

∆t
2

A12

(
Hn

a − hn−1 − ∆t
2

A21En− 1
2

a

)
(33)

= En− 1
2

a − ∆t2

4
A12A21En− 1

2
a −

(
en−1 +

∆t
2

A12hn−1
)
+

∆t
2
(
A12 + B12

)
Hn

a (34)

=

(
1
2

I3 −
∆t2

8
A12A21

)
En− 1

2
a +

∆t
2
(
A12 + B12

)
Hn

a . (35)

The last equation is due to the center bracketed terms in (34) that may be considered

as (32) at one time step backward, i.e., en−1 + ∆t
2 A12hn−1 =

(
1
2 I3 − ∆t2

8 A12A21

)
En− 1

2
a .

Multiplying two across both sides of (35), we obtain the leapfrog update equation for
physical electric field:(

I3 −
∆t2

4
A12A21

)
En+ 1

2
a =

(
I3 −

∆t2

4
A12A21

)
En− 1

2
a + ∆t

(
A12 + B12

)
Hn

a . (36)

To find the corresponding equation for magnetic field, we substitute (22) into (24), as
well as (27) at one time step backward into (25) to yield the auxiliary electric and magnetic
fields at n + 1

2 as
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en+ 1
2 = En+ 1

2
a − en− 1

2 − ∆t
2

B12Hn
a (37)

hn+ 1
2 = Hn

a − hn− 1
2 +

∆t
2

A21En+ 1
2

a . (38)

Upon using (37) and (38), (26) can be manipulated as follows:(
1
2

I3 −
∆t2

8
B21B12

)
Hn+1

a

= hn+ 1
2 +

∆t
2

B21en+ 1
2 (39)

= Hn
a − hn− 1

2 +
∆t
2

A21En+ 1
2

a +
∆t
2

B21

(
En+ 1

2
a − en− 1

2 − ∆t
2

B12Hn
a

)
(40)

= Hn
a −

∆t2

4
B21B12Hn

a −
(

hn− 1
2 +

∆t
2

B21en− 1
2

)
+

∆t
2
(
A21 + B21

)
En+ 1

2
a (41)

=

(
1
2

I3 −
∆t2

8
B21B12

)
Hn

a +
∆t
2
(
A21 + B21

)
En+ 1

2
a . (42)

Multiplying two across both sides of (42), we arrive at the leapfrog update equation
for physical magnetic field:(

I3 −
∆t2

4
B21B12

)
Hn+1

a =

(
I3 −

∆t2

4
B21B12

)
Hn

a + ∆t
(
A21 + B21

)
En+ 1

2
a . (43)

2.3. Leapfrog Fundamental Scheme for ADI FDTD Method
Equations (36) and (43) are the update equations of leapfrog ADI FDTD method in

the conventional form [32,33]. Compared to the conventional ADI FDTD method with
time-collocated fields in (6)–(9), the leapfrog ADI FDTD method has only time-staggered
fields Ea and Ha at half- and full-integer time-indices, respectively. However, the RHS
of (36) and (43) still involve considerable operations especially due to the complicated
products of matrix operator partitions A12A21 and B21B12. To simplify the RHS, we resort
to the principle of fundamental schemes as before [30,31]. In particular, introducing the
auxiliary variables ea and ha, the update procedures can be written as(

I3 −
∆t2

4
A12A21

)
en

a = ∆t(A12 + B12)Hn
a (44)

En+ 1
2

a = En− 1
2

a + en
a (45)(

I3 −
∆t2

4
B21B12

)
hn+ 1

2
a = ∆t(A21 + B21)E

n+ 1
2

a (46)

Hn+1
a = Hn

a + hn+ 1
2

a . (47)

Compared to the conventional form in (36) and (43), the RHS of (44)–(47) no longer
contain the complicated product of matrix operator partitions, i.e., no more A12A21 &
B21B12. These lead to simplifications of the implicit update procedures with reduced flops
and improved efficiency. Like all the fundamental schemes, their RHS contain only each of
the intrinsic matrix operator partitions, i.e., A12, A21, B12, B21, thus one may regard (44)–(47)
as the leapfrog fundamental scheme for ADI FDTD method, or in short, leapfrog FADI
FDTD method. Note that for this leapfrog scheme with time-staggered electric and magnetic
fields, the remaining physical fields cannot be recovered easily without additional auxiliary
ones like for the time-collocated schemes using (21) and (28).

Our earlier investigations of the leapfrog ADI FDTD method have found several issues
that are seldom discussed by many. Although being leapfrog like explicit scheme, the
method does not have complying divergence and violates Gauss’s law for both 2-D and
3-D [47]. Moreover, the method formulated for lossy media suffers from the field leakage
problem that would yield non-zero field values even in/thru perfect electric conducting
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(PEC) media, i.e., when the conductivity approaches infinity. This may be explained by the
infeasibility of magnetic field to incorporate the electric conductivity effect in the second
implicit update procedure, cf. (43) or (46) and (47). To alleviate the issue, one simple ap-
proach is by using high permittivity values to achieve similar total reflection characteristics
for incident waves into non-penetrable targets like PEC [52]. Alternative implicit schemes
for lossy media may be adapted to resolve the field leakage problem [53]. In addition,
there have also been further developments of implicit schemes involving time-collocated
fields, such as higher order, dispersionless and parameter optimized methods [54–60].
Efforts have been under way to carry out the corresponding developments for leapfrog
scheme involving time-staggered fields, especially using the leapfrog fundamental form
with simpler, more concise and efficient RHS.

3. From Time-Collocated to Leapfrog Fundamental Schemes for CDI FDTD Method
3.1. Time-Collocated Fundamental Scheme for CDI FDTD Method

Besides the ADI FDTD method above, we shall also consider alternative uncondi-
tionally stable methods. The conventional LOD FDTD method comprises two update
procedures as [7–9] (

I6 −
∆t
2

A
)

un+ 1
2

l =

(
I6 +

∆t
2

A
)

un
l (48)(

I6 −
∆t
2

B
)

un+1
l =

(
I6 +

∆t
2

B
)

un+ 1
2

l (49)

where the field vectors are subscripted with ‘l’, A and B are the same matrix operators as
before, cf. (3). The LOD FDTD method is only first-order accurate in time and is also called
split-step FDTD of first order (SS1). It can be extended readily for higher order, compact,
multi-stage, GPU/parallel/cloud computations, etc. [7–11,61–68].

While the LHS of (48) and (49) are the same as those of (1) and (2), their RHS differ
with (slightly) reduced operations by adopting the same types of LHS operators. This
is evident from the update equations that can be expressed in terms of matrix operator
partitions as(

I3 −
∆t2

4
A12A21

)
En+ 1

2
l = En

l +
∆t2

4
A12A21En

l + ∆tA12Hn
l (50)

Hn+ 1
2

l = Hn
l +

∆t
2

A21

(
En+ 1

2
l + En

l

)
(51)(

I3 −
∆t2

4
B12B21

)
En+1

l = En+ 1
2

l +
∆t2

4
B12B21En+ 1

2
l + ∆tB12Hn+ 1

2
l (52)

Hn+1
l = Hn+ 1

2
l +

∆t
2

B21

(
En+ 1

2
l + En+1

l

)
. (53)

Equations (50)–(53) with fewer RHS terms incur (slightly) less flops count compared
to (6)–(9), but there are still complicated products of matrix operator partitions A12A21
and B12B21.

To further reduce the flops, we apply the principle of fundamental schemes for (48)
and (49) to arrive at [30,31](

1
2

I6 −
∆t
4

A
)

vn+ 1
2

l = un
l (54)

un+ 1
2

l = vn+ 1
2

l − un
l (55)(

1
2

I6 −
∆t
4

B
)

vn+1
l = un+ 1

2
l (56)

un+1
l = vn+1

l − un+ 1
2

l . (57)
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Again through the auxiliary field vectors vl’s at full- and half-integer time indices:
vl =

[
el hl

]T , the RHS of (54)–(57) become free of any matrix operator and contain only
vectors. Equations (54)–(57) constitute our fundamental LOD FDTD method, or in short,
FLOD FDTD method, which is comparable to the FADI FDTD method in (10)–(13). Based
on the matrix operator partitions (4) and (5), the implementation of FLOD FDTD method
can be carried out using the update equations as follows:(

1
2

I3 −
∆t2

8
A12A21

)
en+ 1

2
l = En

l +
∆t
2

A12Hn
l (58)

Hn+ 1
2

l = Hn
l +

∆t
2

A21en+ 1
2

l (59)

En+ 1
2

l = en+ 1
2

l − En
l (60)(

1
2

I3 −
∆t2

8
B21B12

)
hn+1

l = Hn+ 1
2

l +
∆t
2

B21En+ 1
2

l (61)

En+1
l = En+ 1

2
l +

∆t
2

B12hn+1
l (62)

Hn+1
l = hn+1

l − Hn+ 1
2

l . (63)

Equations (58)–(63) for FLOD FDTD method are analogous to the fundamental implicit
E-H scheme for FADI FDTD method. One can also derive the corresponding equations
analogous to the above fundamental implicit E-E or other schemes.

To improve the temporal accuracy to second order, one needs to perform proper
input and output processings for n = 0 and when output is required, respectively, cf. [9].
Alternatively in addition to the second-order accuracy, the following processings will also
lead to more desirable characteristics of complying divergence [11]:

– Input processing: (
I6 −

∆t
2

B
)

u0
l = u0

c (64)

– Output processing:

un+1
c =

(
I6 −

∆t
2

B
)

un+1
l . (65)

In particular, (64) and (65) result in the output fields uc’s that feature complying
divergence and satisfy Gauss’s law. These equations together with (54)–(57) have been
previously called the fundamental LOD FDTD method with complying divergence, or in
short, FLOD-CD FDTD method. In view of the close connection to the recent leapfrog
CDI FDTD method below, the method may be more aptly regarded as the time-collocated
fundamental scheme for CDI FDTD method. The subscripts ‘c’ signify the quantities for
CDI FDTD with ‘CD’ denoting ‘complying divergence’.

3.2. From Time-Collocated to Leapfrog Schemes for CDI FDTD Method
Due to their connection that is not apparent, we shall provide the formulations from

time-collocated to leapfrog schemes for the CDI FDTD method. From (49), (56) and (65),
we have

un+1
c =

(
I6 +

∆t
2

B
)

un+ 1
2

l (66)

=

(
I6 +

∆t
2

B
)(

1
2

I6 −
∆t
4

B
)

vn+1
l . (67)
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This equation gives the expressions of auxiliary fields in terms of the physical ones at
n + 1 as

en+1
l = 2

(
I3 −

∆t
4

B12B21

)−1
En+1

c (68)

hn+1
l = 2

(
I3 −

∆t
4

B21B12

)−1
Hn+1

c . (69)

Besides the physical fields at integer time indices (65), one can also define the corre-
sponding ones at half-integer time indices along with (56) as

un+ 1
2

c =

(
I6 −

∆t
2

A
)

un+ 1
2

l (70)

=

(
I6 −

∆t
2

A
)(

1
2

I6 −
∆t
4

B
)

vn+1
l . (71)

Upon substituting (68) and (69) into (71), the electric field at n + 1
2 is found to be

En+ 1
2

c =
1
2

(
I +

∆t
4

A12B21

)
en+1

l − ∆t
4
(A12 + B12)hn+1

l (72)

=

(
I +

∆t
4

A12B21

)(
I − ∆t

4
B12B21

)−1
En+1

c

− ∆t
2
(A12 + B12)

(
I − ∆t

4
B21B12

)−1
Hn+1

c . (73)

Taking (73) at one time step backward, the electric field at n − 1
2 simply reads

En− 1
2

c =

(
I +

∆t
4

A12B21

)(
I − ∆t

4
B12B21

)−1
En

c

− ∆t
2
(A12 + B12)

(
I − ∆t

4
B21B12

)−1
Hn

c . (74)

Also taking (65) at one time step backward, we have its inverse relation

un
l =

(
I − ∆t

2
B
)−1

un
c . (75)

Substituting this relation into (70) or (48), the physical fields at half-integer time indices
can be expressed by

un+ 1
2

c =

(
I +

∆t
2

A
)

un
l (76)

=

(
I +

∆t
2

A
)(

I − ∆t
2

B
)−1

un
c . (77)

Then the electric field at n + 1
2 can be written in the form alternative to (73) as

En+ 1
2

c =

(
I +

∆t
4

A12B21

)(
I − ∆t

4
B12B21

)−1
En

c

+
∆t
2
(A12 + B12)

(
I − ∆t

4
B21B12

)−1
Hn

c . (78)

Subtracting (74) from (78), we arrive at the leapfrog update equation for electric field:
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En+ 1
2

c − En− 1
2

c = ∆t(A12 + B12)

(
I − ∆t

4
B21B12

)−1
Hn

c . (79)

To derive the corresponding equation for magnetic field, we use the inverse relation
of (70):

un+ 1
2

l =

(
I − ∆t

2
A
)−1

un+ 1
2

c (80)

and substitute into (66) as

un+1
c =

(
I +

∆t
2

B
)(

I − ∆t
2

A
)−1

un+ 1
2

c . (81)

From this equation, the magnetic field at n + 1 is found to be

Hn+1
c =

(
I +

∆t
4

B21A12

)(
I − ∆t

4
A21A12

)−1
Hn+ 1

2
c

+
∆t
2
(A21 + B21)

(
I − ∆t

4
A12A21

)−1
En+ 1

2
c . (82)

Using (54) in (76), we have

un+ 1
2

c =

(
I +

∆t
2

A
)(

1
2

I − ∆t
4

A
)

vn+ 1
2

l . (83)

This equation gives the expressions of auxiliary fields in terms of the physical ones at
n + 1

2 as

en+ 1
2

l = 2
(

I − ∆t
4

A12A21

)−1
En+ 1

2
c (84)

hn+ 1
2

l = 2
(

I − ∆t
4

A21A12

)−1
Hn+ 1

2
c . (85)

Again, taking (65) at n and using (54) yields

un
c =

(
I − ∆t

2
B
)

un
l (86)

=

(
I − ∆t

2
B
)(

1
2

I − ∆t
4

A
)

vn+ 1
2

l . (87)

Substituting (84) and (85) into (87), the magnetic field at n is found to be

Hn
c =

1
2

(
I +

∆t
4

B21A12

)
hn+ 1

2
l − ∆t

4
(A21 + B21)e

n+ 1
2

l (88)

=

(
I +

∆t
4

B21A12

)(
I − ∆t

4
A21A12

)−1
Hn+ 1

2
c

− ∆t
2
(A21 + B21)

(
I − ∆t

4
A12A21

)−1
En+ 1

2
c . (89)

Subtracting (89) from (82), we obtain the leapfrog update equation for magnetic field:

Hn+1
c − Hn

c = ∆t(A21 + B21)

(
I − ∆t

4
A12A21

)−1
En+ 1

2
c . (90)
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3.3. Leapfrog Fundamental Scheme for CDI FDTD Method
Equations (79) and (90) can be implemented in the following update procedures:(

I − ∆t2

4
B21B12

)
hn

c = Hn
c (91)

En+ 1
2

c = En− 1
2

c + ∆t(A12 + B12)hn
c (92)(

I − ∆t2

4
A12A21

)
en+ 1

2
c = En+ 1

2
c (93)

Hn+1
c = Hn

c + ∆t(A21 + B21)e
n+ 1

2
c . (94)

Here, Ec and Hc are the physical variables for leapfrog CDI FDTD fields, while ec
and hc are the intermediate auxiliary ones subscripted with ‘c’ (which are different from
those subscripted with ‘l’, ‘a’, or unsubscripted). Equations (91)–(94) constitute the leapfrog
fundamental scheme for CDI FDTD method, which features complying divergence and
satisfies Gauss’s law [49]. Notice that the implicit update procedures in (91) and (93)
have the simplest fundamental form with RHS completely free of matrix operators. The
explicit update procedures in (92) and (94) are compatible with those of leapfrog explicit
FDTD method, except that they now involve operations with auxiliary fields instead of
physical ones.

Based on their equations in fundamental forms, both leapfrog fundamental schemes
for ADI and CDI FDTD methods can be seen to be related closely. In particular, their
update procedures appear to be convertible readily by shifting the RHS operators of (44)
to (92) and (46) to (94), while also changing their operands accordingly between physical
and auxiliary fields. Such insights into the relations would not be evident if one refers
only to the conventional form of leapfrog ADI FDTD method in (36) and (43) [without the
fundamental form in (44)–(47)], or the time-collocated fundamental scheme for CDI FDTD
method in (54)–(65). Meanwhile, pertaining to the field leakage problem of leapfrog ADI
FDTD method [52], the previous simple approach using high permittivity values for non-
penetrable targets is also applicable for the leapfrog CDI FDTD method. Moreover, with the
presence of both electric and magnetic fields in the implicit and explicit update equations,
it is feasible to incorporate the electric conductivity effect in both update procedures of
the leapfrog CDI FDTD method. Besides, other variants of implicit schemes for lossy
media [53] may be adapted for the method as well. With its many desirable characteristics,
the leapfrog fundamental CDI FDTD method is very promising for further developments
following many previous works, e.g., multiconductor transmission lines [69–72].

4. Discussion
To facilitate subsequent discussions, let us write out the component equations in detail

for various unconditionally stable implicit FDTD schemes. Based on (36) and (43), we have
the detailed update procedures of leapfrog ADI FDTD method in the conventional form:

- First procedure for Ea from n − 1
2 to n + 1

2 :

En+ 1
2

ax − ∆t2

4ε

∂

∂y
1
µ

∂

∂y
En+ 1

2
ax = En− 1

2
ax − ∆t2

4ε

∂

∂y
1
µ

∂

∂y
En− 1

2
ax +

∆t
ε

∂

∂y
Hn

az −
∆t
ε

∂

∂z
Hn

ay (95)

En+ 1
2

ay − ∆t2

4ε

∂

∂z
1
µ

∂

∂z
En+ 1

2
ay = En− 1

2
ay − ∆t2

4ε

∂

∂z
1
µ

∂

∂z
En− 1

2
ay +

∆t
ε

∂

∂z
Hn

ax −
∆t
ε

∂

∂x
Hn

az (96)

En+ 1
2

az − ∆t2

4ε

∂

∂x
1
µ

∂

∂x
En+ 1

2
az = En− 1

2
az − ∆t2

4ε

∂

∂x
1
µ

∂

∂x
En− 1

2
az +

∆t
ε

∂

∂x
Hn

ay −
∆t
ε

∂

∂y
Hn

ax (97)
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- Second procedure for Ha from n to n + 1:

Hn+1
ax − ∆t2

4µ

∂

∂y
1
ε

∂

∂y
Hn+1

ax = Hn
ax −

∆t2

4µ

∂

∂y
1
ε

∂

∂y
Hn

ax +
∆t
µ

∂

∂z
En+ 1

2
ay − ∆t

µ

∂

∂y
En+ 1

2
az (98)

Hn+1
ay − ∆t2

4µ

∂

∂z
1
ε

∂

∂z
Hn+1

ay = Hn
ay −

∆t2

4µ

∂

∂z
1
ε

∂

∂z
Hn

ay +
∆t
µ

∂

∂x
En+ 1

2
az − ∆t

µ

∂

∂z
En+ 1

2
ax (99)

Hn+1
az − ∆t2

4µ

∂

∂x
1
ε

∂

∂x
Hn+1

az = Hn
az − ∆t2

4µ

∂

∂x
1
ε

∂

∂x
Hn

az +
∆t
µ

∂

∂y
En+ 1

2
ax − ∆t

µ

∂

∂x
En+ 1

2
ay . (100)

Upon resorting to the principle of fundamental schemes, we have the detailed update
procedures of leapfrog FADI FDTD method from (44)–(47):

- First procedure for Ea from n − 1
2 to n + 1

2 :

en+ 1
2

ax − ∆t2

4ε

∂

∂y
1
µ

∂

∂y
en+ 1

2
ax =

∆t
ε

∂

∂y
Hn

az −
∆t
ε

∂

∂z
Hn

ay (101)

en+ 1
2

ay − ∆t2

4ε

∂

∂z
1
µ

∂

∂z
en+ 1

2
ay =

∆t
ε

∂

∂z
Hn

ax −
∆t
ε

∂

∂x
Hn

az (102)

en+ 1
2

az − ∆t2

4ε

∂

∂x
1
µ

∂

∂x
en+ 1

2
az =

∆t
ε

∂

∂x
Hn

ay −
∆t
ε

∂

∂y
Hn

ax (103)

En+ 1
2

ax = En− 1
2

ax + en+ 1
2

ax (104)

En+ 1
2

ay = En− 1
2

ay + en+ 1
2

ay (105)

En+ 1
2

az = En− 1
2

az + en+ 1
2

az (106)

Second procedure for Ha from n to n + 1:

hn+1
ax − ∆t2

4µ

∂

∂y
1
ε

∂

∂y
hn+1

ax =
∆t
µ

∂

∂z
En+ 1

2
ay − ∆t

µ

∂

∂y
En+ 1

2
az (107)

hn+1
ay − ∆t2

4µ

∂

∂z
1
ε

∂

∂z
hn+1

ay =
∆t
µ

∂

∂x
En+ 1

2
az − ∆t

µ

∂

∂z
En+ 1

2
ax (108)

hn+1
az − ∆t2

4µ

∂

∂x
1
ε

∂

∂x
hn+1

az =
∆t
µ

∂

∂y
En+ 1

2
ax − ∆t

µ

∂

∂x
En+ 1

2
ay (109)

Hn+1
ax = Hn

ax + hn+1
ax (110)

Hn+1
ay = Hn

ay + hn+1
ay (111)

Hn+1
az = Hn

az + hn+1
az . (112)

To yield the physical fields that feature complying divergence and satisfy Gauss’s law,
we have the detailed update procedures of leapfrog CDI FDTD method from (91)–(94):

- First procedure for Ec from n − 1
2 to n + 1

2 :

hn
cx −

∆t2

4µ

∂

∂y
1
ε

∂

∂y
hn

cx = Hn
cx (113)

hn
cy −

∆t2

4µ

∂

∂z
1
ε

∂

∂z
hn

cy = Hn
cy (114)

hn
cz −

∆t2

4µ

∂

∂x
1
ε

∂

∂x
hn

cz = Hn
cz (115)
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En+ 1
2

cx = En− 1
2

cx +
∆t
ε

∂

∂y
hn

cz −
∆t
ε

∂

∂z
hn

cy (116)

En+ 1
2

cy = En− 1
2

cy +
∆t
ε

∂

∂z
hn

cx −
∆t
ε

∂

∂x
hn

cz (117)

En+ 1
2

cz = En− 1
2

cz +
∆t
ε

∂

∂x
hn

cy −
∆t
ε

∂

∂y
hn

cx (118)

- Second procedure for Hc from n to n + 1:

en+ 1
2

cx − ∆t2

4ε

∂

∂y
1
µ

∂

∂y
en+ 1

2
cx = En+ 1

2
cx (119)

en+ 1
2

cy − ∆t2

4ε

∂

∂z
1
µ

∂

∂z
en+ 1

2
cy = En+ 1

2
cy (120)

en+ 1
2

cz − ∆t2

4ε

∂

∂x
1
µ

∂

∂x
en+ 1

2
cz = En+ 1

2
cz (121)

Hn+1
cx = Hn

cx +
∆t
µ

∂

∂z
en+ 1

2
cy − ∆t

µ

∂

∂y
en+ 1

2
cz (122)

Hn+1
cy = Hn

cy +
∆t
µ

∂

∂x
en+ 1

2
cz − ∆t

µ

∂

∂z
en+ 1

2
cx (123)

Hn+1
cz = Hn

cz +
∆t
µ

∂

∂y
en+ 1

2
cx − ∆t

µ

∂

∂x
en+ 1

2
cy . (124)

Based on the detailed update procedures above, we first compare various uncon-
ditionally stable leapfrog implicit FDTD schemes in Table 1, which include the leapfrog
ADI, FADI and CDI FDTD methods. The table lists the flops count for one complete
step involving the pertaining implicit and explicit update equations using second-order
spatial central-differencing on Yee cells. The flops consist of the operations of multiplica-
tions/divisions (M/D) and additions/subtractions (A/S) at the RHS of update equations
(with the multiplicative factors precomputed). From Table 1, one can see that the conven-
tional leapfrog ADI FDTD method still requires substantial flops, while the leapfrog FADI
and CDI FDTD methods require merely half the flops. These latter leapfrog schemes have
been formulated in the fundamental forms, which have omitted the cumbersome second-
order matrix operators at their RHS. Although all the presented leapfrog schemes are of
second-order temporal accuracy with respect to time-staggered fields, only the leapfrog
CDI FDTD method has complying divergence satisfying Gauss’s law.

For completeness, we also compare various unconditionally stable time-collocated
implicit FDTD schemes in Table 2, which include the ADI, FADI, LOD and FLOD-CD or
CDI FDTD methods. The table lists the flops count for one complete step with the pertaining
implicit and explicit update equations given in matrix forms that are readily expanded into
detailed component equations as before. From Table 2, one can see that the conventional
ADI and LOD FDTD methods require many more flops than the fundamental schemes.
Note that their flops are slightly more for general inhomogeneous media as compared to
the homogeneous case in [30]. Meanwhile, the FADI and FLOD-CD or CDI FDTD methods
can reduce the flops considerably from the conventional ADI and LOD FDTD methods.
Upon further comparison with Table 1, it is evident that the time-collocated fundamental
schemes require fewer flops than the conventional leapfrog ADI FDTD method, while
the leapfrog fundamental schemes for ADI and CDI FDTD methods constitute the most
efficient implicit FDTD schemes so far. In fact, the time-collocated fundamental schemes
may still be advantageous since with comparable flops (only 6 more additions), they can
provide both electric and magnetic fields completely at every time instant and deal with
PEC/PMC media without field leakage [52,53]. Considering the temporal accuracy, all
the presented time-collocated schemes are of second-order except the LOD FDTD method.
This method is only first-order accurate but may remain stable for non-uniform time step
(NUTS) cases while other methods fail [73]. Moreover, it is readily adapted to feature
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complying divergence as in FLOD-CD or CDI FDTD method satisfying Gauss’s law (while
other methods violate it).

Table 1. Comparison of Unconditionally Stable Leapfrog Implicit FDTD Schemes.

Implicit FDTD Scheme Leapfrog
ADI FDTD

Leapfrog
FADI FDTD

Leapfrog
CDI FDTD

Implicit update equations (36) & (43),
or (95)–(100)

(44) & (46),
or (101)–(103)
& (107)–(109)

(91) & (93),
or (113)–(115)
& (119)–(121)

Explicit update equations – (45) & (47),
or (104)–(106)
& (110)–(112)

(92) & (94),
or (116)–(118)
& (122)–(124)

Implicit M/D 24 12 0

update A/S 48 18 0

Explicit M/D 0 0 12

update A/S 0 6 24

Total
M/D 24 12 12

A/S 48 24 24

M/D+A/S 72 36 36

Temporal accuracy Second-order Second-order Second-order

Complying divergence No, violating
Gauss’s law

No, violating
Gauss’s law

Yes, satisfying
Gauss’s law

Table 2. Comparison of Unconditionally Stable Time-Collocated Implicit FDTD Schemes.

Implicit FDTD Scheme ADI FDTD FADI FDTD
Implicit E-E or E-H LOD FDTD FLOD-CD

or CDI FDTD

Implicit update equations (6) & (8) E-E: (16) & (19)
E-H: (23) & (26) (50) & (52) (58) & (61)

Explicit update equations (7) & (9)

E-E: (15), (17),
(18) & (20)

E-H: (22), (24),
(25) & (27)

(51) & (53) (59), (60),
(62) & (63)

Implicit M/D 24 6 18 6

update A/S 48 12 36 12

Explicit M/D 12 6 6 6

update A/S 24 18 24 18

Total
M/D 36 12 24 12

A/S 72 30 60 30

M/D+A/S 108 42 84 42

Temporal accuracy Second-order Second-order First-order,
(stable for NUTS)

Second-order
with (64) and (65)

Complying divergence No, violating
Gauss’s law

No, violating
Gauss’s law

No, violating
Gauss’s law

Yes, satisfying
Gauss’s law

with (64) and (65)
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To further illustrate the divergence property of various implicit FDTD methods,
let us consider a simple cavity of PEC walls meshed with 50 × 50 × 9 uniform grids.
With the source being impressed at the cavity center, we implement the methods for
various CFLN = ∆t/∆tCFL (∆tCFL is the CFL limit time step size) and calculate the nor-
malized numerical divergence of D in dB. Figure 1 shows the normalized numerical
divergence of D in the source plane using (a) time-collocated/leapfrog ADI FDTD for
CFLN = 1; (b) leapfrog CDI FDTD for CFLN = 1; (c) time-collocated/leapfrog ADI FDTD
for CFLN = 4; (d) leapfrog CDI FDTD for CFLN = 4. From Figure 1a,b for CFLN = 1,
we see that the ADI FDTD method is not divergence-free even outside the source point.
On the other hand, the leapfrog CDI FDTD method has divergence only at the source
point while its divergence outside is mostly of numerical noise level (∼−200 dB). For
CFLN = 4 in Figure 1c,d, one can see that the ADI FDTD method has larger spread of
non-zero divergence outside the source point, whereas the leapfrog CDI FDTD method still
has complying divergence everywhere.

Figure 1. Normalized numerical divergence of D (dB) in the source plane using (a) time-
collocated/leapfrog ADI FDTD for CFLN = 1; (b) leapfrog CDI FDTD for CFLN = 1; (c) time-
collocated/leapfrog ADI FDTD for CFLN = 4; (d) leapfrog CDI FDTD for CFLN = 4.

Thus far, the methods discussed in this paper have found applications mostly for
electromagnetic problems. They should be readily extendable to handle multi-physics
problems such as thermal/heat conduction, quantum mechanics, circuits, etc. These can
be exemplified by our previous works using time-collocated fundamental schemes of
ADI and LOD FDTD methods [73–75]. Alternatively, the multi-physics problems can be
treated using leapfrog fundamental schemes of ADI and CDI FDTD methods to exploit
their advantages further.

5. Conclusions
In this paper, the formulations from time-collocated to leapfrog fundamental schemes

have been presented for ADI and CDI FDTD methods. For the ADI FDTD method, the time-
collocated fundamental schemes have been implemented using implicit E-E and E-H update
procedures. Their update equations comprise simple and concise RHS that contain only the
intrinsic matrix operator partitions, but without their complicated products that exist in the
conventional form. From the fundamental implicit E-H scheme, the leapfrog ADI FDTD
method has been formulated in conventional form, whose RHS still involve the products
of matrix operator partitions. Using auxiliary variables, the RHS have been simplified
into the leapfrog fundamental scheme for ADI FDTD method with reduced operations
and improved efficiency. For the CDI FDTD method, the time-collocated fundamental
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scheme has been presented based on the LOD FDTD method with complying divergence.
The formulations from time-collocated to leapfrog schemes have been provided, which
result in the leapfrog fundamental scheme for CDI FDTD method. Based on their equations
in fundamental forms, further insights have been given into the relations of leapfrog
fundamental schemes for ADI and CDI FDTD methods. Comparisons among various
implicit FDTD schemes have been discussed including flops count, temporal accuracy and
divergence property. The time-collocated fundamental schemes require considerably fewer
flops than all conventional ADI, LOD and leapfrog ADI FDTD methods, while the leapfrog
fundamental schemes for ADI and CDI FDTD methods constitute the most efficient implicit
FDTD schemes to date. While providing a unified formulation for simplification, the
fundamental schemes feature many advantages including unconditional stability, simplicity
and efficient time-collocated/leapfrog update, as well as complying divergence (for FLOD-
CD or CDI FDTD). They are very promising and well-suited for further developments and
applications in electromagnetic computations and simulations.
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