
Citation: Atia, M.J. Resolution of an

Isolated Case of a Quadratic

Hypergeometric 2F1 Transformation.

Axioms 2022, 11, 533. https://

doi.org/10.3390/axioms11100533

Academic Editor: Gradimir V.

Milovanović
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Abstract: The identity 2F1(α, β; 2α; z) = (1− z
2
)−β

2F1(
β

2
,

β + 1
2

; α +
1
2

; (
z

2− z
)2) given, either by I.S.

Gradshteyn and I.M. Ryzhik in Table of integrals series and products named 9.134 or in the handbook
“mathematical functions with formulas, graphs and mathematical tables” done by Abramowitz-
Stegun named 15.3.20 or in the book “special functions” done by G. Andrews, R. Askey and R. Roy
named 3.1.7 page 127 with a slight modification is true provided that {2α + 1, α + 3

2} are not natural
numbers and α− β is not an integer (see Gradshteyn, Ryzhik, 9.130). In this manuscript we consider
a case where α− β is an integer by taking β = 2a, α = −n + 1. We give and prove the right identity
for any positive integer a and for any any positive integer n.

Keywords: hypergeometric functions; quadratic transformation; hypergeometric series with finitely
many terms and hypergeometric series with infinitely many terms

MSC: 33C05; 33D15

1. Introduction

The Gaussian hypergeometric function (GHF) 2F1(a, b; c; z) is a series defined by

2F1(a, b; c; z) =
∞

∑
n=0

(a)n(b)nzn

(c)nn!
= 1 +

abz
c

+
a(a + 1)b(b + 1)z2

2c(c + 1)
+ . . . , | z |< 1, (1)

with c 6= 0,−1,−2, . . . and where (a)n is the Pochhammer symbol (or shifted factorial)
defined by

(a)n = a(a + 1)(a + 2) . . . (a + n− 1), n ≥ 1, (a)0 = 1.

First, we point out that the GHF has many interesting applications including but not limited
to [1] where the authors used the GHF to develop a safe and secure Bank locker system for
Banks.

Second, we also want to point out that the quadratic transformations which relate
two hypergeometric functions (with the variable in one and a quadratic function of the
variable in the other), are true under some condition. In fact, in [2], page 1008, 9.130 authors
wrote “The series 2F1(α, β; γ; z) defines an analytic function that, speaking generally, has
singularities at the points z = 0, 1, and ∞. (In the general case, there are branch points).
We make a cut in the z−plane along the real axis from z = 1 to z = ∞ ; that is, we require
that | arg(−z) |< π for |z| = 1. Then, the series 2F1(α, β; γ; z) will, in the cut plane, yield a
single-valued analytic continuation, which we can obtain by means of the formulas below
(provided γ + 1 is not a natural number and α− β and γ− α− β are not integers). These
formulas make it possible to calculate the values of F in the given region, even in the case
in which |z| > 1. There are other closely related transformation formulas that can also be
used to get the analytic continuation when the corresponding relationships hold between
α, β, γ”.
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The identity

2F1(α, β; 2α; z) = (1− z
2
)−β

2F1(
β

2
,

β + 1
2

; α +
1
2

; (
z

2− z
)2) (2)

given in

• I.S. Gradshteyn and I.M. Ryzhik in Table of integrals series and products [2] named
9.134,

• the handbook “mathematical functions with formulas, graphs and mathematical
tables” done by Abramowitz-Stegun [3] named 15.3.20,

• in the book “special functions” done by G. Andrews, R. Askey and R. Roy [4] named
3.1.7 page 127 with a slight modification

is true provided that {2α + 1, α + 3
2} are not natural numbers and α− β is not an integer

(see [2], 9.130, [5]). For generalized hypergeometric function see [6], page 312, (6.1).
Some people considered one of the cases where one of these conditions is not fulfilled
for instance [7] where authors found an interesting result connected with the sum of 3F2
((16− 17) page 78).
In this manuscript we consider a case where α− β is an integer by taking β = 2a, α = −n+ 1.

Replacing
z

2− z
by z and we prove that for any positive integer a the above identity (2)

becomes

2F1(a, a +
1
2

;−n +
3
2

; z2) =
1

(1± z)2a 2F1(2a,−n + 1;−2n + 2;
±2z
1± z

). (3)

and we prove that this identity (3) remains true for n = 0 but for n = 1 the above identity
becomes

2F1(a, a +
1
2

;
1
2

; z2) =
1

(1± z)2a ∓
2
√

πΓ(1 + a)z2a−1
2F1(1− a, 1

2 − a; 3
2 ; 1

z2 )

Γ(a)Γ( 1
2 )(z

2 − 1)2a
,

and should be written, for n ≥ 2, as

2F1(a, a+
1
2

;−n+
3
2

; z2) =
1

(1± z)2a 2F1(2a,−n+ 1;−2n+ 2;
±2z
1± z

)±
2
√

πΓ(n + a)z2n+2a−3
2F1(1− a, 3

2 − n− a; 3
2 ; 1

z2 )

Γ(a)Γ(n− 1
2 )(z

2 − 1)n+2a−1
.

Let us prove first that (3) is not true for any positive integer a and for any integer n ≥ 1.
The left hand side (LHS) of the identity (3) is well defined and is a series with infinitely
many terms, whereas, in the right hand side RHS 2F1(2a,−n + 1;−2n + 2;± 2z

1 ± z ) rises
two situations:

• either the series

2F1(2a,−n + 1;−2n + 2;± 2z
1± z

)

is well-defined as it is a series with finitely many terms since the summation is only
for k = 0, .., n− 1, and the fact that −2n + 2 is also a negative integer does not do any
harm,

• or

2F1(2a,−n + 1;−2n + 2;± 2z
1± z

)

is also a series with infinitely many terms by taking the limit as u tends to zero of

2F1(2a,−n + 1− u;−2n + 2− u;± 2z
1± z

).
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In this contribution we begin to prove that for a = 1 and α = −n + 3
2 , n ≥ 2 the identity (3)

is not true in both situations then we prove that the identity (3) is not true for any positive
integer a and α = −n + 3

2 , n ≥ 1 (n integer) and taking into account

u(a)
n :=

2
√

πΓ(n + a)z2n+2a−3
2F1(1− a,−n− a + 3

2 ; 3
2 ; 1

z2 )

Γ(a)Γ(n− 1
2 )(z

2 − 1)n+2a−1
(4)

the identity (3) should be written as

2F1(a, a +
1
2

;−n +
3
2

; z2) =
2F1(2a,−n + 1;−2n + 2; ±2z

1±z )

(1± z)2a ± u(a)
n , n ≥ 2, (5)

with, for n = 0 and for any positive integer a we have

2F1(a, a +
1
2

;
3
2

; z2) =
1

(1± z)2a 2F1(2a, 1; 2;
±2z
1± z

),

and for n = 1 and for any positive integer a we have

2F1(a, a +
1
2

;
1
2

; z2) =
1

(1± z)2a ∓ u(a)
1 ,

please note the difference between ± and ∓.

Remark 1. Throughout this manuscript we use the notation (4).

2. The Case a = 1

Taking into account the value a = 1, the LHS of (3) becomes

2F1(1,
3
2

;−n +
3
2

; z2)

and the RHS of (3) as

1
(1± z)2 2F1(2,−n + 1;−2n + 2;

±2z
1± z

).

Theorem 1. For a = 1, the identity (3) remains true for n = 0 and should be written as

2F1(1,
3
2

;−n +
3
2

; z2) =
2F1(2,−n + 1;−2n + 2; ±2z

1±z )

(1± z)2 ± u(1)
n , n ≥ 2 (6)

where u(1)
n =

n(2z)2n−1

(2n−2
n−1 )(z2 − 1)n+1

and should be written as

2F1(1,
3
2

;
1
2

; z2) =
1

(1± z)2 ∓ u(1)
1 f or n = 1.

Proof. Let us consider the two term recurrence relation

(z2 − 1)an =
2n

2n− 3
z2an−1, n ≥ 3. (7)

The sequence u(1)
n fulfils (7). Moreover, The sequence u(1)

n fulfils (7) with n ≥ 1. In fact

(z2 − 1)u(1)
n = (z2 − 1)

n(2z)2n−1

(2n−2
n−1 )(z2 − 1)n+1

=
n(2z)2(2z)2n−3

(2n−2)(2n−3)
(n−1)2 (2n−4

n−2 )(z2 − 1)n
=

2nz2

2n− 3
u(1)

n−1, n ≥ 3.
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Now, we prove that the rational functions 2F1(1,
3
2

;−n +
3
2

; z2) and

2F1(2,−n + 1;−2n + 2; ±2z
1 ± z )

(1 ± z)2 fulfil the following two term recurrence relation (with a

slight modification of (7))

(z2 − 1)an =
2n

2n− 3
z2an−1 − 1, n ≥ 3. (8)

• The rational function 2F1(1, 3
2 ;−n + 3

2 ; z2) fulfils (8). Moreover, this rational function

2F1(1, 3
2 ;−n + 3

2 ; z2) fulfils (8) with n ≥ 1, in fact

(z2 − 1) 2F1(1,
3
2

;−n +
3
2

; z2)− 2n
2n− 3

z2
2F1(1,

3
2

;−(n− 1) +
3
2

; z2)

= (z2 − 1) ∑
k≥0

( 3
2 )k

(−n + 3
2 )k

z2k − 2n
2n− 3

z2 ∑
k≥0

( 3
2 )k

(−n + 5
2 )k

z2k

= ∑
k≥0

(
( 3

2 )k

(−n + 3
2 )k
−

2n( 3
2 )k

(2n− 3)(−n + 5
2 )k

)
z2k+2 − ∑

k≥0

( 3
2 )k

(−n + 3
2 )k

z2k

= ∑
k≥0

(
( 3

2 )k

(−n + 3
2 )k
−

2n( 3
2 )k

(2n− 3)(−n + 5
2 )k
−

( 3
2 )k+1

(−n + 3
2 )k+1

)
z2k+2 − 1 = −1,

in fact, using (z + 1)n =
(z + n)

z
(z)n and (z)n+1 = (z + n)(z)n, we get

( 3
2 )k

(−n + 3
2 )k
−

2n( 3
2 )k

(2n− 3)(−n + 5
2 )k
−

( 3
2 )k+1

(−n + 3
2 )k+1

=
( 3

2 )k

(−n + 3
2 )k
−

2n( 3
2 )k(−n + 3

2 )

(2n− 3)(−n + 3
2 + k)(−n + 3

2 )k
−

( 3
2 + k)( 3

2 )k

(−n + 3
2 + k)(−n + 3

2 )k
= 0.

• Now, we prove that the rational function

2F1(2,−n + 1;−2n + 2; ±2z
1 ± z )

(1± z)2

fulfils (8). Note here that this proof is only true for n ≥ 3. We begin by a change of
variable, for the + sign, we assume

1
y
=

2z
z + 1

, (9)

whereas for the − sign, we assume

1
y
=
−2z
−z + 1

.

For the + sign, proving that the rational function

2F1(2,−n + 1;−2n + 2; 2z
1 + z )

(1 + z)2

fulfils (8) proves

− y− 1
y 2F1(2,−n + 1;−2n + 2;

1
y
)− n

2(2n− 3)y2 2F1(2,−n + 2;−2n + 4;
1
y
) = −1. (10)
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Let us expand the LHS of (10). Please note here that our hypergeometric is a series
with finitely many terms. Some computations lead to

−
(

1 +
2(−n + 1)1

(−2n + 2)1y
+

3(−n + 1)2

(−2n + 2)2y2 + . . . +
n(−n + 1)n−1

(−2n + 2)n−1yn−1

)
+

(
1
y
+

2(−n + 1)1

(−2n + 2)1y2 +
3(−n + 1)2

(−2n + 2)2y3 + . . . +
n(−n + 1)n−1

(−2n + 2)n−1yn

)
− n

2(2n− 3)

(
1
y2 +

2(−n + 2)1

(−2n + 4)1y3 +
3(−n + 2)2

(−2n + 4)2y4 + . . . +
(n− 1)(−n + 2)n−2

(−2n + 4)n−2yn

)
.

Thus, using
z(z + 1)n−1 = (z)n, (z)n+1 = (z + n)(z)n,

the coefficients of
1

yk+2 , 0 ≤ k ≤ n− 2, are

− n
2(2n− 3)

(k + 1)(−n + 2)k
(−2n + 4)k

− (k + 3)(−n + 1)k+2
(−2n + 2)k+2

+
(k + 2)(−n + 1)k+1

(−2n + 2)k+1

= − n(k + 1)(−2n + 2)(−2n + 3)(−n + 1)k+1
2(−n + 1)(2n− 3)(−2n + k + 3)(−2n + 2)k+1

− (k + 3)(−n + k + 2)(−n + 1)k+1
(−2n + k + 3)(−2n + 2)k+1

+
(k + 2)(−n + 1)k+1

(−2n + 2)k+1
=

(−n + 1)k+1
(−2n + 2)k+1

(
n(k + 1)

(−2n + k + 3)
− (k + 3)(−n + k + 2)

(−2n + k + 3)
+ (k + 2)

)
which is identically zero. The remaining terms are

−1− 2(−n + 1)1

(−2n + 2)2y
+

1
y
= −1

and
n(−n + 1)n−1

(−2n + 2)n−1yn −
n

2(2n− 3)
(n− 1)(−n + 2)n−2

(−2n + 4)n−2yn = 0.

The same steps should be followed for the − sign.

To finish the proof of the Theorem, it should be pointed out that, when the rational

functions 2F1(1,
3
2

;−n +
3
2

; z2) and
2F1(2,−n + 1;−2n + 2; ±2z

1 ± z )

(1± z)2 fulfil (8), then subtract-

ing the two quantities, we get

2F1(1,
3
2

;−n +
3
2

; z2)− 2F1(2,−n + 1;−2n + 2; ±2z
1 ± z )

(1± z)2

fulfils (7) (the (−1) cancels) and

2F1(1,
3
2

;−2 +
3
2

; z2) =
3z4 + 6z2 − 1
(z2 − 1)3 ,

2F1(2,−2 + 1;−4 + 2; 2z
1 + z )

(1 + z)2 =
3z + 1
(z + 1)3 ,

u(1)
2 =

8z3

(z2 − 1)3 with
3z4 + 6z2 − 1
(z2 − 1)3 − 3z + 1

(z + 1)3 −
8z3

(z2 − 1)3 = 0.

With this achievement, we have proved that in situation one, where we considered the se-
ries

2F1(2a,−n + 1;−2n + 2;± 2z
1± z

)
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is well-defined as it is a series with finitely many terms since the summation is only for
k = 0, . . . , n− 1, the fact that −2n + 2 is also a negative integer does not do any harm as
the identity (3) is not true.

2.1. The Case a = 1 and n = 2 for the Second Situation

The situation where

2F1(2a,−n + 1;−2n + 2;± 2
√

z
1±
√

z
)

is a series with infinitely many terms by taking the limit as u tends to zero of

2F1(2a,−n + 1− u;−2n + 2− u;± 2
√

z
1±
√

z
)

is, also wrong. In fact, with the + sign (same steps for the − sign), the identity (3) is false
for a = 1 and n = 2. In fact

2F1(1, 1 +
1
2

;−1
2

; z2) =
(3z4 + 6z2 − 1)
(1 + z)3(z− 1)3 .

On the other side, we have

(1 + z)−2
2F1(2,−1− u;−2− u;

2z
1 + z

) =
u(z− 1) + 2(3z− 1)

(2 + u)(z− 1)3 .

In fact,

(1 + z)−2
2F1(2,−1− u;−2− u;

2z
1 + z

) = (1 + z)−2 ∑
k≥0

(2)k(−1− u)k
(−2− u)kk!

(
2z

1 + z
)k

= (1 + z)−2 ∑
k≥0

(k + 1)(−1− u)k
(−2− u)k

(
2z

1 + z
)k = (1 + z)−2

(
1 +

2(−1− u)
(−2− u)

(
2z

1 + z
)1

+
3(−1− u)(−u)

(−2− u)(−1− u)
(

2z
1 + z

)2 +
4(−1− u)(−u)(−u + 1)
(−2− u)(−1− u)(−u)

(
2z

1 + z
)3

+
5(−1− u)(−u)(−u + 1)(−u + 2)
(−2− u)(−1− u)(−u)(−u + 1)

(
2z

1 + z
)4

+
6(−1− u)(−u)(−u + 1)(−u + 2)(−u + 3)
(−2− u)(−1− u)(−u)(−u + 1)(−u + 2)

(
2z

1 + z
)5 + . . . . . .

)

= (1 + z)−2
(

1 +
2(−1− u)
(−2− u)

(
2z

1 + z
)1 +

3(−u)
(−2− u)

(
2z

1 + z
)2 +

4(−u + 1)
(−2− u)

(
2z

1 + z
)3

+
5(−u + 2)
(−2− u)

(
2z

1 + z
)4 +

6(−u + 3)
(−2− u)

(
2z

1 + z
)5 + . . . . . .

)

=
1

(1 + z)2(−2− u)

(
(−2− u) + 2(−1− u)(

2z
1 + z

)1 + 3(−u)(
2z

1 + z
)2 + 4(−u + 1)(

2z
1 + z

)3

+5(−u + 2)(
2z

1 + z
)4 + 6(−u + 3)(

2z
1 + z

)5 + . . . . . .
)

=
1

(1 + z)2(−2− u) ∑
k≥0

(k + 1)(−2− u + k)(
2z

1 + z
)k. (11)
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Using (for | z |< 1)

∑
k≥0

zk = − 1
z− 1

, ∑
k≥0

kzk =
z

(z− 1)2 , ∑
k≥0

k2zk = − z(z + 1)
(z− 1)3

we have the desired result.

When u goes to 0,
u(z− 1) + 2(3z− 1)

(2 + u)(z− 1)3 goes to
2(3z− 1)
2(z− 1)3 which is not equal to

(3z4 + 6z2 − 1)
(1 + z)3(z− 1)3 .

2.2. Appendix

Here is a Maple instruction for the case a = 1-theorem:
> restart;
> vn := n→ hypergeom([3/2, 1], [−n + 3/2], x2);
> wn := n→ 1/(1 + x)2 ∗ hypergeom([2,−n + 1], [−2 ∗ n + 2], 2 ∗ x/(1 + x));
> un := n→ n ∗ (2 ∗ x)2∗n−1/(binomial(2 ∗ n− 2, n− 1) ∗ (x2 − 1)n+1);
> factor(simplify(vn(0)-wn(0)));
> factor(simplify(vn(1)-wn(1)+un(1)));
> factor(simplify(vn(2)-wn(2)-un(2)));
> factor(simplify(vn(3)-wn(3)-un(3)));
> factor(simplify(vn(4)-wn(4)-un(4)));

0
0
0
0
0

3. Resolution of an Isolated Case of the Identity for a ∈ N
In the sequel, taking into account a ∈ N, we write the LHS of (3) as

2F1(a, a +
1
2

;−n +
3
2

; z2)

and the RHS of (3) as

1
(1± z)2 2F1(2a,−n + 1;−2n + 2;

±2z
1± z

).

Theorem 2. For a ∈ N the identity (3) remains true for n = 0 and should be written as

2F1(a, a +
1
2

;−n +
3
2

; z2) =
2F1(2a,−n + 1;−2n + 2; ±2z

1 ± z )

(1± z)2a ± u(a)
n , n ≥ 2,

and should be written as

2F1(a, a +
1
2

;
1
2

; z2) =
1

(1± z)2a ∓ u(a)
1 f or n = 1.

Please note the difference between ± and ∓.

Proof. The following proof does not include the case where a ∈ R\N and this case remains
an open problem. For a, any positive integer, we consider the following relation

(z2 − 1) f (n, a)− 2n + 4a− 4
2n− 3

z2 f (n− 1, a) = f (n, a− 1), n ≥ 2. (12)
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We prove that 2F1(a, a+ 1
2 ;−n+ 3

2 ; z2), 2F1(2a,−n+1;−2n+2; ±2z
1 ± z )

(1 ± z)2a and u(a)
n fulfil this relation (12).

• Let us begin by proving that u(a)
n fulfil this relation (12).

In fact, for n ≥ 2, we have

(z2 − 1)u(a)
n −

2n + 4a− 4
2n− 3

z2u(a)
n−1 + u(a−1)

n

= (z2 − 1)
2
√

πΓ(n + a)z2n+2a−3
2F1(1− a,−n− a + 3

2 ; 3
2 ; 1

z2 )

Γ(a)Γ(n− 1
2 )(z

2 − 1)n+2a−1

−2n + 4a− 4
2n− 3

z2 2
√

πΓ(n− 1 + a)z2n+2a−5
2F1(1− a,−n− a + 5

2 ; 3
2 ; 1

z2 )

Γ(a)Γ(n− 3
2 )(z

2 − 1)n+2a−2

+
2
√

πΓ(n + a− 1)z2n+2a−5
2F1(1− a + 1,−n− a + 5

2 ; 3
2 ; 1

z2 )

Γ(a− 1)Γ(n− 1
2 )(z

2 − 1)n+2a−3
,

which becomes

2
√

πΓ(n + a)z2n+2a−3
2F1(1− a,−n− a + 3

2 ; 3
2 ; 1

z2 )

Γ(a)Γ(n− 1
2 )(z

2 − 1)n+2a−2

− (2n + 4a− 4)
(2n− 3)

2
√

πΓ(n− 1 + a)z2n+2a−3
2F1(1− a,−n− a + 5

2 ; 3
2 ; 1

z2 )

Γ(a)Γ(n− 3
2 )(z

2 − 1)n+2a−2

+
2
√

πΓ(n + a− 1)z2n+2a−5
2F1(1− a + 1,−n− a + 5

2 ; 3
2 ; 1

z2 )

Γ(a− 1)Γ(n− 1
2 )(z

2 − 1)n+2a−3
,

which becomes

2
√

πΓ(n + a− 1)z2n+2a−5

Γ(a− 1)Γ(n− 1
2 )(z

2 − 1)n+2a−3

(
(n + a− 1)z2

(a− 1)(z2 − 1) 2F1(1− a,−n− a +
3
2

;
3
2

;
1
z2 )

−(n + 2a− 2)
z2

(a− 1)(z2 − 1) 2F1(1− a,−n− a +
5
2

;
3
2

;
1
z2 ) + 2F1(2− a,−n− a +

5
2

;
3
2

;
1
z2 )

)
,

to prove that this expression vanishes, it is equivalent to prove that

(n + a− 1)z2

(a− 1)(z2 − 1) 2F1(1− a,−n− a +
3
2

;
3
2

;
1
z2 )−

(n + 2a− 2)z2

(a− 1)(z2 − 1) 2F1(1− a,−n− a +
5
2

;
3
2

;
1
z2 )

+ 2F1(2− a,−n− a +
5
2

;
3
2

;
1
z2 ),

also vanishes. It is equivalent to prove that

(n + a− 1)z2
2F1(1− a,−n− a +

3
2

;
3
2

;
1
z2 )− (n + 2a− 2)z2

2F1(1− a,−n− a +
5
2

;
3
2

;
1
z2 )

+(a− 1)(z2 − 1) 2F1(2− a,−n− a +
5
2

;
3
2

;
1
z2 ) = 0.

Let us write this last expression as

(n + a− 1)z2
2F1(1− a,−n− a +

3
2

;
3
2

;
1
z2 )− (n + 2a− 2)z2

2F1(1− a,−n− a +
5
2

;
3
2

;
1
z2 )

+(a− 1)z2
2F1(2− a,−n− a +

5
2

;
3
2

;
1
z2 )− (a− 1) 2F1(2− a,−n− a +

5
2

;
3
2

;
1
z2 ).
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which becomes

a−1

∑
k=1

(1− a)k(−n− a + 5
2 )k

( 3
2 )k

1
k!(z2)k−1

(
(n + a− 1)(−n− a + 3

2 )

(−n− a + k + 3
2 )

− (n + 2a− 2)

+(a− 1)
(1− a + k)
(1− a)

)
− (a− 1) 2F1(2− a,−n− a +

5
2

;
3
2

;
1
z2 ).

which becomes

a−1

∑
k=1

(1− a)k(−n− a + 5
2 )k

( 3
2 )k

1
k!(z2)k−1

(
k(2k + 1)

(2n + 2a− 2k− 3)

)
− (a− 1) 2F1(2− a,−n− a +

5
2

;
3
2

;
1
z2 ),

which is

a−1

∑
k=1

(1− a)k(−n− a + 5
2 )k

( 3
2 )k

1
(k− 1)!(z2)k−1

(
( 3

2 + k− 1)

(n + a− k− 3
2 )

)
− (a− 1) 2F1(2− a,−n− a +

5
2

;
3
2

;
1
z2 ),

which is exactly zero.
• Second, let us prove that 2F1(a, a + 1

2 ;−n + 3
2 ; z2) also fulfil the relation (12). In fact,

for n ≥ 2, let us prove that

(z2 − 1) 2F1(a, a +
1
2

;−n +
3
2

; z2)− 2n + 4a− 4
2n− 3

z2
2F1(a, a +

1
2

;−n +
5
2

; z2) + 2F1(a− 1, a− 1
2

;−n +
3
2

; z2) = 0,

equivalently, we prove that

(z2 − 1) ∑
k≥0

(a)k(a + 1
2 )k

(−n + 3
2 )k

x2k

k!
+ ∑

k≥0

(a− 1)k(a− 1
2 )k

(−n + 3
2 )k

x2k

k!
=

2n + 4a− 4
2n− 3

z2 ∑
k≥0

(a)k(a + 1
2 )k

(−n + 5
2 )k

x2k

k!
.

The left-hand side becomes

z2 ∑
k≥0

(a)k(a + 1
2 )k

(−n + 3
2 )(−n + 5

2 )k

(
(−n + k +

3
2
) +

(a− 1)(a− 1
2 )

(k + 1)
−

(a + k)(a + k + 1
2 )

(k + 1)

)
x2k

k!

which is exactly

z2 ∑
k≥0

(a)k(a + 1
2 )k

(−n + 3
2 )(−n + 5

2 )k

(
−n− 2a + 2

)
x2k

k!

which is exactly the right-hand side.
• Third, let us prove that the rational function

2F1(2a,−n + 1;−2n + 2; ±2z
1 ± z )

(1± z)2

fulfils (12). Using the same change of variable (9), and taking into account the + sign,
we claim that: proving that the rational function

2F1(2,−n + 1;−2n + 2; 2z
1 + z )

(1 + z)2

fulfils (12) is equivalent to prove that

− (2y− 1)2a−2

22a−2y2a−1

(
(y− 1) 2F1(2a,−n + 1;−2n + 2;

1
y
)− y 2F1(2a− 2,−n + 1;−2n + 2;

1
y
)

)
(13)
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should be equal to

(2n + 4a− 4)(2y− 1)2a−2

(2n− 3)(2y)2a 2F1(2a,−n + 1;−2n + 2;
1
y
). (14)

The expression (13) becomes

− (2y− 1)2a−2

22a−2y2a−1

(
−1 + (y− 1)

n−1

∑
k=1

(2a)k(−n + 1)k
(−2n + 2)k

1
k!yk − y

n−1

∑
k=1

(2a− 2)k(−n + 1)k
(−2n + 2)k

1
k!yk

)
this expression becomes

− (2y− 1)2a−2

22a−2y2a−1

(n−1

∑
k=1

{
(2a)k(−n + 1)k
(−2n + 2)k

1
(k− 1)!yk−1 (

1
k
− (2a− 2)(2a− 1)

k(2a + k− 2)(2a + k− 1)
)

− (2a)k−1(−n + 1)k−1
(−2n + 2)k−1

1
(k− 1)!yk−1

}
− (2a)n−1(−n + 1)n−1

(−2n + 2)n−1

1
(n− 1)!yn−1

)
some simplifications lead to

− (2y− 1)2a−2

22a−2y2a−1

(n−1

∑
k=1

(2a)k(−n + 1)k
(−2n + 2)k

1
(k− 1)!yk−1 (

1
k
− (2a− 2)(2a− 1)

k(2a + k− 2)(2a + k− 1)

− k(−2n + 1 + k)
(2a + k− 1)(−n + k)

)− (2a)n−1(−n + 1)n−1

(−2n + 2)n−1

1
(n− 1)!yn−1

)
which becomes

− (2y− 1)2a−2

22a−2y2a−1

(n−1

∑
k=1

(2a)k(−n + 1)k
(−2n + 2)k

1
k!yk−1

k(k− 1)(2a + n− 2)
(2a + k− 1)(2a + k− 2)(−n + k)

− (2a)n−1(−n + 1)n−1

(−2n + 2)n−1

1
(n− 1)!yn−1

)
this is equal to

− (2y− 1)2a−2

22a−2y2a−1

(
(2a + n− 2)
(−2n + 3)

n−2

∑
k=1

(2a)k−1(−n + 1)k+1
(−2n + 2)k+1

1
(k− 1)!yk

(−2n + 3)
(−n + k + 1)

− (2a)n−1(−n + 1)n−1

(−2n + 2)n−1

1
(n− 1)!yn−1

)
this expression becomes

− (2y− 1)2a−2

22a−2y2a−1

(
(2a + n− 2)
(−2n + 3)

n−2

∑
k=1

(2a)k−1(−n + 1)k
(−2n + 2)k+1

(−2n + 3)
(k− 1)!yk

− (2a)n−1(−n + 1)n−1

(−2n + 2)n−1

1
(n− 1)!yn−1

)
this gives

− (2y− 1)2a−2

22a−2y2a−1

(
(2a + n− 2)
(−2n + 3)

n−1

∑
k=1

(2a)k−1(−n + 1)k
(−2n + 2)(−2n + 3)(−2n + 4)k−1

(−2n + 3)
(k− 1)!yk

)
finally it becomes

− (2y− 1)2a−2

22a−2y2a−1

(
(2a + n− 2)
(−2n + 3)

n−1

∑
k=1

(2a)k−1(−n + 1)k
(−2n + 2)(−2n + 4)k−1

1
(k− 1)!yk

)
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which is exactly (14).

To conclude, we can easily see that u(1)
n , n ≥ 2 given by section 2 and u(a)

2 , n ≥ 2

generate u(a)
n , n ≥ 2 and a positive integer. The same conclusion as for hypergeometric

sums.

Appendix

Here is a Maple instruction for the theorem:
> restart;
> hyper1 := (n, a)→ hypergeom([a + 1/2, a], [−n + 3/2], x2);
> hyper2 := (n, a)→ hypergeom([2 ∗ a,−n + 1], [−2 ∗ n + 2], 2 ∗ x/(1 + x))/(1 + x)2∗a;
> Una := (n, a)→ 2 ∗ x2∗a−3+2∗n ∗ sqrt(Pi) ∗ GAMMA(n + a) ∗ hypergeom([1− a, 3/2−
n− a], [3/2], 1/x2) ∗ (x2 − 1)−n+1−2∗a/(GAMMA(n− 1/2) ∗ GAMMA(a));
> simplify(hyper1(5, 3)-hyper2(5, 3)-Una(5, 3));
> simplify(hyper1(1, 3)-hyper2(1, 3)+Una(1, 3));
> simplify(hyper1(0, 3)-hyper2(0, 3));

0
0
0

4. Open Problem

For a− 1
2 ∈ N write the analogue of (5). We are working on this.
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