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Abstract: This paper is an endeavor to investigate some estimation problems of the unknown
parameters and some reliability measures of the alpha power exponential distribution in the presence
of progressive first-failure censored data. In this regard, the classical and Bayesian approaches are
considered to acquire the point and interval estimates of the different quantities. The maximum
likelihood approach is proposed to obtain the estimates of the unknown parameters, reliability,
and hazard rate functions. The approximate confidence intervals are also considered. The Bayes
estimates are obtained by considering both symmetric and asymmetric loss functions. The Bayes
estimates and the associated highest posterior density credible intervals are given by applying the
Monte Carlo Markov Chain technique. Due to the complexity of the given estimators which cannot
be compared theoretically, a simulation study is implemented to compare the performance of the
different procedures. In addition, diverse optimality criteria are employed to pick the best progressive
censoring plans. Two engineering applications are considered to illustrate the applicability of the
offered estimators. The numerical outcomes showed that the Bayes estimates based on symmetric
or asymmetric loss functions perform better than other estimates in terms of minimum root mean
square errors and interval lengths.

Keywords: progressive first-failure censoring; alpha power exponential distribution; reliability
estimation; Bayes estimation; optimum censoring

MSC: 62F10; 62F15; 62N01; 62N02; 62N05

1. Introduction

The progressive censoring schemes have acquired a substantial amount of awareness
in recent years due to their flexibility to permit units to be withdrawn at any point other
than the ending point. The progressive censoring schemes were offered in the form of,
progressive Type-I, progressive Type-II, and hybrid progressive censoring schemes. The
investigation when the examined products are highly reliable can take a long time using
these censoring schemes. One of the considerable powerful solutions to this trouble is
gathering the tested units into several groups with an identical number of units and the
time of the first failure in each group is recorded, which is named the progressive first-
failure censoring (PFFC) scheme. This scheme is proposed by Wu and Kuş [1] and it has
become popular in reliability analyses and life testing studies in recent years. They defined
the PFFC scheme as a mixture of the ideas of first-failure and progressive Type-II censoring
schemes. The major benefit of this censoring is that it allows the withdrawal of some of the
survival sets from the experiment before the final cessation point.

The PFFC scheme can be defined as follows: assume that n separate groups with k units
per group are placed on a life-testing experiment at time zero, m is a predetermined number
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of failures, and the prefixed progressive censoring scheme (PCS) R = (R1, R2, . . . , Rm).
When the time of the first failure is observed (say X(1)), R1 groups and the group in which
the first failure are randomly extracted from the remaining live groups n− R1− 1. Similarly,
at the time of the second failure (say X(2)), R2 groups and the group in which the second
failure are randomly withdrawn from the remaining live groups n− R1 − R2 − 2, and so
on. This process persists until all remaining Rm (m ≤ n) groups and the group in which
the m-th failure (say X(m)) has occurred are randomly extracted at the time of m-th failure.
In this case, X(1), X(2), . . . , X(m) denotes the independent lifetimes PFFC order statistics
with predetermined PCS R. Suppose that the failure times of the n× k items are from a
continuous population, with PDF f (x) and cumulative distribution function CDF F(x),
then the likelihood function for x = (x(1), . . . , x(m)), is given by:

L(ϑ|x) = Ckm
m

∏
i=1

f (x(i))[1− F(x(i))]
k(1+Ri)−1, (1)

where n = m + ∑m
i=1 Ri, ϑ is the vector of unknown parameters and C is a constant.

From (1), some sampling schemes can be obtained as special cases, such as: (i) Pro-
gressive Type-II censoring by putting k = 1; (ii) Joint PDF of the first-failure-censored order
statistics by putting R = (0, 0, . . . , 0); (iii) Type-II censoring by putting R = (0, 0, . . . , n−m)
and k = 1; and (iv) putting R = (0, 0, . . . , 0) and k = 1, then n = m, which yields the com-
plete sample. Many researchers investigated the estimation of some lifetime distribution by
considering the PFFC samples. Soliman et al. [2] studied frequentist and Bayes estimators
of the Gompertz distribution, as well as some reliability characteristics. Dube et al. [3]
investigated the likelihood and Bayesian methods for Lindley distribution. Ahmed [4]
considered some estimation procedures for the generalized inverted exponential distri-
bution. Ashour et al. [5] derived the likelihood inferences of the generalized Gompertz
distribution parameters. Ashour et al. [6] studied the inferences and optimal schemes
for the Nadarajah–Haghighi distribution. Ashour et al. [7] studied both Bayesian and
non-Bayesian estimations for the Weibull parameters using binomial random removals.
Shi and Shi [8] considered an inference for the inverse power Lomax distribution. See also,
for further information, the works of Xie and Gui [9], Saini et al. [10] and Cai and Gui [11],
among others.

Recently, Mahdavi and Kundu [12] proposed a new extension of the classical exponen-
tial distribution which is called alpha power exponential (APE) distribution. They explored
the main properties and studied the estimation of its unknown parameters. They showed
that the APE distribution can be used as an alternative to some traditional distributions,
such as Weibull and gamma distribution. The PDF and CDF of the APE distribution with
shape parameter α and scale parameter δ can be expressed for x > 0 as follows:

f (x; α, δ) =
δ log(α)e−δxα1−e−δx

α− 1
, δ, α > 0, α 6= 1 (2)

and

F(x; α, δ) =
α1−e−δx − 1

α− 1
. (3)

The APE distribution’s reliability function (RF) and hazard rate function (HRF) are
defined, respectively, as:

R(t; α, δ) =
α

α− 1

(
1− α−e−δt

)
(4)

and
h(t; α, δ) = δ log(α)e−δt

(
αe−δt − 1

)−1
. (5)

Various estimation methods of the APE distribution were investigated by Nassar et al. [13].
Salah [14] considered the maximum likelihood method based on Type-II PCS from APE
data. Alotaibi et al. [15] studied the statistical inferences of the APE distribution using
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adaptive progressive Type-II censoring. Nassar et al. [16] considered the competing risks
model of APE distribution under Type-II PCS data.

Due to the flexibility of the APE distribution in modelling different types of data and
the vital role of the PFFC scheme in reducing the total time on the test, it is of interest
to explore the estimation of the parameters and the reliability characteristics of the APE
distribution in this case. As a result, the main aims of this study are: (i) to formulate
point and interval estimates using the classical approach; (ii) to investigate the Bayesian
estimation through squared error loss (SEL) function as a symmetric loss function and
LINEX loss (LL) function as an asymmetric loss function. The Bayes estimates and the
highest posterior density (HPD) credible intervals are obtained by employing the Monte
Carlo Markov Chain (MCMC) technique; (iii) to discover the performance of diverse
proposed estimators via a simulation study; (iv) to create a policy for specifying the optimal
progressive censoring plan; and (v) to show how to apply the offered methods in reality
by analyzing two real datasets. We can motivate the use of the APE distribution from the
data analysis point of view. As it is shown in the real data section, the APE distribution
provides a better fit than some other well-known distributions, such as Weibull, log normal,
and gamma in modelling engineering datasets.

The rest of this study is organized as follows: in Section 2, the maximum likelihood is
considered. The Bayes estimators are investigated in Section 3. In Section 4, we conduct a
simulation study to attain and compare the performance of the different methods. Different
methods for selecting the optimal progressive censoring plan are displayed in Section 5.
Two applications are presented in Section 6. Finally, some findings from this study are
offered in Section 7.

2. Maximum Likelihood Estimation

This section is devoted to investigating the classical estimation of the APE distribution
based on PFFC data. The unknown parameters and some reliability measures, including
RF and HRF, are estimated by employing the method of maximum likelihood. Additionally,
the approximate confidence intervals (ACIs) of the unknown parameters and reliability
measures are constructed.

2.1. Point Estimation

Suppose that X(i), i = 1, . . . , m, 1 ≤ m ≤ n, are a PFFC sample with predetermined
PCS R taken from APE population with PDF and CDF given by (2) and (3), respectively.
Then, from (1)–(3), the likelihood function without the constant term can be expressed as
follows:

L(ϑ|x) = δm logm(α)

(
α

α− 1

)kn
exp

[
−δ

m

∑
i=1

xi − log(α)
m

∑
i=1

e−δxi

]
m

∏
i=1

[
1− α−e−δxi

]k(1+Ri)−1
, (6)

where ϑ = (α, δ)> and xi = x(i) for the sake of simplicity. The natural logarithm of the
likelihood function (6), denoted by `(ϑ|x), takes the form:

`(ϑ|x) = m log(δ log(α)) + kn log
(

α

α− 1

)
− δ

m

∑
i=1

xi − log(α)
m

∑
i=1

e−δxi

+
m

∑
i=1

R∗i log
(

1− α−e−δxi
)

, (7)

where R∗i = k(1 + Ri)− 1. To acquire the maximum likelihood estimates (MLEs) of α and δ,
one should maximize the objective function in (7) with respect to these unknown parameters.

Another way to obtain the required MLEs, denoted by α̂ and δ̂, is to solve the following
two normal equations simultaneously:

∂`(ϑ|x)
∂α

=
m

α log(α)
+ kn

(
1
α
− 1

α− 1

)
+

1
α ∑m

i=1 e−δxi

(
R∗i

νi − 1
− 1
)
= 0 (8)
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and
∂`(ϑ|x)

∂δ
=

m
δ
+ ∑m

i=1

[
log(α)xie−δxi

(
1−

R∗i
νi − 1

)
− xi

]
= 0, (9)

where νi = αe−δxi . In addition to obtaining the MLEs of α and δ, it is of interest also to
acquire the MLEs of RF and HRF. To estimate such functions, one can utilize the invariance
property of the MLEs. In this case, the MLEs of RF and HRF are obtained by substituting the
parameters α and δ with the corresponding MLEs computed from (4) and (5), respectively.
One can refer to Luo et al. [17] about the importance of estimating the reliability function.
Accordingly, we have the following:

R̂(t) =
α̂

α̂− 1

(
1− α̂−e−δ̂t

)
and ĥ(t) = δ̂ log(α̂)e−δ̂t

(
α̂e−δ̂t − 1

)−1
.

2.2. Interval Estimation

Owing to the asymptotic properties of the MLEs α̂ and δ̂, we can investigate the
interval estimation of the unknown parameters, as well as the reliability measures. Under
some mild regularity conditions, and based on the law of large samples, it is known that
the MLEs (α̂, δ̂) are asymptotically normally distributed with mean (α, δ) and variance–
covariance matrix I−1(α, δ), where I is the Fisher information matrix. In practice, obtaining
the exact expressions of I is not easy due to the complicated expressions of the second
derivatives of `(ϑ|x). Thus, I−1(α̂, δ̂) is considered to estimate I−1(α, δ). In this case,
we have

I−1(α̂, δ̂) =

(
− ∂2`(ϑ|x)

∂α2 − ∂2`(ϑ|x)
∂α∂δ

− ∂2`(ϑ|x)
∂δ∂α − ∂2`(ϑ|x)

∂δ2

)−1

(α,δ)=(α̂,δ̂)

, (10)

with the following elements

∂2`(ϑ|x)
∂α2 = kn

[
1

(α− 1)2 −
1
α2

]
− m[log(α) + 1]

[α log(α)]2
+

1
α2

m

∑
i=1

e−δxi

[
1 +

R∗i [1− νi(1− e−δxi )]

(1− νi)2

]
,

∂2`(ϑ|x)
∂δ2 = −m

δ2 − log(α)
m

∑
i=1

x2
i e−δxi

[
1 +

R∗i (1 + νi log(α)e−δxi − νi)

(1− νi)2

]

and

∂2`(ϑ|x)
∂α∂δ

=
1
α

m

∑
i=1

xie−δxi

[
1 +

R∗i (1 + νi log(α)e−δxi − νi)

(1− νi)2

]
.

Then, at the confidence level 100(1− τ)%, the two sided ACIs of the unknown param-
eters α and δ are given, respectively, by

α̂± zτ/2

√
I−1
11 (α̂, δ̂), and δ̂± zτ/2

√
I−1
22 (α̂, δ̂).

where zτ/2 is the upper (τ/2)th percentile point of the standard normal distribution. On
the other hand, to construct the ACIs of RF and HRF, we need to obtain the variances of
R̂(t) and ĥ(t).

Here, we employ the delta method to approximate the required variances. For further
information about the delta method, one can refer to Greene [18]. For the RF, applying the
delta method and under some technical regularity conditions, including the support of
the density function does not depend on the unknown parameters, the density defined
by any two different values of the unknown parameters are distinct, the density is three
times differentiable with respect to the unknown parameters and the third derivatives are
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continuous in the unknown parameters and the integral of the density function can be
differentiated under the integral sign with respect to the unknown parameters, see for more
details Anastasiou and Ley [19] and Anastasiou and Gaunt [20], the asymptotic distribution
of R̂(t) is normally distributed with mean R(t) and variance given by ΨR I−1(α̂, δ̂)Ψ>R ,
where ΨR = (∂R(t)/∂α, ∂R(t)/∂δ) such as

∂R(t)
∂α

=
1− νt + (α− 1)e−δt

(α− 1)2νt

and
∂R(t)

∂δ
=

αte−δt log(α)
(α− 1)νt

,

where νt = αe−δt
. Similarly, for the HRF, the asymptotic distribution of ĥ(t) is normally

distributed with mean h(t) and variance Ψh I−1(α̂, δ̂)Ψ>h , where Ψh = (∂h(t)/∂α, ∂h(t)/∂δ)
with

∂h(t)
∂α

=
δe−δt[νt − νte−δt log(α)− 1

]
α(νt − 1)2 ,

and
∂h(t)

∂δ
=

e−δt log(α)
[
νt
(
1− δt + δte−δt log(α)

)
+ δt− 1

]
(νt − 1)2 .

As a result, the two-sided ACIs for RF and HRF are shown, respectively, as:

R̂(t)± z τ
2

σR and ĥ(t)± z τ
2

σh,

where σR = [ΨR I−1(α̂, δ̂)Ψ>R ]
0.5 and σh = [Ψh I−1(α̂, δ̂)Ψ>h ]

0.5.
Once one collects a PFFC sample, the proposed point (or interval) estimates of α, δ, R(t)

or h(t) derived in this section can be easily evaluated via R software by installing ‘maxLik’
package proposed by Henningsen and Toomet [21], which uses the Newton–Raphson
method in ‘maxNR()’ function.

3. Bayesian Estimation

In this section, the Bayesian estimation method is considered to reach the point
and interval estimate of the parameters α and δ, as well as RF and HRF of the APE
distribution based on PFFC data. The Bayesian method has received substantial attention
in statistical investigations during the past few decades as a useful and valuable choice to
the classical approaches.

3.1. Prior and Loss Functions

We study the Bayesian estimation for the APE distribution beneath the assumption
that the random variables α and δ have independent gamma prior distributions. Inde-
pendent priors are fairly straightforward and concise, which may not produce greatly
complicated inferential and computational matters. Suppose that α ∼ Gamma(a1, b1) and
δ ∼ Gamma(a2, b2). Then, the joint prior of α and δ can be expressed as follows:

g(α, δ) ∝ αa1−1 δa2−1 e−(b1α+b2δ), α, δ > 0, (11)

where ar, br > 0, r = 1, 2, are the hyperparameters.
In Bayesian estimation, the loss function plays a vital function as it can be used to

represent the overestimation and underestimation in the study. In this study, two loss
functions are considered, namely SEL and LL function. As a symmetric loss function,
the SEL function treats overestimation and underestimation equally. The Bayes estimator,
in this case, is obtained as the posterior mean. On the other hand, the LL function as an
asymmetric loss function provides various weights for overestimation and underestimation.
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The LL function was first presented by Klebanov [22] and utilized by Varian [23]. Assume
that µ is the unknown parameter to be estimated. The LL function can be written as:

ψ(µ, µ̃) = exp{η(µ̃− µ)} − η(µ̃− µ)− 1, η 6= 0, (12)

where η shows the direction and degree of asymmetry and µ̃ is the Bayes estimator based
on the LL function. From (12), (i) if η = 1, the LL function is quit asymmetric about zero
with overestimation being more costly than underestimation; (ii) if η < 0, the LL function
becomes exponentially (underestimation) when (µ̃/µ)− 1 is negative and becomes almost
linearly (overestimation) when (µ̃/µ)− 1 is positive; (iii) if η has small values, then the LL
function is close to a symmetric loss function, for more details see Basu and Ebrahimi [24].

The Bayes estimator µ̃ of µ using the LL function is obtained as follows:

µ̃ = − 1
η

log
[
Eµ

(
e−ηµ

)]
, η 6= 0,

where Eµ[.] is the expectation over the posterior distribution of the parameter µ.

3.2. Posterior Analysis

Combining the likelihood function given by (6) with the joint prior distribution, the
joint posterior distribution of the parameters α and δ can be written in the following form:

P(ϑ|x) = A−1δm+a2−1 logm(α)
αkn+a1−1

(α− 1)kn exp

[
−δ

(
m

∑
i=1

xi + b2

)
− log(α)

m

∑
i=1

e−δxi − b1α

]

×
m

∏
i=1

(
1− α−e−δxi

)R∗i , (13)

where A is the normalized constant and given by:

A =
∫ ∞

0

∫ ∞

0
δm+a2−1 logm(α)

αkn+a1−1

(α− 1)kn exp

[
−δ

(
m

∑
i=1

xi + b2

)
− log(α)

m

∑
i=1

e−δxi − b1α

]

×
m

∏
i=1

(
1− α−e−δxi

)R∗i dα dδ.

For any function of the unknown parameters α and δ, say φ(ϑ), the Bayes estimator of
φ(ϑ) based on SEL and LL functions given, respectively, as follows:

φ̃SEL(ϑ) =
∫ ∞

0

∫ ∞

0
φ(ϑ) P(ϑ|data)dα dδ (14)

and

φ̃LL(ϑ) = −
1
η

log
[∫ ∞

0

∫ ∞

0
e−ηφ(ϑ) P(ϑ|data)dα dδ

]
. (15)

It is clear that the estimators in (14) and (15) cannot be obtained analytically. Therefore,
we suggest using the MCMC technique to compute the required Bayes estimators and also
to construct the corresponding HPD credible intervals, for more details about the MCMC
technique see Al Sobhi and Soliman [25] and Wang et al. [26].

Ignoring the normalized constant in (13), the posterior distribution can be written as:

P(ϑ|x) ∝ P1(α|δ, x)P2(δ|α, x),
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where P1(α|δ, x) and P2(δ|α, x) are the full conditional distributions of α and δ, respectively,
and given by

P1(α|δ, x) ∝ logm(α)
αkn+a1−1

(α− 1)kn exp
[
− log(α)∑m

i=1 e−δxi − b1α
]
∏m

i=1

(
1− α−e−δxi

)R∗i (16)

and

P2(δ|α, x) ∝ δm+a2−1 exp

[
−δ

(
m

∑
i=1

xi + b2

)
− log(α)∑m

i=1 e−δxi

]
∏m

i=1

(
1− α−e−δxi

)R∗i . (17)

From (16) and (17), we can see that the full conditional distributions of α and δ can
not be pared to any standard distributions. Accordingly, it is impossible to obtain samples
from these distributions directly employing the standard routines. To overpower this
concern, we suppose using the Metropolis–Hastings (M-H) procedure. To operate the
M-H procedure, we consider using the normal distribution as the proposal distribution to
generate the required samples.

3.3. Metropolis–Hastings Procedure

To generate samples from (16) and (17), acquire the Bayes estimates, and create the
HPD credible intervals, the following steps can be implemented:

Step 1. Determine the start values (α(0), δ(0)) = (α̂, δ̂).
Step 2. Set j = 1.
Step 3. Use the normal proposal as N(α(j−1), I−1

11 (α(j−1), δ(j−1))), to generate α∗.
Step 4. Compute the acceptance probability (AP):

AP(α(j−1)|α∗) = min

[
1,

P1(α
∗|δ(j−1))

P1(α(j−1)|δ(j−1))

]
.

Step 5. From the uniform distribution, generate u, where U ∼ U(0, 1).
Step 6. If u ≤ AP(α(j−1)|α∗), set α(j) = α∗, else, set α(j) = α(j−1).
Step 7. Similarly, repeat steps 3–6 for δ to obtain δ(j) from (17).
Step 8. Compute the RF R(j)(t) and the HRF h(j)(t) from (4) and (5), respectively.
Step 9. Set j = j + 1.
Step 10. Repeat steps 3-9 M times to acquire[

α(1), δ(1), R(1)(t), h(1)(t)
]
, . . . ,

[
α(M), δ(M), R(M)(t), h(M)(t)

]
.

Step 11. Based on SEL function, compute the Bayes estimates of α, δ, R(t) and h(t), (say
θ), by assuming Q burn-in period as

θ̃SEL =
1

M−Q

M

∑
j=Q+1

θ(j).

Step 12. Employing the LL function, obtain the Bayes estimates of α, δ, R(t) and h(t), say
θ, as follows

θ̃LL = − 1
η

log

(
M

∑
j=Q+1

e−ηθ(j)

M−Q

)
, η 6= 0.

Step 13. To compute the HPD credible intervals of α, δ, R(t), and h(t), say θ: first, order
the generated samples of θ(l), for l = 1, 2, . . . , M, after the burn-in period as
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θ(Q+1), θ(Q+2), . . . , θ(M). Then, using the method offered by Chen and Shao [27],
the 100(1− τ)% two-sided HPD credible interval of θ can be given as:[

θ(l
∗), θ(l

∗+(1−τ)(M−Q))
]
,

where l∗ = Q + 1, Q + 2, . . . , M is selected, such that

θ(l
∗+[(1−τ)(M−Q)]) − θ(l

∗) = min
16l6τ(M−Q)

[
θ(l+[(1−τ)(M−Q)]) − θ(l))

]
.

The largest integer less than or equal to y is denoted by [y]. Then, the HPD
credible interval of y is the interval with the smallest length.

Via R software, to evaluate the Bayes point estimates (or the 100(1− τ)% HPD credible
intervals) of α, δ, R(t) and h(t), two useful packages are recommended, called (i) ‘coda’
package by Plummer et al. [28] and (ii) ‘HDInterval’ by Meredith and Kruschke [29].

4. Monte Carlo Simulation

To compare the proposed estimates of α, δ, R(t), and h(t), an extensive Monte Carlo
simulation is carried out. Using different combinations of n(experimental groups), m
(effective data), k (group size), and Ri, i = 1, 2, . . . , m (progressive censoring), we replicated
1000 times progressive first-failure-censored data from the proposed APE distribution when
the true value of (α, δ) is taken as (0.5,1). In this study, the starting value of each unknown
parameter is taken as the corresponding true value. Following Nassar et al. [13], the actual
values of α and δ have been chosen and other values of the same unknown parameters can
be easily incorporated based on their domains. Additionally, the true value of the reliability
parameters R(t) and h(t) at given time t = 0.1 taking as 0.872 and 1.346, respectively.

Using n(= 30, 80) and k(= 2, 5), the values of m are specified when the failure informa-
tion percentage ((m/n)100%) is taken as m(= 40, 80)%. Various patterns of the progressive
censoring scheme Ri, i = 1, 2, . . . , m are also considered as:

S1 : R1 = n−m, Ri = 0 for i 6= 1,

S2 : R m
2
= n−m, Ri = 0 for i 6= m

2
,

S3 : Rm = n−m, Ri = 0 for i 6= m.

Further, for selecting the hyperparameter values, the behavior of the gamma infor-
mative priors is evaluated by considering two popular properties namely prior mean and
prior variance. However, two prior sets of the hyperparameters (a1, a2, b1, b2) for α and
δ are used namely: prior-1:(2.5,5,5,5) and prior-2:(5,10,10,10). Using the M-H algorithm,
the point and interval Bayes estimates of α, δ, R(t), and h(t) are calculated based on
12,000 MCMC samples after ignore the first 2000 variates as burn-in. Then, utilizing the
remaining 10,000 samples, the Bayes estimates (or HPD credible intervals) of α, δ, R(t),
and h(t) are obtained utilizing both SEL and LL (for η = (−2,+2)) functions. Clearly, we
have omitted the results of asymmetric Bayes estimates (LL function) for small values of |η|
because the calculated estimates are not much different from the symmetric Bayes estimates
(SEL function). The average maximum likelihood (or Bayes) estimates of α, δ, R(t), and
h(t) (say ϑ) are given by:

ϑ̌ρ =
1
B
B
∑
i=1

ϑ̌
(i)
ρ , ρ = 1, 2, 3, 4,

where B is the number of generated sequence data, ϑ̌(i) is the calculated estimate of ϑ at
the i-th simulated sample, ϑ1 = α, ϑ2 = δ, ϑ3 = R(t), and ϑ4 = h(t).
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Further, the comparison between point estimates of ϑ is made based on their root
mean squared-errors (RMSEs) and mean relative absolute biases (MRABs) as:

RMSE(ϑ̌ρ) =

√√√√ 1
B
B
∑
i=1

(
ϑ̌
(i)
ρ − ϑρ

)2
, ρ = 1, 2, 3, 4,

and

MRAB(ϑ̌ρ) =
1
B
B
∑
i=1

1
ϑρ

∣∣∣ϑ̌(i)
ρ − ϑρ

∣∣∣, ρ = 1, 2, 3, 4,

respectively.
Furthermore, the comparison between interval estimates of the same unknown pa-

rameters is made using their average confidence lengths (ACLs) and coverage percentages
(CPs) which can be computed as:

ACL(1−τ)%(ϑ) =
1
B
B
∑
i=1

(
Uϑ̌(i) −Lϑ̌(i)

)
, ρ = 1, 2, 3, 4,

and

CP(1−τ)%(ϑ) =
1
B
B
∑
i=1

1(L
ϑ̌(i)

;U
ϑ̌(i)

)(ϑ), ρ = 1, 2, 3, 4,

respectively, where 1(·) is the indicator function and L(·) and U (·) denote the lower and
upper bounds, respectively, of (1− τ)% asymptotic (or HPD credible) interval of ϑρ.

All numerical evaluations were implemented via R 4.1.2 software using two mainly
packages namely ‘coda’ (by Plummer et al. [28]) and ‘maxLik’ (by Henningsen and
Toomet [21]). All simulation results of α, δ, R(t), and h(t) are displayed with heatmap plots
in Figures 1–4, respectively, while all numerical results are provided in Tables S1–S12 as
supplementary materials. For specification, several notations have been used in Figures 1–4
(based on Prior 1 (say P1) as an example) such as the Bayes estimates based on SEL function
mentioned as “SEL-P1” and the Bayes estimates based on LL function for η = −2 and +2
mentioned as “LL1-P1” and “LL2-P1”, respectively.

From Figures 1–4, in terms of the lowest RMSE, MRAB, and ACLs, as well as the
highest CPs, the following observations are made:

• Generally, the proposed classical and Bayesian estimates of the unknown parameters
α, δ, R(t), and h(t) of the APE lifetime model in presence of progressive first-failure
censored data behave well.

• All point/interval estimates of the same unknown parameters perform satisfactory
when n(or m) increases. A similar result is found when the total number of removed
items n−m decreases.

• Since the Bayes estimates include gamma information, it is noted that the Bayes
estimates using both SEL and LL functions perform better compared to the other
estimates as expected. Similar behavior is observed in the case of HPD credible
interval estimates of all unknown quantities.

• Additionally, to evaluate the effect of the LL function, it can be seen that the RMSEs
and MRABs of estimates of all unknown parameters have overestimates (when (η < 0))
and and underestimates (when (η > 0)).
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• Comparing the given priors 1 and 2, it can be seen that the Bayes estimates based
on prior 2 perform better compared to the other estimates. This result is due to the
variance of prior 2 is lower than the variance of prior 1.

• Comparing the censoring schemes 1 and 3, it is clear that the proposed estimates of
the unknown model parameters α and δ perform better using scheme 1 (i.e., when the
survival units n−m removed at x1) while of the reliability characteristics R(t) and
h(t) perform better using scheme 3 (i.e., when the survival units n−m removed at
xm) than others.

• As k increases, we observed that from both frequentist and Bayesian results: (i) the
RMSEs and MRABs increase for all unknown parameters α, δ, R(t), and h(t); (ii) the
ACLs for α and δ increase whereas the associated CPs decrease; and (iii) the ACLs for
R(t) and h(t) decrease whereas the associated CPs increase.

• Finally, the Bayesian paradigm using the MCMC technique is recommended to esti-
mate the unknown model parameters and the reliability characteristics of the APE
distribution when sample is obtained from the PFFC plan.
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Figure 1. Heatmap plots for classical and Bayesian estimation results of α.
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Figure 2. Heatmap plots for classical and Bayesian estimation results of δ.
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Figure 3. Heatmap plots for classical and Bayesian estimation results of R(t).
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Figure 4. Heatmap plots for classical and Bayesian estimation results of h(t).

5. Optimal Censoring Schemes

In this section, some criteria are used in order to select the optimal progressive censor-
ing scheme. The question of determining optimal values of R1, . . . , Rm when considering a
PFFC scheme is surely an essential one to view from a practical point of view. For fixed n
and m, the optimal progressive censoring scheme is the progressive censoring scheme that
delivers the most knowledge about the unknown parameters among all possible schemes.
This topic has lately earned a lot of attention; for example, see Chapter 10 of Balakrishnan
and Aggarwala [30]. Here, we present some of the optimality benchmarks that were uti-
lized in this context. In our investigation, Table 1 provides several generally used optimal
criteria to help us choose the most effective progressive censoring scheme. For more details
about the optimal censoring schemes, one can refer to Balasooriya and Balakrishnan [31]
and Pradhan and Kundu [32].

Table 1. Some optimal criteria.

Criterion Objective

1 Maximize trace [I(α̂, δ̂)]
2 Minimize trace [I−1(α̂, δ̂)]
3 Minimize det [I−1(α̂, δ̂)]
4 Minimize var(log(ξ̂q))

Criteria 1, 2, and 3 aim to maximize the observed Fisher information matrix trace,
minimize the trace, and minimize the determinant of the approximate variance covariance
matrix, respectively. On the other hand, criterion 4 attempts to minimize the variance
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of logarithmic MLE of the q− th quantile, denoted by log(ξ̂q). In our case, for the APE
distribution, we can obtain the logarithmic for log(ξ̂q) as follows:

log(ξ̂q) = log
[
−1

δ̂

[
log(1−vq)

log(α̂)

]]
, 0 < q < 1, (18)

where vq = log(1 + q(α̂− 1)). Utilizing the delta method, one can easily approximate
var(log(ξ̂q)). Obviously, the optimum progressive censoring scheme is the one that is
associated with the maximum value of criterion 1 and the smallest values of criteria 2, 3,
and 4.

6. Engineering Data Analysis

This part deals with two separate engineering applications to highlight the utility of
the provided estimating approaches and the applicability of the proposed estimators in
real situations.

6.1. Electrical Appliances

In this subsection, we analyze the first dataset which consists of the number (in
thousands) of cycles to failure for 60 electrical appliances in a life test as presented in
Table 2. The considered dataset is taken from Lawless [33] and recently analyzed by Dey
and Elshahhat [34]. To show the flexibility of the APE distribution, based on the complete
electrical appliances dataset, we compare the fit of the APE distribution with three well-
known distributions namely: Weibull (W), gamma (G), and log-normal (LN) distributions.
For this purpose, different goodness-of-fit measures are employed, such as negative log-
likelihood (NL), Akaike (A), Bayesian (B), consistent Akaike (CA), Hannan–Quinn (HQ),
Anderson–Darling (A∗), and Cramér von Mises (W∗) information criteria. Further, for
all considered distributions, the Kolmogorov–Smirnov (KS) statistic with its p-value is
also computed. The MLEs of the model parameters with their standard errors (SEs), as
well as the different model selection criteria, are calculated and reported in Table 3. The
results indicate that the APE distribution provides a better fit than the other distributions
because it has the lowest values of all given model selection measures. We also draw
quantile–quantile plots of the APE, W, G and LN distributions which are shown in Figure 5.
It also supports the same findings. Figure 6 provides the contour plot of the log-likelihood
function for α and δ by using the complete electrical appliances dataset. It shows that the
best starting values of α and δ are close to 1.7904 and 0.5217, respectively, as well as the fact
that it indicates that their MLEs exist and are unique.

Table 2. Time points of 60 electrical appliances.

0.014 0.034 0.059 0.061 0.069 0.080 0.123 0.142 0.165 0.210
0.381 0.464 0.479 0.556 0.574 0.839 0.917 0.969 0.991 1.064
1.088 1.091 1.174 1.270 1.275 1.355 1.397 1.477 1.578 1.649
1.702 1.893 1.932 2.001 2.161 2.292 2.326 2.337 2.628 2.785
2.811 2.886 2.993 3.122 3.248 3.715 3.790 3.857 3.912 4.100
4.106 4.116 4.315 4.510 4.580 5.267 5.299 5.583 6.065 9.701

Table 3. Summary fit of the APE distribution and other competing models under electrical appliances
data.

Model
MLE (SE)

NL A B CA HQ A* W*
KS

α δ Distance p-Value

APE 1.7893 (1.3408) 0.5216 (0.1034) 106.843 217.687 221.875 217.897 219.325 0.5792 0.0808 0.0878 0.7104
W 1.0009 (0.1066) 0.4555 (0.0814) 107.115 218.231 222.419 218.441 219.869 0.7154 0.1037 0.0777 0.8432
G 0.9307 (0.1487) 0.4244 (0.0884) 107.012 218.235 222.213 218.235 219.663 0.7184 0.1042 0.0897 0.6861

LN 0.1597 (0.1858) 1.4392 (0.1314) 116.565 237.129 241.318 237.339 238.767 2.5241 0.4292 0.1654 0.0667
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Figure 5. The quantile–quantile plot of the APE distribution and other competing models from
electrical appliances data.
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Figure 6. Contour plot of α and δ under electrical appliances data.

Using the complete electrical appliances failure times, we generate a first-failure
censored sample after randomly grouping this dataset into 20 groups with k = 3 items
within each group and report it in Table 4. Thus, the first-failure censored sample (in order)
is: 0.014, 0.034, 0.059, 0.061, 0.069, 0.080, 0.123, 0.142, 0.210, 0.381, 0.464, 0.479, 0.556, 0.574,
0.839, 0.991, 1.088, 1.275, 1.355, and 1.397.

Using this first-failure censored data, three different progressive first-failure censored
samples using three different censoring schemes with m = 10 are generated and reported
in Table 5. For brevity, the censoring scheme R = (2, 0, 0, 0, 2) is denoted by R = (2, 0∗3, 2).
For each generated PFFC sample presented in Table 5, we calculating the MLEs with their
SEs of α, δ, R(t) and h(t) (at time t = 0.5). Figure 7 shows the plots of the log-likelihood
functions of α and δ for scheme (10, 0∗9) as an example which shows that the MLEs of α
and δ exist and unique.

Table 4. Random grouping for the electrical appliances dataset.

Group Item 1 2 3 4 5 6 7 8 9 10

1.893 3.912 4.106 1.174 4.315 0.839 * 1.397 * 3.857 1.355 * 1.088 *
0.556 * 0.969 2.326 0.069 * 0.034 * 1.649 5.267 2.161 2.337 4.100
2.628 0.059 * 1.275 * 1.932 5.299 2.292 2.001 0.014 * 6.065 2.886

Group Item 11 12 13 14 15 16 17 18 19 20

3.790 2.811 0.464 * 0.080 * 0.917 4.116 0.061 * 1.702 1.477 0.165
1.064 0.479 * 1.091 4.510 0.574 * 1.270 4.580 3.248 1.578 0.142 *

0.991 * 9.701 2.993 3.122 5.583 0.381 * 3.715 0.123 * 0.210 * 2.785

Note: The starred number is the first-failure item in each group.

Table 5. Three different PFFC samples from the electrical appliances dataset.

Scheme Generated Censored Sample

(10, 0∗9) 0.014, 0.061, 0.069, 0.123, 0.142, 0.210, 0.464, 0.574, 0.839, 0.991
(0∗5, 10, 0∗4) 0.014, 0.034, 0.059, 0.061, 0.069, 0.080, 0.142, 0.464, 0.574, 0.839
(0∗9, 10) 0.014, 0.034, 0.059, 0.061, 0.069, 0.080, 0.123, 0.142, 0.210, 0.381
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Figure 7. The log-likelihood functions of α and δ using scheme (10, 0∗9) for electrical appliances data.

Via the M-H algorithm sampler, from 30,000 MCMC samples with 5000 burn-in, the
Bayes estimates with their SEs of α, δ, R(t), and h(t) (at time t = 0.5) are developed under
SEL and LL (for η(= −3,−0.03,+3)) functions using non-informative prior. Additionally,
the lower and upper bounds of the 95% ACI/HPD credible interval estimates with their
interval lengths are also calculated. The MLEs of α and δ are chosen as the initial guesses
to apply the M-H algorithm. All point and interval estimates of α, δ, R(t), and h(t) are
reported in Tables 6 and 7, respectively. It is clear, from Tables 6 and 7, that the point
estimates of α, δ, R(t), and h(t) obtained by both likelihood and Bayesian estimation
methods are quite close to each other. A similar pattern is also observed in the case of
interval estimation using ACIs and HPD credible intervals.

Using the data in Table 5, the proposed optimum criteria are also computed and
provided in Table 8. It shows that the progressive censoring scheme (0∗9, 10) is the opti-
mal scheme over others for criteria 1, 2, and 3, while the progressive censoring scheme
(0∗5, 10, 0∗4) is the optimal scheme than others for criterion 4.

Table 6. The point estimates (SEs) of α, δ, R(t), and h(t) using electrical appliances data.

Scheme Parameter MLE SEL LL

η→ −3 −0.03 +3

(10, 0∗9) α 1.4143 (3.6763) 1.3890 (0.0003) 1.3925 (0.0218) 1.3890 (0.0253) 1.3855 (0.0288)
δ 1.0457 (1.0386) 0.9464 (0.0006) 0.9604 (0.0854) 0.9465 (0.0992) 0.9325 (0.1133)

R(0.5) 0.6341 (0.0938) 0.6615 (0.0002) 0.6627 (0.0286) 0.6615 (0.0274) 0.6602 (0.0261)
h(0.5) 0.9420 (0.3574) 0.8533 (0.0006) 0.8660 (0.0760) 0.8535 (0.0885) 0.8408 (0.1012)

(0∗5, 10, 0∗4) α 1.2658 (3.2983) 1.2405 (0.0003) 1.2442 (0.0215) 1.2406 (0.0252) 1.2369 (0.0289)
δ 1.1686 (1.2678) 1.0723 (0.0006) 1.0858 (0.0828) 1.0724 (0.0961) 1.0590 (0.1096)

R(0.5) 0.5864 (0.1007) 0.6114 (0.0002) 0.6126 (0.0262) 0.6114 (0.0250) 0.6103 (0.0239)
h(0.5) 1.0935 (0.5109) 1.0066 (0.0006) 1.0196 (0.0739) 1.0067 (0.0867) 0.9938 (0.0996)

(0∗9, 10) α 0.1514 (0.9670) 0.1502 (0.0001) 0.1504 (0.0009) 0.1502 (0.0011) 0.1501 (0.0013)
δ 0.3144 (0.7126) 0.3001 (0.0003) 0.3030 (0.0113) 0.3000 (0.0143) 0.2970 (0.0173)

R(0.5) 0.7170 (1.0215) 0.7277 (0.0002) 0.7294 (0.0124) 0.7278 (0.0107) 0.7260 (0.0090)
h(0.5) 0.6333 (7.1874) 0.6078 (0.0005) 0.6182 (0.0151) 0.0107 (0.0253) 0.5973 (0.0359)
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Table 7. The interval estimates [lengths] of α, δ, R(t) and h(t) using electrical appliances data.

Scheme Parameter ACI HPD

(10, 0∗9) α (0.0000,8.6197) [8.6197] (1.2902,1.4803) [0.1901]
δ (0.0000,3.0813) [3.0813] (0.7420,1.1241) [0.3821]

R(0.5) (0.4503,0.8179) [0.3676] (0.6041,0.7172) [0.1131]
h(0.5) (0.2415,1.6423) [1.4008] (0.6049,1.0347) [0.3598]

α (0.0000,7.7303) [7.7303] (1.1463,1.3409) [0.1946]
(0∗5, 10, 0∗4) δ (0.0000,3.6534) [3.6534] (0.8910,1.2602) [0.3692]

R(0.5) (0.3890,0.7838) [0.3948] (0.5579,0.6655) [0.1076]
h(0.5) (0.0921,2.0948) [2.0027] (0.8216,1.1833) [0.3617]

(0∗9, 10) α (0.0000,0.7126) [0.7126] (0.1308,0.1699) [0.0391]
δ (0.0000,1.7111) [1.7111] (0.2142,0.3898) [0.1755]

R(0.5) (0.0000,0.9999) [0.9999] (0.6614,0.7916) [0.1302]
h(0.5) (0.0000,14.720) [14.720] (0.4424,0.7678) [0.3254]

Table 8. Optimal progressive censoring from electrical appliances data.

Scheme Criterion

1 2 3 4

q→ 0.3 0.6 0.9

(10, 0∗9) 10.6226 14.5938 1.37385 0.01739 0.10948 1.80970
(0∗5, 10, 0∗4) 8.73435 12.4861 1.42954 0.01122 0.10383 1.75503
(0∗9, 10) 146.002 1.44293 0.00988 0.03096 0.24603 5.31991

To assess the convergence of MCMC outputs, using the generated sample by censoring
scheme (10, 0∗9) (as an example), trace plots of MCMC simulated variates with their sample
mean (horizontal soled line (—)) and two bounds of 95% HPD credible intervals (horizontal
dashed lines (- - -)) of α, δ, R(t) and h(t) are displayed in Figure 8. Additionally, using a
Gaussian kernel for the same sample, the histograms of the simulated MCMC estimates
with their sample mean (vertical dotted line (:)) of α, δ, R(t), and h(t) are also displayed in
Figure 8. It shows that the MCMC technique converges very well and it also shows that
discarding the first 5000 samples is appropriate size to ignore the effect of the initial values.
It can be also seen, from Figure 8, that the simulated MCMC variates of α and δ are fairly
symmetrical while the generated posteriors of the R(t) and h(t) are negative and positive
quite skewed, respectively.
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Figure 8. Trace (top-panel) and histograms (bottom-panel) plots of α, δ, R(t), and h(t) from electrical
appliances data.
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6.2. Electronic Devices

The second dataset contains the failure times of 18 electronic devices which are: 5, 11,
21, 31, 46, 75, 98, 122, 145, 165, 196, 224, 245, 293, 321, 330, 350, and 420. This dataset was
originally reported by Wang [35], and recently analyzed by Elshahhat and Abu El Azm [36]
and Alotaibi et al. [15]. From the complete electronic devices data, the MLEs (along with
their SEs) and the model selection criteria (NL, A, B, CA, HQ, A∗, W∗, and KS) of APE
distribution and the other competitive lifetime (W, G, and LN) models are calculated and
displayed in Table 9. It shows that the APE distribution fits the electrical appliances data
quite well, compared to others. Moreover, the corresponding quantile–quantile plots of
the APE distribution and its competing models are displayed in Figure 9. It is evident that
the APE distribution is the best choice among all the competing models based on fitting
electronic devices data.

Figure 10 shows that the best initial values of α and δ are close to 3.0761 and 0.0074,
respectively, as well as it also indicates that their MLEs exist and are also unique.

Table 9. Summary fit of the APE distribution and other competing models under electronic devices
data.

Model
MLE (SE)

NL A B CA HQ A* W*
KS

α δ Distance p-Value

APE 3.0805 (3.8591) 0.0074 (0.0021) 110.322 224.645 226.445 225.445 224.891 0.3365 0.0487 0.1035 0.9794
W 1.1458 (0.0702) 0.0026 (0.0008) 110.446 224.892 226.673 225.692 225.138 0.3649 0.0539 0.1132 0.9550
G 1.1156 (0.3214) 0.0065 (0.0023) 110.603 225.207 226.987 226.007 225.452 0.3974 0.0597 0.1208 0.9274

LN 4.6358 (0.2952) 1.2523 (0.2087) 230.313 230.068 231.849 230.868 230.313 0.7949 0.1313 0.1646 0.6553
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Figure 9. The quantile–quantile plot of the APE distribution and other competing models from
electronic devices data.
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Figure 10. Contour plot of α and δ under electronic devices data.
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Using the complete electronic devices data, one first-failure censored sample is gener-
ated by randomly grouping this dataset into 9 groups with k = 2 items within each group,
see Table 10. As a result, the first-failure censored sample (in order) is: 5, 11, 21, 31, 46, 75,
98, 165, and 245. Now, three different progressive first-failure censored samples based on
three different censoring schemes with m = 5 are generated from the first-failure censored
data and are listed in Table 11. For each generated PFFC sample, the maximum likelihood
and Bayes M-H estimates with their SEs of α, δ, R(t) and h(t) (at time t = 10) are computed
and provided in Table 12. Figure 11 presents the plots of the log-likelihood functions of
α and δ for scheme (4, 0∗4) as an example which shows that the MLEs of α and δ exist
and unique.

Using gamma improper priors, based on 30,000 MCMC samples with 5000 burn-in, the
MCMC estimates with their SEs of α, δ, R(t) and h(t) (at time t = 10) are developed under
SEL and LL (for η(= −2,−0.02,+2)). Moreover, the two-sided 95% ACI/HPD credible
interval estimates with their interval lengths for α, δ, R(t), and h(t) are also calculated and
reported in Table 13. The calculated values of α̂ and δ̂ are chosen as the initial values to
run the M-H algorithm. It is noted, from Tables 12 and 13, that the statistical inferences
of α, δ, R(t), and h(t) derived from the Bayesian M-H approach perform better than the
maximum likelihood approach in terms of smallest SEs, and the HPD credible interval
estimates perform better than asymptotic interval estimates in terms of shortest interval
lengths. Furthermore, for each PFFC sample, the proposed optimum criteria are presented
in Table 14. It shows that the progressive censoring scheme (4, 0∗4) is the optimal scheme
compared to others for criteria 1, 2, and 3, while the censoring scheme (0∗4, 4) is the optimal
scheme compared to others for criterion 4.

Table 10. Random grouping for the electronic devices dataset.

Group Item 1 2 3 4 5 6 7 8 9

75 * 21 * 350 5 * 330 245 * 31 * 165 * 224
196 293 11 * 122 46 * 420 145 321 98 *

Note: The starred number is the first-failure item in each group.

Table 11. Three different PFFC samples from electronic devices dataset.

Scheme Generated Censored Sample

(4, 0∗4) 5, 21, 75, 98, 245
(0∗2, 4, 0∗2) 5, 11, 21, 98, 165
(0∗4, 4) 5, 11, 21, 31, 46

Table 12. The point estimates (SEs) of α, δ, R(t), and h(t) using electronic devices data.

Scheme Parameter MLE SEL LL

η→ −2 −0.02 +2

(4, 0∗4) α 1.2481 (0.41 × 10+1) 1.2481 (6.34 × 10−6) 1.2481 (8.02 × 10−6) 1.2481 (9.51 × 10−6) 1.2481 (1.10 × 10−5)
δ 0.0058 (6.64 × 10−3) 0.0057 (5.90 × 10−6) 0.0057 (1.21 × 10−4) 0.0057 (1.22 × 10−4) 0.0057 (1.23 × 10−4)

R (10) 0.9494 (3.59 × 10−2) 0.9504 (5.04 × 10−5) 0.9505 (1.17 × 10−3) 0.9504 (1.07 × 10−3) 0.9503 (9.75 × 10−4)
h (10) 0.0052 (3.58 × 10−3) 0.0051 (5.34 × 10−6) 0.0051 (1.08 × 10−4) 0.0051 (1.09 × 10−4) 0.0051 (1.11 × 10−4)

(0∗2, 4, 0∗2) α 1.6654 (0.43 × 10+1) 1.6653 (6.32 × 10−6) 1.6653 (1.87 × 10−5) 1.6653 (2.02 × 10−5) 1.6653 (2.17 × 10−5)
δ 0.0078 (7.64 × 10−3) 0.0077 (6.13 × 10−6) 0.0077 (1.13 × 10−4) 0.0077 (1.15 × 10−4) 0.0077 (1.16 × 10−4)

R (10) 0.9413 (3.63 × 10−2) 0.9422 (4.52 × 10−5) 0.9423 (9.40 × 10−4) 0.9422 (8.64 × 10−4) 0.9421 (7.87 × 10−4)
h (10) 0.0061 (3.63 × 10−3) 0.0060 (4.89 × 10−6) 0.0060 (8.88 × 10−5) 0.0060 (8.97 × 10−5) 0.0060 (9.06 × 10−5)

(0∗4, 4) α 5.5065 (0.83 × 10+1) 5.5064 (1.27 × 10−5) 5.5064 (4.09 × 10−5) 5.5065 (4.69 × 10−5) 5.5064 (5.31 × 10−5)
δ 0.0165 (1.03 × 10−2) 0.0163 (1.21 × 10−5) 0.0163 (1.58 × 10−4) 0.0163 (1.64 × 10−4) 0.0163 (1.69 × 10−4)

R (10) 0.9342 (9.38 × 10−2) 0.9349 (5.01 × 10−5) 0.9350 (8.01 × 10−4) 0.9349 (7.08 × 10−4) 0.9349 (6.13 × 10−4)
h (10) 0.0073 (4.41 × 10−3) 0.0072 (6.15 × 10−6) 0.0073 (2.00 × 10−5) 0.0073 (2.14 × 10−5) 0.0073 (2.28 × 10−5)
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Table 13. The interval estimates [lengths] of α, δ, R(t), and h(t) using electronic devices data.

Scheme Parameter ACI HPD

(4, 0∗4) α (0.0000,9.2399) [9.2399] (1.2461,1.2500) [0.0039]
δ (0.0000,0.0188) [0.0188] (0.0039,0.0075) [0.0036]

R(10) (0.8790,0.9926) [0.1136] (0.9342,0.9655) [0.0313]
h(10) (0.0000,0.0122) [0.0122] (0.0035,0.0068) [0.0033]

(0∗2, 4, 0∗2) α (0.0000,10.242) [10.242] (1.6634,1.6672) [0.0038]
δ (0.0000,0.0227) [0.0227] (0.0057,0.0095) [0.0039]

R(10) (0.8702,0.9174) [0.0472] (0.9284,0.9564) [0.0280]
h(10) (0.0000,0.0132] [0.0132] (0.0045,0.0075) [0.0030]

(0∗4, 4) α (0.0000,21.885) [21.885] (5.5023,5.5102) [0.0079]
δ (0.0037,0.0367) [0.0330] (0.0127,0.0201) [0.0074]

R(10) (0.7502,0.9796) [0.2294] (0.9189,0.9499) [0.0309]
h(10) (0.0013,0.0160) [0.0147] (0.0054,0.0092) [0.0038]
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Figure 11. The log-likelihood functions of α and δ using scheme (4, 0∗4) for electronic devices data.

Table 14. Optimal progressive censoring from electronic devices data.

Scheme Criterion

1 2 3 4

q→ 0.3 0.6 0.9

(4, 0∗4) 156,546.5 16.62644 0.000106 1299.115 5494.971 68,831.01
(0∗2, 4, 0∗2) 92,123.25 19.14876 0.000208 697.8017 3586.009 38,945.58
(0∗4, 4) 27,934.80 69.83511 0.002499 233.4947 1288.722 7908.135

As an example, using the generated sample by censoring scheme (4, 0∗4), trace and
histogram plots of the MCMC simulated variates of α, δ, R(t), and h(t) are provided in
Figure 12. It shows that the MCMC mechanism converges well and that the simulated
MCMC variates of all unknown parameters are fairly symmetrical. Finally, both numerical
results of the proposed methodologies under the complete failure times dataset of electrical
appliances and electronic devices provide a good explanation to the proposed model.
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Figure 12. Trace (top-panel) and Histograms (bottom-panel) plots of α, δ, R(t) and h(t) from electronic
devices data.

7. Concluding Remarks

In this study, we investigate the progressive first-failure censoring scheme under the
assumption that the lifetime of the population follows the alpha power exponential distri-
bution. We have used the method of maximum likelihood to obtain the point estimates of
the unknown parameters and some reliability characteristics. In addition, the approximate
confidence intervals are obtained by utilizing the asymptotic properties of the maximum
likelihood estimates. The Bayesian estimation method is employed to acquire the point
estimates, as well as the highest posterior density credible intervals. The Bayes estimates
are obtained through squared error and LINEX loss function via applying the Monte Carlo
Markov Chain technique. Comprehensive simulation experiments are implemented to
examine the performance of the different point and interval estimators. We have also
delivered various criteria to choose the optimal sampling plan. For applicability purposes,
two engineering applications are considered. The outcomes of the simulation study and
the two applications revealed that the Bayes estimates perform quite well, even for small
sample sizes. The Bayes estimates have the smallest root mean squared error when com-
pared with those based on the classical approach. Additionally, the highest credible density
credible intervals perform better than the approximate confidence intervals in terms of
minimum interval lengths. It may be said that in this paper, we have proposed the Bayesian
estimation using squared error and LINEX loss functions, although most of the outcomes
can be developed for any other loss functions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/axioms11100553/s1, Table S1: The average estimates (1st row),
RMSEs (2nd row) and MRABs (3rd row) of α when k = 2; Table S2: The average estimates (1st row),
RMSEs (2nd row) and MRABs (3rd row) of α when k = 5; Table S3: The average estimates (1st row),
RMSEs (2nd row) and MRABs (3rd row) of δ when k = 2; Table S4: The average estimates (1st row),
RMSEs (2nd row) and MRABs (3rd row) of δ when k = 5; Table S5: The average estimates (1st row),
RMSEs (2nd row) and MRABs (3rd row) of R(t) when k = 2; Table S6: The average estimates (1st
row), RMSEs (2nd row) and MRABs (3rd row) of R(t) when k = 5; Table S7: The average estimates
(1st row), RMSEs (2nd row) and MRABs (3rd row) of h(t) when k = 2; Table S8: The average estimates
(1st row), RMSEs (2nd row) and MRABs (3rd row) of h(t) when k = 5; Table S9: The ACLs (1st
column) and CPs (2nd column) of ACI/HPD credible intervals of α; Table S10: The ACLs (1st column)
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and CPs (2nd column) of ACI/HPD credible intervals of δ; Table S11: The ACLs (1st column) and
CPs (2nd column) of ACI/HPD credible intervals of R(t); Table S12: The ACLs (1st column) and CPs
(2nd column) of ACI/HPD credible intervals of h(t).
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