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Abstract: The process of heat transfer that involves non-Newtonian fluids in porous regions has
attracted considerable attention due to its practical application. A mathematical model is proposed
for monitoring fluid flow properties and heat transmission in order to optimize the final output.
Thus, this attempt aims to demonstrate the behavior of fluid flow in porous regions, using the
Brinkman viscoelastic model for combined convective transport over a sphere embedded in porous
medium. The governing partial differential equations (PDEs) of the proposed model are transformed
into a set of less complex equations by applying the non-dimensional variables and non-similarity
transformation, before they are numerically solved via the Keller-Box method (KBM) with the help
of MATLAB software. In order to validate the model for the present issue, numerical values from
current and earlier reports are compared in a particular case. The studied parameters such as
combined convection, Brinkman and viscoelastic are analyzed to obtain the velocity and temperature
distribution. Graphs are used to illustrate the variation in local skin friction and the Nusselt number.
The results of this study showcase that when the viscoelastic and Brinkman parameters are enlarged,
the fluid velocity drops and the temperature increases, while the combined convection parameter
reacts in an opposite manner. Additionally, as the Brinkman and combined convection parameters
are increased, the physical magnitudes of skin friction and Nusselt number are increased across
the sphere. Of all the parameters reported in this study, the viscoelastic parameter could delay the
separation of boundary layers, while the Brinkman and combined convection parameters show no
effect on the flow separation. The results obtained can be used as a foundation for other complex
boundary layer issues, particularly in the engineering field. The findings also can help researchers to
gain a better understanding of heat transfer analysis and fluid flow properties.

Keywords: numerical solution; sphere; Brinkman fluid; viscoelastic fluid; porous region

MSC: 76D05; 76D10; 35Q35; 76M20

1. Introduction

In science and engineering applications, fluid flow and convective heat transfer have
received distinctive attention. Researchers have carried out extensive research on boundary
layers to get insight in improving heat transfer conductivity and fluid characteristics. A
fluid is defined as a substance that flows continuously due to shear stress and is generally
categorized as a Newtonian or non-Newtonian fluid.

In recent decades, the combined convective flow of non-Newtonian fluids has attracted
significant attention. The term “combined convective transport” refers to the interaction
of pressure and buoyancy forces at different temperatures. Meanwhile, non-Newtonian
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fluids are fluids that defy Newton’s Law and cause variations in viscosity when shear
stress is applied. Non-Newtonian fluids are widely used in a variety of applications,
including oil reservoirs, wire coating, biological fluids, crystal growth, and geothermal
energy extraction [1]. Many contributions have been made to the investigation of fluid flow
properties, as highlighted in the following work [2–8].

According to Khan et al. [9], the Brinkman model is the classical model used in a porous
medium that applies to a high-porosity incompressible surface. Nazar et al. [10] used the
KBM to investigate the Brinkman model moving over a porous horizontal circular cylinder
(HCC). They discovered that the Brinkman model’s results differed significantly from
Darcy’s law model. Furthermore, they discovered that as the Darcy–Brinkman parameter
increased, the heat transfers and sheer stress coefficient decreased. Ali et al. [11] determined
the exact solutions of Brinkman fluid on an infinite rotating plate. Zakaria et al. [12], on
the other hand, applied the Brinkman model in their investigation, which focused on the
influence of radiative flow over unsteady free convection flow near a vertical surface. The
wall temperature is thought to have a continuous temporally ramped profile. Both authors
used the Laplace transformation technique to compute the solutions.

Tham and Nazar [13] solved another flow problem based on the Brinkman model.
They investigated the combined mode of heat transfer of a nanofluid around a saturated
porous sphere for assisting and opposing flow situations. In a similar scenario, Tham
et al. [14] investigated the flow through an HCC. Both authors used the KBM for numerical
solutions and discovered that the increase in combined convective transport affects the
boundary layer separation and can suppress the separation in the range 0

◦
< x < 120

◦

and 0
◦
< x < 180

◦
for the sphere and HCC, respectively. Khan et al. [15] focused on the

Brinkman flow of unsteady magnetohydrodynamics that passed over an infinite plate.
They used the finite Fourier transform to obtain the numerical results. Shafie et al. [16]
investigated the phenomena of fluid flow passing across an oscillating plate using the frac-
tional Brinkman model. They used the Laplace transformation to solve the problems and
discovered that increasing the Brinkman factor affected the fluid’s velocity. Furthermore,
Flilihi et al. [17] investigated combined convection heat transfer under the Darcy–Brinkman
model in a porous region. The authors discovered that a high Darcy number significantly
increases the wideness of the thermal boundary layer. Recently, there have been several
studies that have reported on the convective flow in porous medium [18–23].

Viscoelastic fluid is categorized as a non-Newtonian fluid with viscosity and elasticity
properties. The modified viscoelastic model has been investigated by scholars due to its
numerous applications in developing technology. Anwar et al. [24] explored the combined
convective flow of a viscoelastic fluid over a HCC. They discovered that increasing the
combined convection parameter slowed the separation of boundary layers within the range.
Furthermore, Kasim et al. [25] extended the problem to a constant heat flux and concluded
that the flow is influenced by both the Prandtl number and convective parameter. The
effects of magnetohydrodynamics, which were aligned with the viscoelastic fluid heated
by Newtonian heating around an HCC, were investigated by Aziz et al. [26]. In response to
a similar issue raised in the following years, Aziz et al. [27] developed a viscoelastic fluid
with microrotation characteristics. In addition, Mahat et al. [28] focused on the effect of
generating heat on the convective flow of viscoelastic nanofluids. They discovered that
strong heat generation increased both skin friction and heat transfer. Mahat et al. [29]
recently published a study on the convection flow of viscoelastic nanofluids with the
viscous dissipation effect under convective boundary conditions. The heat transfer rate
had an impactful effect at the stagnation point due to the primary source of heat at the
boundary layer. All the authors above have used the KBM to solve these problems. More
research on viscoelastic fluids over various geometries has also been conducted [30–34].

Previous scholars have employed a variety of numerical methods to solve the bound-
ary layer problem. In particular, there are two implicit finite difference techniques that
have been widely used to solve the PDEs, the Crank–Nicolson method and KBM. However,
according to Vajravelu and Prasad [35] and Yirga and Shankar [36], the KBM is one of the
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most powerful methods, it is easily adaptable to a new class of problems, provides more
rapid net variation, easily obtains higher-order accuracy, is productive, and is well-suited
to solve non-linear PDEs.

There are other models where the fluid flow across a porous surface with high porosity
is not relevant in heat transfer enhancement. Therefore, this study aims to propose a new
model for boundary layer flow that utilizes the basic Brinkman model with viscoelastic
properties, namely the Brinkman-viscoelastic fluid by considering the combined convective
flow that moves along a sphere. The proposed model, which is a hybrid of the Brinkman
concept and viscoelastic knowledge, could improve the fluid’s properties and heat transfer
performance. For instance, the performance of viscoelastic fluids for oil recovery was
studied through the microfluidic device channel. The design of microfluidic devices
allows the scholars to investigate the flow characteristics of viscoelastic fluids in porous
media. Through the micro-channel, the different structures were designed to simulate the
characteristics of porous medium. Inspired by the previous literature, the KBM is applied
in solving the proposed model encoded in MATLAB software. Furthermore, the effect of
relevant parameters, such as combined convective, viscoelastic, and Brinkman parameters
on the fluid’s characteristics, is investigated.

2. Model Formulation

A steady flow with combined convective transport over a porous sphere with radius a is
considered. According to Tham et al. [37], the exterior velocity is ue(x) = (3/2) U∞ sin(x/a)
by assuming that the uniform free stream velocity is U∞, which moves upwards across
the sphere under gravitational acceleration, g. T∞ is the ambient temperature, Tw is
the constant surface temperature and the radial distance from the symmetrical axis is
demarcated as r(x) = a sin(x/a). The values of x are measured laterally to the sphere and
y is perpendicular to the sphere’s surface.

The physical configuration is presented in Figure 1, where the sphere’s surface is
subjected to a constant wall temperature boundary condition.
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For this present problem, the continuity equation is introduced by Tham et al. [37], as
in Equation (1). By employing the Brinkman model by Nazar et al. [10] to the Brinkman
viscoelastic model, an additional viscoelastic term given by Aziz et al. [27] is incorporated
into momentum Equation (2) to describe the viscosity and elasticity of the fluid. For the
Brinkman model, it can be assumed that the flow is expected to be slow, so that the porous
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medium inertial effects can be ignored in the fluid [38,39]. Under the boundary layer
assumptions, part of the governing equations of the proposed model can be written as

∂(r u)
∂x

+
∂(r v)

∂y
= 0, (1)

µ

K
u= −dp

dx
+

µ

φ

∂2u
∂y2 + k0

[
u

∂3u
∂x∂y2 + v

∂3u
∂y3 −

∂u
∂y

∂2u
∂x∂y

+
∂u
∂x

∂2u
∂y2

]
−ρg sin (x/a),

(2)

u
∂T
∂x

+ v
∂T
∂y

= αm
∂2T
∂y2 , (3)

with respect to the boundary conditions

v = 0, u = 0, T = Tw, at y = 0,
u→ ue(x), v→ 0, T → T∞ as y→ ∞.

(4)

where ρ = ρ∞[1− β(T − T∞)].
The x and y are the components of velocity in the u and v direction.
The parameters that arise in Equations (1)–(3) are summarized in Table 1 based on the

work of Nazar et al. [10].

Table 1. Parameters in model.

Dimensionless Parameters Notations

Dynamic viscosity µ

Permeability of porous medium K

Porosity of porous medium φ

Viscoelasticity k0

Fluid density ρ

Pressure p

Thermal expansion coefficient β

Fluid temperature T

Porous effective thermal diffusivity αm

The PDEs in Equations (1)–(3) are transformed into dimensionless forms by using the
non-dimensional variables adopted from the work of Tham et al. [37].

x = x/a, y = Pe1/2 (y/a), u = u/U∞,
v = Pe1/2 (v/U∞), ue(x) = ue(x)/U∞, r = r(x)/a,
θ = (T − T∞)/(Tw − T∞)

(5)

It is noted that Pe = U∞a/αm is a modified Péclet number for the case of the porous
region.

By eliminating pressure, p and applying the Boussinesq and boundary layer approxi-
mation [14], the formulation yields the following equations:

∂

∂x
(ru) +

∂

∂y
(rv) = 0, (6)

∂ u
∂ y

= Γ
∂3u
∂ y3 + k1

 u ∂4u
∂x∂y3 +

∂3u
∂x∂y2

∂u
∂y + v ∂4u

∂y4 + ∂3u
∂y3

∂v
∂y −

∂u
∂y

∂3u
∂x∂y2

− ∂2u
∂x∂y

∂2u
∂y2 + ∂u

∂x
∂3u
∂y3 + ∂2u

∂y2
∂2u

∂x∂y

+ λ
∂ θ

∂ y
sin x, (7)
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u
∂θ

∂x
+ v

∂θ

∂y
=

∂2θ

∂y2 (8)

and the boundary condition (4) becomes

u = 0, v = 0, θ = 1 at y = 0,
u→ (3/2) sin x, v→ 0, θ → 0 as y→ ∞,

(9)

The dependent variables in (6)–(9) are reduced to a less complex form using non-
similarity transformation by introducing the following variables from the work of Tham
et al. [37]:

ψ = x r f (x, y), θ = θ(x, y), u =

(
1
r

)
∂ ψ

∂ y
, v = −

(
1
r

)
∂ ψ

∂ x
, (10)

where ψ and θ indicate the stream function and temperature of the fluid, respectively.
As a result, Equation (6) is fully satisfied, and Equations (7)–(9) result in the following
expressions:

f ′ − Γ f ′′′ − k1

[
2 f ′ f ′′′ −

(
1 + x cos x

sin x
)

f f (iv) − ( f ′′ )2
]
− ((3/2) + λθ) sin x

x =

xk1

[
f ′ ∂ f ′′′

∂x −
∂ f
∂x f (iv) − f ′′ ∂ f ′′

∂x + ∂ f ′
∂x f ′′′

] (11)

θ′′ +
(

1 + x
cos x
sin x

)
f θ′ = x

(
f ′

∂θ

∂x
− ∂ f

∂x
θ′
)

. (12)

The transformed boundary condition is obtained as

f (0) = 0, f ′(0) = 0, θ(0) = 1, at y = 0,

f ′(∞)→ (3/2) sin x
x , f ′′ (∞)→ 0, θ(∞)→ 0 as y→ ∞.

(13)

Equations (11)–(13) are reduced to the ordinary differential equations (the case at the
lower stagnation point of the sphere (x ≈ 0)) as follows:

f ′ − Γ f ′′′ − k1

[
2 f ′ f ′′′ − 2 f f (iv) − ( f ′′ )2

]
− (3/2)− λθ = 0, (14)

θ′′ + 2 f θ′ = 0. (15)

These are subjected to the following expressions:

f (0) = 0, f ′(0) = 0, θ(0) = 1

f ′(∞)→ 3/2, f ′′ (∞)→ 0, θ(∞)→ 0
(16)

Referring to Tham et al. [14], the local skin friction coefficient and Nusselt number are
defined as

C f =
τw

ρU∞2 , Nux =
aqw

k(Tw − T∞)
(17)

Here, τw and qw are defined as the skin friction (wall shear stress) and heat flux from
the surface, respectively, so that

τw = µ
(

∂u
∂y

)
y=0

+ k0

(
u ∂2u

∂x∂y + v ∂2u
∂y2 + 2

(
∂u
∂x

∂u
∂y

))
y=0

qw = −k
(

∂T
∂y

)
y=0

(18)

By substituting Equation (18) into Equation (17), the following skin friction and Nusselt
number can be obtained:
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C f

(
Pe1/2/Pr

)
= x

∂2 f
∂y2 , NuPe−1/2 = − ∂θ

∂y
. (19)

Referring to Nazar et al. [10], the dimensionless parameters in Equation (11) are
declared, as shown in Table 2.

Table 2. Definitions of dimensionless parameters.

Dimensionless Parameters Notations Definitions

Brinkman parameter Γ Da
φ Pe

Darcy number Da K
a2

Mixed convection parameter λ Ra
Pe

Rayleigh number Ra gKβ(Tw−T∞)a
αmv

Viscoelastic parameter k1
k0KU∞ Pe

µa3

3. Solution Procedures

The KBM is applied to solve (11) to (13), as it proves to be unconditionally stable and
quickly converges for highly non-linear flows. It is also one of the most used computational
methods for solving any order of boundary layer flow equations [35,36]. This procedure
consists of four steps with the help of MATLAB software, which are as follows:

Step 1: Convert the PDEs to a first-order system.
The new dependent variables are used to convert Equations (11)–(13) into a first order

system, as follows:

u− Γp − k1
[
2up−

(
1 + x cos x

sin x
)

f p′ − v2]− ((3/2) + λs) sin x
x =

xk1

[
u ∂p

∂x −
∂ f
∂x p′ − v ∂v

∂x + ∂u
∂x p
] (20)

t′ +
(

1 + x
cos x
sin x

)
f t = x

(
u

∂s
∂x
− ∂ f

∂x
t
)

(21)

u(0) = 0, f (0) = 0, s(0) = 1

u(∞)→ (3/2) sin x
x , v(∞)→ 0, s(∞)→ 0.

(22)

Step 2: Convert into finite difference form using central differences.
The central differences are used to transform the first-order system of Equations

(20)–(22) into finite difference equations.
Step 3: Linearize the obtained equations in Step 2 using Newton’s method and take

the equations in matrix–vector form.
The finite difference equations are linearized by implementing the Newton method

using specific iterations. After some algebraic modifications, the system of equations is
written in the form of block matrices.

Step 4: Solve the matrix using the block tridiagonal elimination technique.
The block matrices are solved by using the block tridiagonal elimination method,

including the forward and backward sweep method in order to compute the significant
parameters in this study.

The effects of the pertinent physical parameters are detailed and discussed. The
boundary layer thickness of y∞ = 6 is chosen to ensure that the profiles asymptotically
fulfil the boundary condition. The current findings are matched to the published works of
Nazar et al. [10] and Tham et al. [14] in the absence of k1 and the value of (3/2) in (11) is set
as a constant. The current model can be reduced to establish the model that is summarized
in Table 3. Table 4 also shows that the current results are in strong agreement with the
existing output, indicating that the proposed model’s findings are acceptable.
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Table 3. Comparative values of C f Pe1/2/Pr at x = 1, Γ = 0.1, λ = 1 and A = 1.

Author Model (Momentum) Limiting Cases CfPe1/2/Pr

Current

f ′ − Γ f ′′′ − (A + λθ) sin x
x − k1

[
2 f ′ f ′′′ − 2 f f (iv) − ( f ′′ )2

]
=

xk1

[
f ′ ∂ f ′′′

∂x −
∂ f
∂x f (iv) − f ′′ ∂ f ′′

∂x

2
+ ∂ f ′

∂x f ′′′
] k1 = 0

4.7555

Nazar et al. [10] f ′ − Γ f ′′′ − (A + λθ) sin x
x = 0 - 4.7234

Tham et al. [14] f ′ − Γ f ′′′ − (A + (θ − Nrϕ)λ) sin x
x = 0 Nr = 0 4.7555

Table 4. Comparison of f ′′ (0) at Γ = 0.1, k1 → 0 for various λ (lower stagnation point).

λ
Nazar et al. [10] Current

f”(0) f”(0)

0.5 4.3999 4.3999
1 5.5923 5.5922
2 7.8768 7.8767
3 10.0613 10.0612

4. Results and Discussion

In this study, the viscoelastic fluid k1 > 0 showcases the effect of viscoelastic properties.
It is important to mention that k1 ≥ 2 is chosen to ensure that the results meet the boundary
condition asymptotically. The assisting and opposing flow, λ > 0 and λ < 0, are also
considered, respectively. According to Tham et al. [14], in the presence of a solid matrix, the
no-slip condition would be dominant at high Brinkman values. As a result, to characterize
the Brinkman factor, Γ > 0 is used. Figures 2–4 depict the characteristics of k1, Γ and λ
against f ′(y) and θ(y). In Figure 2a, the fluid velocity is reduced by the intensification of k1.
For example, when the value of k1 is increased from 2 to 3.5, the velocity is decreased. This
occurs due to the viscous and elastic properties of the fluid, which results in the delay of
the velocity. Therefore, as shown in Figure 2b, it is likely that the incremental variations in
k1 cause the fluid temperature to rise. The increasing variation in Γ, which is similar to the
drag force, reduces the fluid velocity, as depicted in Figure 3a. This is due to the increase
in force caused by the existence of the solid matrix. Figure 3b reveals that the change in Γ
from 0.1 to 2 has a very small effect on the temperature field. This can be observed when
Γ increases, as the temperature distribution slightly improves. Figure 4a shows that the
increasing combined convection parameter λ has increased the velocity of the fluid due
to the external flow of buoyancy forces caused by the pressure gradient. As shown in
Figure 4b, the temperature profile tends to decrease as λ increases. It is worth noting in this
case that λ is the buoyancy force that causes the increase in the convection cooling effect,
which results in the temperature decrease.

The graphs of skin friction, C f

(
Pe1/2/Pr

)
and Nusselt number (heat transfer) and

NuPe−1/2 versus various parameters are shown in Figures 5–7. The increasing of k1 and Γ
is noticed to decrease in C f

(
Pe1/2/Pr

)
, as shown in Figures 5a and 6a. However, for the

fixed value of k1 and Γ, the skin friction is observed to increase along the sphere’s surface
up to the separation point of x. This occurs due to the fluid’s viscosity and elasticity, which
greatly influences the friction between the fluid molecules and the sphere’s surface. In
Figure 7a, the variations in λ have boosted the C f

(
Pe1/2/Pr

)
. The strength of buoyancy

forces increases the fluid velocity, which improves local skin friction. As illustrated in
Figures 5b and 6b, NuPe−1/2 decreases when k1 and Γ are increased. This result occurs due
to the thickening of the thermal boundary layer. However, the opposite trend is observed
in Figure 7b for NuPe−1/2, where the graph shows that the Nusselt number improves
as λ increases, thereby decreasing the thermal boundary layer thickness. Based on this
finding, Figure 5 shows that various values of k1 delayed boundary layer separation within
the range 0 ≤ x ≤ 1.9, since the viscoelastic properties are likely to decrease the fluid
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flow’s velocity. Meanwhile, it is concluded that various values of Γ and λ do not affect the
separation of the flow.
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5. Conclusions

The numerical analysis of the flow of Brinkman-viscoelastic fluid over a sphere in a
porous region with the combined convective element have been discussed in this study.
The models are reduced to a less complicated form of non-linear PDEs, before being fully
solved using Matlab software. The conclusions drawn from the analysis are as follows:

• Both the Brinkman and viscoelastic parameters reduced the velocity profile and in-
creased the temperature profile.

• A boost in the combined convection parameter can decrease the temperature and
intensify the fluid velocity.

• Both the Brinkman and viscoelastic parameter reduced the Nusselt number (heat
transfer rate) and skin friction coefficient, while the combined convection parameter
behaved in an opposite manner. However, the variation in the Brinkman and combined
convection parameter encounters the separation boundary layer after x = 1.8, whereas
the increase in the viscoelastic parameter delayed the boundary layer separation.

The current findings offer an inclusive theoretical analysis of fluid characteristics. This
analysis allows engineers to validate their experimental work on the appropriate issue in
fluid dynamics. Furthermore, this research only focuses on the convection of the Brinkman
viscoelastic fluid model. For future research, this work could be improved by considering a
nanofluid model, either the Tiwari and Das or Buongiorno models, due to their diverse
applications in automotive radiator systems, glass fiber production and power plant cooling
systems. Thus, further direction of this research may focus on convective boundary layer
flow by considering the Brinkman-viscoelastic nanofluids model. In addition, the concept
of fractional calculus can also be applied to solve the proposed problem and compared
with the computational output.
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Nomenclature

a radius of cylinder (m) C f PrPe1/2 local skin friction coefficient

U∞ free stream velocity NuPe−1/2 reduced Nusselt number
Tw, T∞ wall and ambient temperature (◦C) Greek Symbols
g gravitational acceleration

(
m/s2) µ dynamic viscosity

(
m2/s

)
x, y coordinate surface φ porosity of porous medium
u, v velocity in x, y directions ρ fluid density

(
kg/m3)

K permeability of porous medium (m) β thermal expansion coefficient

k1 viscoelastic parameter αm
effective thermal diffusivity of
porous

(
m2/s

)
T fluid temperature (◦C) ψ stream function
k thermal conductivity (w/m K) θ fluid temperature
ue(x) external velocity Γ Brinkman parameter
Pe modified Péclet number v kinematic viscosity

(
m3/s

)
Da Darcy number λ mixed convection parameter
Ra Rayleigh number
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