
����������
�������

Citation: Youngquist, J.; Peters, J.

Solving Biharmonic Equations with

Tri-Cubic C1 Splines on Unstructured

Hex Meshes. Axioms 2022, 11, 633.

https://doi.org/10.3390/

axioms11110633

Academic Editors: Delfim F. M.

Torres and Carlos Escudero

Received: 13 October 2022

Accepted: 4 November 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Solving Biharmonic Equations with Tri-Cubic C1 Splines on
Unstructured Hex Meshes

Jeremy Youngquist and Jörg Peters *

Department of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL 32611, USA
* Correspondence: jorg.peters@gmail.com

Abstract: Unstructured hex meshes are partitions of three spaces into boxes that can include irregular
edges, where n 6= 4 boxes meet along an edge, and irregular points, where the box arrangement is
not consistent with a tensor-product grid. A new class of tri-cubic C1 splines is evaluated as a tool for
solving elliptic higher-order partial differential equations over unstructured hex meshes. Conver-
gence rates for four levels of refinement are computed for an implementation of the isogeometric
Galerkin approach applied to Poisson’s equation and the biharmonic equation. The ratios of error
are contrasted and superior to an implementation of Catmull-Clark solids. For the trivariate Poisson
problem on irregularly partitioned domains, the reduction by 24 in the L2 norm is consistent with
the optimal convergence on a regular grid, whereas the convergence rate for Catmull-Clark solids is
measured as O(h3). The tri-cubic splines in the isogeometric framework correctly solve the trivariate
biharmonic equation, but the convergence rate in the irregular case is lower than O(h4). An optimal
reduction of 24 is observed when the functions on the C1 geometry are relaxed to be C0.

Keywords: tri-cubic C1 spline; unstructured hex-mesh; biharmonic equation; Catmull-Clark solids;
irregular points and edges; Poisson’s equation; convergence ratio
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1. Introduction

The efficient representation of volumetric C1 fields over hexahedral meshes is of inter-
est in areas ranging from scientific data visualization to solving higher-order differential
equations. For example, to visualize a flow computed by the Discontinuous Galerkin
approach currently requires substantial post-processing to extract streamlines that the
theory predicts to be smooth [1]. Engineering analysis based on splines is efficient in that it
a priori bakes in the smoothness required of the solution of higher-order partial differential
equations. Splines can serve both to define the geometry of the physical space and supply
the degrees of freedom for numerical analysis on the manifold. The case of volumetric
physical space, in three variables, is of obvious high practical interest. Where symmetries
can not reduce the dimension, splines need to be well-defined over unstructured partitions
of the physical domain. In particular, at irregularities, where the volumetric partition into
boxes does not form a topological grid layout suitable for box splines [2], the construction of
smooth solutions is challenging. Unstructured partitions of the physical domain into boxes
can include irregular edges, where n 6= 4 boxes meet along an edge, and irregular points,
where n 6= 8 boxes meet. The challenge is that, at the irregularities, there is no consistent
extension of the individual pieces’ parametric derivatives to the whole neighborhood unless
their cross-product vanishes [3] (Lemma 3.7).

Until recently, the literature did not offer conforming polynomial C1 splines over irreg-
ular box complexes. One approach with two variables introduces a removable singularity
into the parameterization at irregular points, see [4–7]. This approach collapses the 1-jet
of the first derivatives at the irregularity and forces the 2-jet of the second derivatives of
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the parameterization onto a linear map. Note that this approach differs structurally when
the collapse of an edge as induced, for example, by Duffy transform [8]. When used for
surfaces embedded in 3-space, the main shortcoming of the collapse-project approach is
poor surface shape near the singularity [9]. However, for trivariate elements in 3-space,
shape aesthetics are not an issue. The authors of [10] generalized the approach to three vari-
ables, but without smoothness near irregular edges, due to the ‘challenging problem. . . of
how to impose C1 continuity across spoke faces in an unstructured hex mesh’. Ref. [11]
addressed the challenge and generalized the projection-collapse approach to three variables:
the new spline space of tri-cubic (tri-3) splines with a removable singularity is C1 across
irregularities in unstructured hex meshes is nestedly refinable and offers 23 degrees of
freedom per box.

The goal is to measure the effectiveness of the new tri-3 C1 splines for solving elliptic
partial differential equations of orders two and four. In particular, we want to track the
convergence of numerical solutions where both the unstructured volumetric physical do-
main and the solution of the domain are represented as tri-3 C1 splines, see Figure 1. Using
Galerkin’s method, this generalizes the higher-order iso-parametric approach of [12–15]
to unstructured volumetric physical domains and is an instance of the isogeometric
approach [16,17].

Figure 1. Using tri-3 C1 splines to model smooth, curved domains from box-complexes and solving
volumetric higher-order partial differential equations on this domain geometry.

Numerical experiments with four refinement steps, i.e., with up to half a million
degrees of freedom, indicate

• a 24 (fourth-order) convergence rate for Poisson’s equation on irregular box-complexes,

i.e., the error between the computed and the known exact solution in the L2 norm decreases
by a factor of 24 under halving of the mesh interval h, by 23 in the H1 error, and 22 in the
H2 norm.

For the biharmonic (i.e., fourth-order, bi-Laplacian) equation, the observed conver-
gence rate is also

• 24 for the regular case and for C0 elements on C1 geometry.

However, although still converging to the correct solution, the

• convergence rate of singular C1 tri-3 splines on singular C1 tri-3 spline geometry is
less than 24 on irregular box-complexes.

We note that the available convergence estimates, e.g., of [18,19], assume higher
smoothness of the space, typically as high as for splines on the regular box-complex. That
is, these estimates do not apply to solving the biharmonic equation with tri-3 C1 splines. A
likely explanation is that the singular, C1-constrained tri-variate spline space does not have
full approximation power. On the other hand, convergence is consistently better than that
of Catmull-Clark solids [20,21]:

• in all cases enumerated above, tri-3 C1 splines exhibit faster convergence than Catmull-
Clark solids.
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Overview. After a brief literature review of trivariate smooth elements and the bivariate
antecedents of tri-3 C1 splines, Section 2 defines the tri-3 C1 splines for unstructured box-
complexes. The space is C1 on regular local grids but is C2 if initialized by knot insertion
on a locally tensor-product grid. The space has zero first derivatives across irregularities
but is C1 after a change in variables and has 23 linear-independent B-spline-like basis
functions per box. Section 4 shows the numerical convergence for Poisson’s equation and
compares the convergence to that of Catmull-Clark solids. Section 5 shows and discusses
the convergence for the biharmonic equation and compares it to Catmull-Clark solids.

2. Smooth Trivariate Finite Elements

The grid points of a regular partition of 3-space into boxes can be interpreted as the
control points of a tri-variate tensor-product spline with one polynomial piece per cube.
The theory of such splines is well-understood, see, e.g., [22,23]. However, the complex
outer shape and internal partition lead to unstructured hex-meshes, see [24–30]. Our
improved understanding of fields via their singularity graph [31,32] has not been matched
by corresponding progress to more flexible spline spaces. For box-complexes where the
tensor grid gives way to an irregular arrangement of boxes, including irregular points and
irregular edges, there are multiple options, none of them perfect.

Geometric continuity in three variables is, in principle, well understood as a change in
variables between pieces, see [33,34]. In practice, the trivariate geometric continuity has
been barely explored: [35,36] join just one pair of trilinearly parameterized face-adjacent
boxes and [37] consider trilinearly parameterized multipatch volumes with exactly one
inner (irregular) edge. The challenge is the complicated interaction of reparameterizations
surrounding an irregular point. This complexity is particularly pronounced when the
polynomial (tensor-) degree is low, below tri-5, which is important in three variables to
obtain manageable spline spaces (tri-4 polynomial pieces already have 125 coefficients).
However, geometric continuity requires increased polynomial degrees near irregularities
and careful book keeping to adjust reparameterizations under refinement. Generalized
subdivision [3,38,39] creates an infinite sequence of nested piecewise polynomial layers that
complicate the analysis, e.g., computing integrals near irregularities. Trivariate subdivision
rules analogous to Catmull-Clark subdivision [38] have been proposed in [20] but come
without a guarantee of smoothness and approximation order. Ref. [21] pioneered the use
of Catmull-Clark solids in engineering applications. More recent work can be found in [40].
Ref. [41] solves the heat equation using interpolatory Catmull-Clark solids. We compare
the convergence of the tri-3 C1 splines to (non-interpolatory) Catmull-Clark solids.

Fixed-grid immersed representations, such as web splines [42] or unstructured col-
lections of radial basis functions [43], require careful adaptation of computations near
the implicitly enforced boundaries. Penalty methods, e.g., in [44], can add smoothness
constraints as part of the solution process at the cost of increasing the size of the problem.
The approach requires a judicious choice of penalty parameters.

2.1. Singular Jet Collapse Constructions in Two Variables

There are three types of singular spline spaces in the bivariate case: (1) collapse of
the domain as for generalized subdivision, (2) collapse of an edge or face as for polar
constructions or Duffy-type [8] elements with a removable singularity, or (3) collapse of
the set of derivatives (jets) at irregularities in the grid. This review focuses on the third
option. Singular corner constructions that collapse the Taylor expansion (1-jet) at the
irregular point by setting derivatives to zero have been proposed by [4–7,9,45–48]. The
induced singularity side-steps the vertex enclosure problem [34,49], a non-trivial algebraic
requirement that arises from forcing the mixed parametric derivatives ∂u∂v f and ∂v∂u f to
agree. Ref. [4] suggested to simply set the mixed derivatives to zero, and [47] proved that if
higher partial derivatives are suitably constrained, such singularities are locally removable.
That is, the parametric singularity does not result in a loss of geometric smoothness. In
contrast to subdivision, the singular corner approach yields a finite number of polynomial
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pieces compatible with existing CAD modeling environments. The resulting C1 surfaces
typically have poor shape when used for free-form design. A recent variant, proposed
in [9], removes visible shape defects but at the cost of an increased polynomial degree and
overall complexity. After a gap of 20 years, [6] re-discovered the usefulness of singular
parameterization to circumvent the challenges of refinement for engineering analysis and
functions on irregular bivariate 2-manifolds. Combining the singular splines with PHT-
splines [50] (also known as bi-cubic finite elements with hanging nodes in the finite element
literature) yields a bi-cubic C1 space with adaptive refinability. Ref. [6] demonstrates the
space’s effectiveness for modeling and solving thin plate challenge problems of the finite
element obstacle course, such as the ‘octant of a sphere’ and the ‘Scordelis-Lo roof’.

2.2. Constructions in Three Variables

Ref. [10] base their spline space on tri-cubics but need no jet collapse since the space
is only C0 across extraordinary edges and vertices. Their tri-cubic C012 splines have
three types of degrees of freedom: C2 spline control points (mesh vertices), C1 spline
control points (8 per box), and individual BB-coefficients near the irregularities (64 per box).
Ref. [11] built a tri-3 C1 spline space with singular parameterization. The space offers eight
degrees of freedom per box.

3. Tri-3 C1 Splines on Unstructured Box-Complexes

This section gives a brief summary of the tri-3 C1 splines defined in [11], starting with
the definition of an unstructured box-complex. The spline space has 23 basis functions
per box, see Figure 2a. By default, the map x : R3 → R3 that defines the geometry of the
physical domain, is initialized by interpreting the vertices of the box-complex, wherever
possible, as B-spline coefficients [22,23]. Knot insertion (averaging) converts the C2 spline
coefficients into C1 spline coefficients (of a C2 function). Then, at each irregularity, a well-
behaved linear function is determined and composed with a singular local volumetric re-
parameterization x̆ consistent with the local layout of the box-complex. All first derivatives
of x̆ are continuous, albeit zero across irregularities. However, since the inverse x̆−1 is well
defined, the local expansion of the linear function composed of x̆ can be reparameterized
to remove the singularity. The polynomial pieces of the spline space, therefore, join not
just nominally C1 (with a singularity), but smoothly over the whole box-complex. The
tri-3 C1 spline space can reproduce linear functions and is refinable. Each box with an
irregularity is dyadically split into 23 sub-boxes to localize the operations that make the
space C1. Splitting allows irregular points to be in close proximity without interfering with
one another and simplifies the space’s use for computations: every input box, regular or
irregular, uniformly contributes exactly 2× 2× 2 degrees of freedom.

(a) degrees of freedom (b) m = 3, d = 1 (c) m = 3, d = 0, n = 4

Figure 2. (a) The eight control abscissae cs
α marked • of the degrees of freedom. (b,c) show irregularities.

(b) Stacking an irregular bivariate quadrilateral mesh: Two irregular edges join at a semi-regular vertex •.
(c) Four boxes in R3: one irregular point of valence n = 4 and four irregular edges of valence n1 = 3.
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Notation and Indexing. Analogous to a simplicial complex, a box-complex (also known as
a hex-mesh) in R3 is a collection of d-dimensional boxes, 0 ≤ d ≤ 3, called d-boxes. Boxes
of any dimension overlap only in complete lower-dimensional d-boxes. A 0-box is a vertex,
a 1-box an edge, a 2-box a quadrilateral, and a 3-box is a quadrilateral-faced hexahedron. A
box without a prefix is a 3-box.
Irregularities. For d < 3, an interior d-box is regular if it is completely surrounded by 23−d

boxes and for 3 > d̄ > d, all incident d̄-boxes are regular. For example, for a vertex to be
regular, all edges incident to it must be regular. In R3, a regular vertex (d = 0) is surrounded
by 8 boxes, a regular edge (d = 1) by 4 boxes, and a regular quadrilateral face (d = 2) by 2
boxes. Interior faces are always regular since they are shared by exactly 21 boxes.

Within stacked bi-variate irregularities, we define a 0-box to be a semi-regular box (blue
point in Figure 2b) if (i) the box is shared by exactly two edges that are each surrounded
by the same number of ne 6= 4 boxes and (ii) the box is fully surrounded by 2ne boxes.
An edge connecting two semi-regular points is a semi-regular edge. A 1-box that is not a
semi-regular edge but is surrounded by ne 6= 4 boxes is called an irregular edge. A point
that is neither regular nor semi-regular is an irregular point.

Boxes with at least one irregular point are evenly split into 2m sub-boxes so that the
sub-boxes contain at most one irregular point each. A box is regular if all its vertices are
regular. Otherwise, the box is irregular.

Example 1. Two layers of five boxes share a semi-regular point (blue in Figure 2b). If the top and
bottom 5-valent points are not semi-regular, the two edges forming the axis are irregular. If the
stacked configuration were to continue to a third layer of five boxes, the middle edge would be a
semi-regular edge. The dotted lines in Figure 2b hint at the partition of the C1 spline into polynomial
pieces near edge irregularities. Figure 2c illustrates an irregular point enclosed by four boxes.

Polynomial pieces, corner inner, and index-wise nearest coefficients. A tri-3 C1 spline
consists of polynomial pieces c represented in tri-variate tensor-product Bernstein-Bézier
(BB) form (see [51] or [52]):

c(u, v, w) :=
3

∑
i=0

3

∑
j=0

3

∑
k=0

cijkB3
i (u)B3

j (v)B3
k(w), (u, v, w) ∈ � := [0 . . . 1]3. (1)

where B3
k(t) := (3

k)(1− t)3−ktk are the Bernstein-Bézier (BB) polynomials of degree 3 and,
abbreviating α := (i, j, k), the row vectors cα ∈ Rm are the BB-coefficients. De Casteljau’s
algorithm can be used to evaluate the BB-form of Equation (1) and to re-express a polynomial
on a subdomain of [0 . . . 1]3. Connecting cα to cα+ej whenever cα+ej is well-defined yields
a mesh called the BB-net. Setting αi := 0 (or, symmetrically αi := 3) for exactly one
i ∈ {1, 2, 3} leaves 4× 4 BB-coefficients that define c restricted to a quad face of the domain
cube. Setting αi := αj := 0 for i 6= j yields the BB-coefficients of a polynomial restricted to
an edge Ek in the direction ek, i 6= k 6= j. The 23 BB-coefficients cα with α ∈ {0, 3}3 are called
corner BB-coefficients since they are the values of c in the domain corners u ∈ {0, 1}3. Two
BB-coefficients cs

α and cs
β are index-wise nearest if there is no cs

γ with ‖α− γ‖1 < ‖α− β‖1 in
the `1-norm.
The tri-3 C1 splines. The splines are constructed by the following Algorithm 1.
The isogeometric approach. Let � be a cube and

x : s ∈ � ⊂ Rm → ξ = (ξ1, . . . , ξn) ∈ Ω ⊂ Rn

be the geometry map that defines the physical domain, see Figure 3. The function u :
� ⊂ Rm → R is to be determined so that u ◦ x−1satisfies the constraints, for example, as a
solution to the Poisson equation or the biharmonic equation.
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Rn

ξ

R1

u

xs

�

Figure 3. Isogeometric mapping u ◦ x−1.

Algorithm 1: Construction of tri-3 C1 splines.
Input: box-complex with vertices vβ and values vβ.
Output: Tri-3 C1 splines
• Initialize the 23 inner BB-coefficients ps

α := (xs
α, ys

α) ∈ R3+1, 1 ≤ αi ≤ 2 of each
tri-3 piece by B-spline to BB-form conversion (knot insertion). In regular regions,
the splines are, therefore, initially C2.

• Set the inner BB-coefficients of faces, the edges, and finally, the vertex as the
average of their index-wise nearest neighbors.

• For irregular boxes only, apply de Casteljau’s algorithm to split each tri-3 piece
into 23 pieces.

• For irregular sub-boxes apply the operator P from Appendix A (cf. Section 6 of [11])

4. Solving Poisson’s Equation over Unstructured Hex Meshes

Ref. [10] uses a supercomputer implementation to solve Poisson’s equation to analyze
mechanical models similar to those in Figure 1. Their tri-variate splines are akin to [6] and,
therefore, to the tri-3 C1 splines in [11] but differ both in that they are truncated to transition
from irregular to regular regions of C2 tri-3 splines and require no jet collapse because they
are C0 near irregular edges. For the Poisson equation, their numerical tests yield straight
lines with a slope consistent with optimal convergence, e.g., O(h4) for the L2 error. (They
also point out that pure C0 splines have too many degrees of freedom and that (finite) C1

splines over irregular box-complexes, i.e., tri-3 C1 splines, still await study in the literature.)
For Catmull-Clark solids, combined with [53], Ref. [10] reports sub-optimal convergence.

To ensure the correct implementation of the tri-3 C1 splines and the overall computa-
tional framework, and since the solution of second-order elliptic equations is of interest in
its own right, we test the convergence of the tri-3 C1 splines to the solution of the Poisson’s
equation over the physical domain Ω = x(�):

find u : Ω→ R :

{
∆u = − f in Ω,

u = 0 on ∂Ω.
(2)

The weak form of Poisson’s equation, projected into the C1 space of basis functions Bj,
i.e., Galerkin’s approach, is∫

Ω
∇uh · ∇Bi(x−1)dΩ =

∫
Ω

f Bi(x−1)dΩ, uh := ∑
j

cjBj(x−1).

This can be rewritten as the matrix equation Kc = f to be solved for the coefficient
vector c of uh where

Kij := ∑
α

∫
�
(∇Bi)

t J−tα J−1
α (∇Bj)|det Jα|d�, fi := ∑

α

∫
�

f · Bi · |det Jα|d�. (3)
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Here, the sum is over all pieces α where Bi has support and Jα := ∇sxα. Boundary
constraints are enforced following [54] (Section 1): we split the set of basis functions {Bi}
into two sets: I := {B0, · · · Bn} and B := {Bn+1, · · · Bn+nδ

}, with

uh =
n

∑
i=0

ciBi +
n+nδ

∑
i=n+1

ciBi,

where the basis functions in I vanish on the boundary while those in B are nonzero on the
boundary and vanish towards the interior. We set the coefficients of the functions in B to
enforce the boundary conditions, leaving the basis functions in I free to solve the system
of equations.

For the convergence experiments, we chose Ω := [0, 6]3 partitioned as shown in
Figure 4, i.e., as a: tensor grid, 35-extruded mesh, or ball octant.

(a) tensor grid (b) 35-extruded mesh (c) ball octant

Figure 4. The three main test box-complexes.

To accurately measure the error, we chose

f := (6π2/9) sin((πx)/3) sin((πy)/3) sin((πz)/3). (4)

Then the exact solution of Equation (2) is

u = 2 sin
(πx

3

)
sin
(πy

3

)
sin
(πz

3

)
. (5)

Starting with the tensor grid as a basic ‘sanity’ test, we refine each of the three types
of meshes, solve, and measure the errors. The error plots in Figures 5 and 6 are consistent
with optimal O(h4).

The experiments were run on an Intel Core i7-6700K running at 4.0 GHz with 16 Gb of
DDR4 RAM. The algorithm was implemented using the OpenVolumeMesh [55] C++ data
structures. All integrals were computed using Gauss Quadrature with 43 Gauss points. The
degrees of freedom in the test case tensor grid were 64, 512, 4096, 32,768, and 262,144. This
corresponds to, respectively, 8, 64, 512, 4096, and 32,768 hex elements, each with 8 degrees
of freedom. The element count for 35-extruded mesh and ball octant are very similar.
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Figure 5. Optimal convergence for Poisson’s equation on the tensor grid. Error norms decreasing
with h. The dashed lines labeled with n show slopes of 2−n.
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Figure 6. Poisson’s equation solved in terms of the tri-3 C1 spline. Error norms decreasing with h.
The dashed lines labeled with n show slopes of 2−n.

Comparison to Catmull-Clark Solids

For further comparison and to calibrate with respect to a competing, easy-to-implement
(in) finite element approach, we coded Catmull-Clark solids following [20,21]. Catmull-
Clark solids are assumed to be C1 at irregular points C1 across irregular edges and C2

elsewhere. In the bivariate setting, [56] reported the convergence of O(h2) and [57] re-
ported an L2 convergence of O(h2.5) for the 35-mesh (one slice of the 35-extruded mesh).
For trivariate interpolatory Catmull-Clark solids, [41] (Figure 7) observed an initial decay
in the L2 error of O(h3.52), with the error concentrated at irregularities. Catmull-Clark
solids are, therefore, a natural competing representation for functions over unstructured
box-complexes. Here the vertices of the input mesh are the degrees of freedom (as op-
posed to the 23 control points per box of the tri-3 C1 spline). On sub-complexes without
irregularities, the function can be evaluated using de Boor’s algorithm. Otherwise, we
locally perform Catmull-Clark solid subdivision until each Gauss point is enclosed by a
regular neighborhood so that we can evaluate. The coefficients of the outer boundary of
the mesh are set to enforce (zero) Dirichlet boundary conditions. Figure 7 shows the con-
vergence of Catmull-Clark solids to the solution of the Poisson equation to be suboptimal
and approximately O(h3).
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Figure 7. Volumetric Catmull-Clark elements: convergence of the error for Poisson’s equation.

5. Solving the Biharmonic Equation over Unstructured Hex Meshes

One of the applications of the biharmonic equation is the stream function formulation
of Stokes and Navier–Stokes equations. A classic approach, e.g., [58–60], is to rewrite the
biharmonic fourth-order partial differential equations as a system of first-order equations.
Numerical solutions then typically require post-processing to yield a proper higher-order
approximation. Using a finite difference multigrid approach, [61] report solving a tensor
product grid of size 5123. Ref. [62] model a fourth-order Cahn–Hilliard flow on a regularly
partitioned cube. This and the T-spline constructions [63,64] do not discuss convergence
rates. The regular tensor grid and C2 splines [19] predict a convergence of O(h4). Our
implementation of tri-3 C1 spline achieves this rate, also for a geometrically displaced grid,
see Figure 8.
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Figure 8. Optimal convergence of tri-3 C1 spline for the biharmonic equation on the tensor grid.

To accommodate irregular box-complexes, discontinuous Galerkin elements with
polygonal boundaries have been applied, see, e.g., [65–67]. Ref. [68] states optimal nu-
merical convergence for quad meshes but provides no data for hexahedral meshes. Their
approach matches boundary data via a penalty function. Below, we will compare the results
of tri-3 C1 splines to Catmull-Clark solids on unstructured box-complexes. The authors of
an efficient implementation of Catmull-Clark solids on unstructured box-complexes [40]
were not aware of publications that cover Catmull-Clark solid convergence for fourth-order
equations. (Recall that the estimates of [18,19] rely on higher than C1 smoothness for
fourth-order problems and, therefore, do not apply.)

The biharmonic equation

find u : Ω→ R :


∆2u = − f in Ω = x(�),
∇u = 0 on ∂Ω

u = 0 on ∂Ω,

, (6)
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has the weak form∫
Ω

∆uh(x
−1) · ∆Bi(x−1)dΩ =

∫
Ω

f Bi(x−1)dΩ, uh(x
−1) := ∑

j
cjBj(x−1) (7)

that can be rewritten as the matrix equation Kc = f to be solved for the vector of coefficients
c where for ξ = x(s) ∈ Ω,

Kij := ∑
α

∫
�
(∆Bi(x−1(ξ)))(∆Bj(x−1(ξ)))|det Jα|d�, fi := ∑

α

∫
�

f · Bi · |det Jα|d�.

Here the sum is over all pieces α where Bi has support. By the chain rule and denoting the
kth column of the inverse of the Jacobian J of x and s := x−1(ξ) as J−1

(:,k),

∆ξ(uh ◦ x−1) =
m

∑
k=1

J−t
(:,k)HJ−1

(:,k) + U · X

J(ξ) := (∇sx)(s), H(ξ) := (∇s∇suh)(s),∈ Rm×m, (8)

X(ξ) := ∆ξ(x−1(ξ)), U(ξ) := (∇suh)(s),∈ Rm.

For the convergence measurements, we chose Ω := [0, 6]3 partitioned as shown in
Figure 4, and chose f so that the solution is

u = 8 sin2
(πx

3

)
sin2

(πy
3

)
sin2

(πz
3

)
. (9)

For Catmull-Clark solids we observe sub-optimal convergence in the first steps already
on the perturbed tensor grid, see Figure 9. On the 35-extruded mesh and ball octant, the
convergence drops to sub-quadratic.

Figure 10a indicates tri-3 C1 splines O(h3) convergence in the L2 norm and optimal
convergence in the H1 and H2 norms for the 35-extruded mesh. For the ball octant, see
Figure 10b, the convergence deteriorates notably in the third and fourth refinements.
Since the computations do not betray any of the usual signs of a software bug and have
been carefully and repeatedly checked—Indeed, the computations still converge—this
observation points to a gap in the published theory of numerical convergence that, while
intriguing, lies outside the scope of the present investigation into the numerical properties
of tri-3 C1 splines over box-complexes. As a further observation, the error on the tensor
grid is maximal near high curvature. For 35-extruded mesh and ball octant, the error is
maximal near, but not at, the irregularities. Finally, since the integrals in matrix K and the
right-hand side f are computed using Gauss points interior to each polynomial domain, K
and f are well-defined, regardless of smoothness. However, when the space of functions
permits jumps in the derivative that the weak formulation of the biharmonic equation
does not allow, the solution of linear Equation (7) may not be a solution to the Galerkin
projection of the biharmonic equation. Nevertheless, using the same C1 parameterization x
of the physical domain geometry but relaxing the space of analysis functions uh to be only
C0—by not applying the projection P—also yields near-optimal convergence rates for the
irregular meshes, see Figure 10c,d.
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Figure 10. Convergence of tri-3 C1 spline and variants for the biharmonic equation.

6. Conclusions and Future Work

When solving the Poisson equation with tri-3 C1 splines, the convergence rate is opti-
mal, i.e., in line with the regular tensor-product case for the test problems. For biharmonic
equations on unstructured hex meshes, the isogeometric approach using tri-3 C1 spline
converges to the correct solution. Intriguingly, the observed convergence rate in the ir-
regular case is less than in the regular case, and an implementation error is very unlikely.
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Combining tri-3 C1 spline geometry with C0 functions in the isogeometric setting recovers
the convergence rate of the regular tensor-product case. This indicates a knowledge gap
in the theory of a priori numerical convergence estimates. A likely explanation is that the
singular, tri-variate C1 spline space lacks full approximation power at irregular points, and
this raises the question of whether and what cost-effective remedy exists and is needed to
have a maximal convergence rate for fourth-order elliptic problems.
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Appendix A. C1 Projector P

This brief summary condenses the longer exposition and motivation of the steps in [11].
We use the same notation. Applying P ensures C1 continuity, via removable singularity, of
the tri-3 C1 splines corresponding to the irregular sub-boxes Hs, s = 1, . . . , n. Let cs

α ∈ R3

be coefficients of Hs with cs
0 the central irregular point. Denote by α ∈ T the labels of the

direct neighbors of cs
0 and by α ∈ G the labels of the 2-neighborhood of cs

0. The values yα

for α ∈ T are collected in the n-vector yT .

1. Compute a best-fit linear map ` to the BB-coefficients cs
α, α ∈ T, e.g., by computing a

vector `̀̀ as

`̀̀ := (btTbT)
−1btTyT ∈ R3+1,

bt
T := (. . . , bs

α, . . .) ∈ R3×n, (barycentric coordinates of the cs
α)

bs
α := σ[cs

α, 1]M−1 ∈ R3+1, α ∈ T, (A1)

σ :=
n

∑
s=1

3

∑
j=1

‖cs
0 − cs

ej
‖

3n
, M−1 :=

[
−1 1 1 −1
1 −1 1 −1
1 1 −1 −1
1 1 1 1

]
/4.

2. For each irregular sub-box Hs, compute the polyhedral intersection qs by solving the
9× 9 system

[qs, µ]

[ I3 I3 I3
C1 0 0
0 C2 0
0 0 C3

]
=
[
cs

2e1
, cs

2e2
, cs

2e3

]
, 0 ∈ R2×3, µ ∈ R6. (A2)

where I3 is the 3× 3 identity matrix, ej(i) = 1 for i = j and zero otherwise are the
(local unit) labels of the three directions emanating from the irregular corner of Hs,
nk is the valence of the edge with label ek and, Ck ∈ R2×3 are the first two rows
of Qnk (c2ek+ej − c2ek ), j 6= k where Qnk is defined in (A5). Check that the system is
well-conditioned, i.e., the sub-box is well-formed according to [11] (Def 2).

3. For each irregular sub-box Hs, compute the BB-coefficients of the singular parameteri-
zation x̆s by

x̆s
α :=


x̆s

0 := ∑n
j=1 qj/n, if α1, α2, α3 < 2; (singularity)

cs
α if αk = 2, αi, αj ∈ {0, 1}; and nk = 4;

x̆s
2ek

:= ∑nk
j=1 qjk/nk, if αk = 2, αi, αj ∈ {0, 1}; and nk 6= 4;

qs + 2−αi
4 (qjk − qs) if αk = 2, αj = 2, αi ∈ {0, 1} and nk 6= 4.

(A3)
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4. For each irregular sub-box Hs, for α ∈ G,

xs
α := x̆s

α, ys
α := `(x̆s

α) = b̆s
α`̀̀ ∈ R, where b̆s

α := [x̆s
α, 1]M−1. (A4)

For each inner BB-coefficient of a semi-regular edge of valence n the bi-variate 2-
neighborhood ‘orthogonal’ to the edge is transformed via Pn, a jet collapse followed
by projection. Pn is applied to each coordinate cσ

α of (cs
α, ys

α) separately, generating
xab := (xs

ab)s=1,...,n ∈ Rn defined by

xs
11 := xs

10 := xs
01 := xs

00 :=
1

3n

n

∑
σ=1

cσ
11 + cσ

21 + cσ
12 ∈ R, s = 1, . . . , n,

Qn :=
(

cos
2π(i− j)

n

)
i=1..n,j=1..n

∈ Rn×n, κdefault :=

√
2

4n cos π
n

, (A5)

x21 := x00 + κQn

(
2(c21 + c←12) + c→21 + c12

)
∈ Rn,

x12 := x00 + κQn

(
c21 + c←12 + 2(c→21 + c12)

)
∈ Rn.

Here c→21(j) = c21(j + 1) with the argument j + 1 interpreted modulo n.
5. For every face with BB-coefficients cij0 shared by an irregular sub-box Ha and a

(regular or irregular) sub-box Hb, enforce regular C1 continuity by averaging

pa
ij0 = pb

ij0 := (pa
ij1 + pb

ij1)/2, pa
α := (cs

α, ys
α).
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