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Abstract: In this study, we deal with an impulsive boundary value problem (BVP) for differential
equations of variable fractional order involving the Caputo-Hadamard fractional derivative. The
fundamental problems of existence and uniqueness of solutions are studied, and new existence and
uniqueness results are established in the form of two fixed point theorems. In addition, Ulam-Hyers
stability sufficient conditions are proved illustrating the suitability of the derived fundamental results.
The obtained results are supported also by an example. Finally, the conclusion notes are highlighted.
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1. Introduction

The idea of fractional-order integration and differentiation goes back to sixteenth
century [1,2]. Since then, the attention to fractional calculus greatly increased in relation to
modeling and control of numerous real processes using functions with fractional derivatives.
Such a generalization of the notion allows the use of the important features of fractional
derivatives, such as more degrees of freedom and infinite memory. In fact, fractional-
order systems are characterized by infinite memory, as opposed to integer-order systems.
Additionally, fractional integrals can be used to describe the fractal media [3].

In recent years, fractional differential equations have been actively used as models of
numerous real-world phenomena studied in science, biology, engineering, and economics.
In fact, fractional-order differential equations are widely applied in material and quantum
mechanics, signal processing and systems identification, anomalous diffusion, wave propa-
gation, etc. [4,5]. The efficient use of these equations in mathematical modeling requires
the development of their fundamental and qualitative theories [6-8]. The progress in this
development is related to the investigation of various type of fractional derivatives, such as
Riemann-Liouville, Caputo, Hadamard, Grunwald-Letnikov, Marchaud, and Riesz just to
name a few [2]. The books [6,8] provide an excellent summary on the subject.

Recently, the topic of fractional equations has been expanded and different new classes
of equations have been introduced. One of the most extensively studied classes of fractional
differential equations is the class of fractional equations with variable fractional order [9,10].
Different researchers studied properties of fractional equations with variable fractional
order of Riemann-Liouville type [11-13], Caputo type [14-16], and Hadamard type [17-19].
The enormous interest in these equations is due mainly to the extended possibilities of their
applications [20-22]. A very good overview of some main applications of variable-order
fractional operators has been given in [23].
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The applicability of the hybrid Caputo-Hadamard type fractional derivatives is the
main reason for the research interest in their theory [24-26]. Very recently, a few authors
have studied the properties of the extension of such derivatives to a variable order [27,28].

From the other side, the apparatus of impulsive differential equations has been widely
used in the description of processes with abrupt changes during their evolution [29-31].
The theory of such equations is also very well applied in impulsive control problems [32].

Additionally, the theory of impulsive differential equations has been extended to
the fractional-order case. Numerous impulsive fractional-order systems with constant
fractional derivatives have been proposed and their dynamical properties have been stud-
ied [33-38].

In particular, Benchohra et al. studied in [39] the following problem

‘Dyx(t) =¥(tx(t)), foreach, t € [O,M], t # My, 8 =1,...,n,
9

AJC“:Ml9 = qDﬁ(x(M;)), 9=1,...,n,
x(0) = xo,
where ¥, @y are given functions, Ax = x(t+) —x(t7), CD}(/Ig illustrates the Caputo frac-

tional derivative of a constant order 7,0 < T < 1, given as

1 L o'(p)
cCNHT _
Pfﬂ(t) S T(1-1) /p] (t—p)fdp' t>

for a function # and I' denotes the Gamma function.

Correspondingly, results on impulsive variable-order fractional differential equations
are reported very seldom [40]. In addition, the existing results on impulsive fractional
differential equations involving constant Caputo-Hadamard type derivatives are very
few [41,42]. There are no results reported for impulsive fractional Caputo-Hadamard
fractional differential equations with variable order fractional derivatives. The aim of the
presented research is to introduce some fundamental results for such equations. We expect
that our contribution will motivate more researchers to develop the theory.

Inspired by [11,14,17,19,37,39-41], we deal with the following impulsive boundary
value problem (BVP)

DIx(t) = ¥(t,x(t), [x(1), fort € @:=[L,M], M>e, t # Mg, 8=1,...,n, (1)
9 9

Ax|t:Ml9:<1>lg(x(M;)), 19:1,...,1’1, (2)
ax(1) +bx(M) =, 3)

where 0 < 7(f) < 1, ¥Y: @xRxR - R, &y : R —- R, ¢ = 1,...,n are continuous
(#) ()
M and I ;
integral operators of variable order T(t), respectively, a,b, and c are real constants with
a+b #0,1 =My <M < -+ <My < Myy1 =M, Ax|mp, = x(My) —x(My),
x(My) = limy,_,o+ x(Mg + h) and x(My ) = limy,_,o- x(My + h) represent the right-hand
side and left-hand side limits of x(t) att = My, ¢ = 1,...,n, respectively.

The main contributions of our research are:

1. We introduce a BVP for a class of impulsive Caputo-Hadamard fractional differen-
tial equations with fractional derivatives of variable order;

2. Existence and uniqueness criteria for the introduced BVPs are established;

3. As an application, results on Ulam-Hyers stability of the solutions are proposed;

4. An example is developed to demonstrate our results.

The organization of the rest of this paper is as follows. Some definitions and auxiliary
results are given in Section 2. In Section 3, the main existence and uniqueness results for
solutions of the BVP (1)-(3) of impulsive fractional Caputo-Hadamard fractional differential

functions, ‘D illustrate the Caputo-Hadamard derivative and the Hadamard
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equations with fractional derivatives of variable order are proposed. The criteria proposed
are presented in the form of two fixed point theorems. Section 4 is devoted to our main
Ulam-Hyers stability results. One example is presented in Section 5, to show the efficiency
and validity of the proposed results. Finally, some conclusion notes are given in Section 6.

2. Auxiliary Results

In this section, we list some definitions and propositions that are used in the following
sections.
For k € N we denote by ACK(@) the set

ACK@) ={x:@ =R, x,«,...,x*V e C(@,R), x¥*! is absolutely continuous}

and for 0 < p; < pr < 00,8 = t4, we denote by ACK([p1, p2]) the set

ACK(lp1, p2]) = {x : [o1,02] = R, ¢~ Vx(t) € AC([o1, p2]) }-

Consider the sets of functions

PC(@,R) = {x: @ — R, x € C((My, My41],R), there exist x(My ) and x(My), 9 =
1,...,n withx(My ) = x(My)};

PCY@,R) = {x € PC(@,R), x € Cl((My, Mg41],R), there exist x'(M,) and
X(Myg), 9=1,...,n withx'(My) = x'(My)}.

Note that the set PC(@, R) is a Banach space with a norm defined as

][ = sup{|x(£)| : t € @}

For1 < p; < pa < oo, we consider the mapping 7(t) : [p1,02] — (0,1]. The Hadamard
fractional integral (HFI) of variable order 7(t) for 5(t) € L(@,R) [9,27,28] is

O Lo tem-1,, 40
Lot 1) = @)y /pl(IOgQ) n(e)=y > (4)

and the Caputo-type Hadamard fractional derivative (CHFD) of variable order 7(t) for
n(t) € ACY([p1, p2]) [28] s

cyT(t) _ tT,(t) f t —1(t) 1 1 t
D +t n(t) = m/p] (logg)l ()77 (0) [m —10g(10g§)]d9

1 t ,
MYFEEZ0)) ./p1 (log =)™/ (0)do, t> pr. 5)

Q

It is clear that, if T(¢) is a constant function, 7(t) = 7, then HFI and CHFD are
reduced to the classical Hadamard integral I} and Caputo-type Hadamard derivative
1

¢ D;+ , respectively [9,27].
1

Next, we will present some important properties of ¢ D} and Ipﬂ
1 1

Proposition 1 ([6]). Let Ty, T > 0, 01,02 > 0,77 € AC’{S‘([m,pz]). Then,

— t
T c _ 19
Ip1 D E: log Q)

and

I () = I3 p(0) = 1 1),
1 P1
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Remark 1 ([19]). In the general case

I;1+(t)lg+(t)77(t) £ I;%r(tHTZ(t)ﬂ(t).

Proposition 2 ([19]). Let T € C(@, (0,1]) and 0 < 7y < minsee |T(t)|. Then, for n € C, (@, R)
where
Cy(@,R) = {5(t) € C(@,R), (logt)"y(t) € C(@,R)},
the (HFI) I(;(t)n(t) exists for any t € @.
Proposition 3 ([19]). If T € C(w, (0,1]), then, Igy)q(t) € C(w,R) forany n € C(@,R).

Proposition 4 ([15,43]). Let T € [0,1]. Then, we have

?+1 42
<T 1) < .
1 T s 775 ©)
Remark 2. For T € [0,1], according to Proposition 4, we get
1 < 1 @)

T(t+1) = 2(v2-1)

Definition 1 ([11,44]). Let I C R.

(a) The interval 1 is called a generalized interval if it is either an interval or {p1} or @.

(b) A partition of I is a finite set P such that each x in I lies in exactly one of the generalized
intervals E in P.

(c) A function g : I — R is called piecewise constant with respect to the partition P of I if for
any E € P, g is constant on E.

Theorem 1 ([45]). (Arzela—Ascoli theorem) Let A be a subset of C (@, R). A is relatively compact if:

1. Ais uniformly bounded.
2. Ais équicontinuous.

The following fixed point theorem will be used in the proof of our main results.

Theorem 2 ([6]). (Schauder fixed point theorem) Let A be a convex subset of a Banach space E
and F : A — A be a continuous and compact map. Then, F possesses a fixed point in A.

Finally, we will extend the definition in [46] as follows:
Definition 2. The BVP (1)—(3) is Ulam—Hyers (UH) stable if there exists cy > 0 such that for

any € > 0 and for every solution z € PC (@, R) satisfying

T(t) T(t)
{ |CDM§+z(t) —‘I’(t,z(t),IM;z(t))| <eg tew, ®)

|Ax|t=pm, — Po(x(My))| <€ 0=1,...,n,
there exists a solution x € PC'(@,R) of the BVP (1)~(3), such that
|z(£) — x(t)| < cye, t € @.

3. Main Existence and Uniqueness Results

Let us introduce the following assumption:
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(A1) Let P = {(DO = [Mo, Ml],(i)l = (M, Mz],(i)g = (M, M3] oy = (Mn,Mn+1]}
be a partition of the interval @ (with My = 1, M,;;1 = M) and let (t) : @ — (0,1] be

a piecewise constant function with respect to P and v = sup,., 7(t), i.e.,

To, if t € @,
T, ift € @y,

t) = i Tl(t) =
9=0

Ty, if t € @y,

where 0 < Ty < 7* < 1 are constants, and

1, fortcwy, ,
Io(t) = {O elsewhere. 4=01....n

In addition, we will give the definition of the solution to the BVP (1)-(3).

Definition 3. The function x € PC(w, R) is a solution of the BVP (1)—(3) if x fulfills the equation
CDZTVE?x(t) =Y(¢t,x(t), I;A(i)x(t)) on @y and the conditions
9 9
Ax’t:Mg = @ﬁ(x(M;)), 9=1,...,n,

and

ax(1) +bx(M) = c.

First, we will analyze the Equation (1) of the BVP (1)—(3). For any t € (My, My.1],
9 =0,1,...,n, it becomes a Caputo-Hadamard fractional differential equation of a variable
order 7(t) for x(t) € C(@,R), with CHFD given by (5). Then, for the sum, we have

() M (logg) T (log)
DO*x(t)_/o r(1—r) ot +/ T(1—19)

—T

x'(0)de. )

Thus, according to (9), the Equation (1) can be written for any t € (My, My1],
9% =0,1,...,nin the form

1 (logh)~= (1 —Ty
/OM (rz)iggjr) +/ rolg_ o) '(@)do =¥(t,x(t), 7 x(t)).  (10)

In the case, when x(t) = 0Oont € [0, My]/{My,..., My_1}, the Equation (1) is re-
duced to
DM+"( ) =¥(t, x(t),lﬁgx(t)), t € wy.

We need the following auxiliary proposition.

Proposition 5. Let 7 : @ — R be continuous. The solution of the following impulsive BVP

DI (1) = (1), 1 € @, an
Axli—p, = Ps(x(My)), 0=1,...,n, (12)
ax(1) +bx(M) =, (13)

is given by
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do

M= 1n(o)

aTb {bzs 1TY TS 1) fM (log
iy Ju, (log 3™ 177(@)%@

FOI @s(x(M5)) —c| + iy filog ) (0, € (Mo, M),

XW=1 [b Ty Jane (o 50 (@) (14)

gy J, (og )™ (o)

+bzs 1q>s( (M )) _C} +25 1 FT T(t_1) fM logTs)Tsfl_ln(Q)%
Wf}\% IOgQ)Tg (e )Q + Ll Ps(x (Ms ), te€ (Mg, Myq], 8=1,...,n

Proof. Let x be a solution of the BVP (11)-(13). If t € [My, M;], by Proposition 1, we get

1 t t d
H=wo+—— [ (log =) 1y(0)=2, weR.
K(t) = @+ g [ Gog )P (@) @

If t € (Mj, My], then Proposition 1 implies

W) = x(M])+ g [ Gog D) ()
B _ 1 t g do
= Aloany +x(Mp) + g [ log )1 () T
1

— o+ @) + s [ o S (@)% 4 [ g Lty ()22

If t € (M, M3], by Proposition 1, we get

H0) = * M)+ s /A;aogé)fz—ln(e)dj
_ — 1 - dQ
= Ax\t:MZ—i-x(Mz)—i—W/ (log — ) (e )Q
M
- wo+<b2<x<M2>>+q>l<x<Ml>>+r(1TO) [ g =hm () 2
M, t
+ gy s T2 @ + s [ tog ) (0

Then, the solution x(t) for t € (My, My,1], 9 =1,...,n, can be written as

M, do

") = ot Y [ oy ()

= [ (o Ly (@)% + Y- e
I(t0) Jmy g 0o =
Applying the boundary conditions ax(1) + bx(M) = ¢, we have

— M MS Ts—1—1 dQ
c = wola+b)+ bz o 1)/Mﬂ(log?) U(Q)z

n

b M d
log )" 15(0) 22 + b} @y(x(M;)).
*rm)/Mn(Ogg) 1(0) G +0 L @x(M)
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Then,
wo = allb [bf (TZ n /MAjsl(logAgs)T“‘lﬂ(e)iQ
+r(bm/Aj(10gAQ/I)T"lv(e)d§
+bf1q>s(x(Ms>)—c].
=
Thus
00 = Ly Gt @ s [ Gos 5 @)
# LM ) ] + 1 s [ (g Moy )
b o Qos 21 @2+ Lo e

Conversely, we can easily show that x solves the BVP (11)—(12). O

Now, we present our first result, assuming that the following assumptions are satisfied:

(A2) For 0 < v < minseg |T(t)], the function 7Y : @ x R x R — R is continuous
and there exist constants D1, D, > 0, such that, t7[¥(t,x1,y1) — ¥(t, x2,12)| <
D1|x1 — X2‘ + D2|y1 *y2|, forany x1, x2, ¥1, y2 € Rand t € w.

(A3) Forany ¥ =1,...,n,x € Rand t € @, there exists D3 > 0 such that,
|Py(x(t))] < Ds|x(t)].

Theorem 3. Let conditions (A1)—(A3) hold, and

|| (n+1)(logM)™ (log M)™
(|a+b\+1>[ 2(v/2-1) (D +D22(\ﬁ_1)

Then, the BVP (1)—(3) possesses a solution on PC(w, R).

) + nD3} <1 (15)

Proof. We construct the operator
S:PC(w,R) = PC(w,R),

as follow

S () = [0 ey [ Gog e e x(@) I x(0) %

(log %)™ (o, x(0), Iy () L+ ; P,(x(M; ) — ]

M o 3 p
+ T mmy fy Oos T e x(e), I (o)

1 t t Ty Ty do

+ ) Ds(x(M)). (16)

0<Ms<t
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The operator S defined in (16) is well defined from the continuity of function 7Y and
from the properties of fractional integrals.

Let the set
Bk = {x € PC(@,R), [x]| < R},
where
Ko Gty
T () [7@333?? (Dr+D2 o855 ) 0, |
and

¥* =sup [¥(t0,0)]

tcw

Clearly By is non-empty, closed, convex, and bounded.

Step 1: Claim: S(Bg) C (BR)
For x € Bgr, we get

|Sx(8)]

(115 ey [ o 0 e x(0) 1 +(0) ~ ¥(000)|

<
la+0] T-1) Moy T e

Ms M _ do
+b / log 2=2)%1-11(o,0,0)| 22
0 e L (o8 ¥ 00|

+r|(b') /Aj(log]\g)”1“1’(9,36(@)/1;}};96(0)) ¥00.0)| % + s [ og )7 [¥(0,0,0)| %
>\+||]

N " tog Xy 1‘1"1’(9,96(@) W3 (0) - ¥(0,0,0)[%

0<M;<t

log )s-17 1’ (Q,0,0)‘dgg

t X

0<M;s <t
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t

ey /A;(logé)T“’1“I’(Q,x(9),lﬁ$x(9)) %0002+ L5 [ ttog o wie,0,0)
+ ¥ o))

O<M;s<t

M; M B dQ

log —2\&-1-1(p Do 51 do

|a+b| “ |Z (% 1) /MH(OS 0 ) ( 1]x(0)| + Dy| Iy x(g)|> ;
n 1 M; M _1do |b‘ M M. do
L [ e o)
P L ey o BT T ) 18 ) (Dilx(@)] + D2l (@)

‘bﬁf* M M TnfldQ n B

+1"(Tn) /Mﬂ(log?) z"' |b|s;D3’x(Ms )’ + |c\}

1 M MS 4 - dQ
" 7/ log —=)"1 71 (Da|x(e)| + D2l x(e)l )
w%%«Ixnfﬂ.A4 (log Q) ( 1x(e)[ + Dx| (QH)Q

s—1
¥ Ms M _1do 1 1 T, do

+ 7/ 10—75—11——# / lo o Dqlx + Do|1.% x
0<§S<tr<rs_1> o (og =) o [ gQ> (D1lx(0)| + Ds| o (0)!) .

IN

* -t

t _1do _
+—/ log —)® 1= + D3| x(M
Fier) S, 008 )7 0; | x(M5)]

Mo oo Moo (log M) do
e PN e Ty oy 00801 (Dull] + DB )

IN

(1141

log
s Ms . . _qdo |b] M M (log M)™ do
(log —)%&1712= 4 / lo W=Dy ||x|| + Dy o2~ ) =
m/ 80 ) Fa S, (087 ) (Pallal + Dol B )

ot Q |b|2D3||x||+| ]

+|b[¥*

)
\HY*/

i 1(D1|Ix||+D2||(l(o,§_M)) )%

I'(
n Mg M

1
; /M5—1<Og Q )
S Ms M . . _,d 1 t (log M)™ do

log ——5)%-1 1£+ 1 ©w-1(p +D =
F LT 1)/M51<0g o e T /Mg(oge) (Dall+ el +1)x”)e
¢ n

b & t d
+m/ (log — Q )t Q 2D3||x||

(10g M)~

“ | (IOgM)
|u+b| (11 +1

reo ) Il ey

|b|(log M)™ (logM) b (log M)™
T(ty + 1) (0 ))” M+ =1
n(log M) %1 (logM) n¥*(log M) %1
NCARESY (p Do ))“ SR v E——y
(log M)™ (log M)™ ¥*(log M)
ey (P2 P2re, ) 1+ gy
|| (n+1)(logM)™ (log M)™

(|a+b| 1)[ T (D1+D22(ﬁ_l))+nD3}||x||

|| )(n+1)(10gM)T*\I,* lc|

|a+ bl 2(vV2-1) |a + 0|

n(logM)®-1
I(t1+1)

+ [blnDs|x] + e

IN

) (D1 + D»

+ nDs||x||

IN

+(

IN

R.

Step 2: Claim: S is continuous.
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Let the sequence (x,,) converges to x in PC(w@, R). We will prove that
|Sxy, — Sx|| — 0.

Fort € @, we have

|Sxn (t) — Sx(¢)]

1 o1 M M do
< b 7/ log =) 517119 (o, 5 — ¥ (o, Wi do
< P ey L G080 ¥em(@) T o)) - ¥iex(a) I )|

s—1

+F}‘;L) / Af(logAjw-l\W(w(e»lﬁ;xn(e)) —W(ew(g»l};;x(e))ﬂf
(xn (M) = s (x(M;)]
b Ty by 0es T Yo xe) 1 (e~ ¥lax(o) 1 x(@)|
+r(1m/;0(10g2)”1"1’(e,xn(e),1§j{;xn(e)) ¥(e x(0), M+x(e))d§
+O<§£<t|q>s xu(M; ) = Ds(x(M; )|
< ol |2 e /MASASl(log”QIS)THl(ann( ) = x(@)| + D2l (x (Q)—x(e))I)dQQ
o /A':faog S (Difsae) = () + Dal - (30(0) = x(@)) ) 5
iy Ly o8 ™ (Diba(a) = x(@) + Dl (o) — @))%
+ (1 ) / (log Q)”1(D1|xn(e)—x(e)|+DzIﬁg(xn(e)—x(e))l)df
+(|alilb| +1)Sé s (0 (M) — @5 (x(M))|
< rwle ((lif_]lwl;)l (D1+D2%>”x”_x|
P (D + Do B =
S [ TR L T
+(|a|f’r|b| +1) Y [ (M) — o (x(M; )|

s=1

Since ®; is continuous, then
|Sxp — Sx|| = 0 as n — oo.

Then, S is continuous.

Step 3: Claim: S is compact.

By Step 1, we have ||S(x)|| < R for each x € Bg, which means that S(Bg) is bounded.
Now we will show that S(Bg) is equicontinuous.

For ty,t € @, t1 < tp, and x € Bg, we have
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IN

IN

IN

IN

IN

|Sx(t2) — Sx(t1)]

1 3| tr do
1 Tgl 1 Tg]lIf s
we <ogg> (105 1)1 ¥ (0, x(0), 1, x(0)]

+1/t1t2( )m L% (o, x(0), M+x(g))|dgg+ ) | (x(M))|

F(Tl?) 0<Ms<tr—t
1 h
I(t) /1

+Féﬁﬁh

1 ty t _— o
m/ﬁ (loggz) 1|‘P(Q,x(g),IM$x(Q)) ¥(0,0,0)|—= .

+ ) [Ds(x(My))]

tr . Ve d
(log 27" <1gQ o x(0), 1, x(0) = ¥(0,0,0)1

(log 2™~ — (log 1)1 1¥(,0,0) 2

do 1 do

tz t
+ +—/ lo W= 11¥(p,0,0
(%) tl( gQ) ¥ (o )IQ

O<Ms<t2—t1

1 /tl t2 -1 tl -1 T, dQ
S log 2B~ — (log =) D1lx —I—DI& =
Fiey) o [os )t = (log )™ | (Difx(o)| + Dl 7 x() )
¥ g tr -1 5] -1 dQ
1" tog 2yt - log 11|42

o) )y (o8 ) (10g ) \Q

1 ty tr _ dQ Wy t ty dQ
+7 10 AN\ Ty 1 D x +D I’l’g 7+ 10 ta\z, 17
Fe ), 008 2 (Dilx(@) + DalLg (@) T+ ey [ log 271
+ Y (@s(x(M)]

0<M;<tr—t1

1 ty 153 Fl o (log M)* do
- 1 TEN\Ty 1_ 1 N1y 1 D D (log M)"® do
tey 100827 — 05 )7 (Dullxl + Dall B2 1)

¥ f ty 1 1 -1 dQ
B 1" og 2yt - log 11|22
oy 008 (10g ) \Q

1 t t log M d ¥* b fyvp_qd
g7 [ g 2y (Dl + Dall BRI ) 5+ s [ tog 2y 1
ty Q 8) Jt Q

F(Tﬁ) ( +1) F(T ) .
T o.a(01 )
7 (D Do B Y+ 7] [ (o 27071 = (log 2142
1 (log M)™ i by do
+F(rl9){<Dl+D2 Ity +1))||x||+‘1’ :|‘/t1 (10g62) 1?
+Y @M.
0<Ms<tr—t;

As t; — tp, the right-hand side of the above inequality tends to zero. Hence |Sx(tp) —
Sx(t1)| — 0. It implies that S(Bg) is equicontinuous.

Thus, by Theorem 2 the BVP (1)—(3) possesses a solution in Bg. Since Bx C PC(w@,R)
the claim of Theorem 3 is proved. [

Now, we will invoke the Banach contraction principle to verify the uniqueness of
solutions for the BVP (1)-(3).

Theorem 4. In addition to (A1) and (A2), assume that:

(A4) Fors=1,...,n,there exists Dy > 0 such that, forany x,y € Rand t € w,

|@s(x(£)) — Ps(y(£))] < Dalx(t) —y(B)]-
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Then, if

b n lo © 0 v
(ara )M a sy (o) =0 <107

the BVP (1)—(3) possesses a solution uniquely determined on PC(w, R).

Proof. For t € @ and x,y € PC(w,R), we have
|Sx(t) — Sy(t)]

1 n 1 Ms M T q— Ts 1 T:, ) dQ
S P ey [, og =)= ¥ (o, x(@), 1! (@)~ ¥ley(e) Iy v(e))|
+p|(b|)/]\j(10g]\j)r”1\‘1’(9»6(9),1;2;96(@))—‘I’(Q,y( ), I v(0)) dQQ
2)) = @s(y(M:)]

1 Ms M - - - o d
+0<§S<t ) o 008750 ™ 7 ¥ (o x(0) I (@) — ¥l y(0), Iy w(e))|
+1“(11,) /A;ﬂ(logé)m—l"f(efx(e),l%x(g)) —‘P(Q,y(g),l%y(g)) ‘15
+ L |@(M5) — @s(y(M)]

0<M;s<t
n 1 M; M; Ty 1— - dQ
: M[‘b's;r(rs_n/%l“ogg) H(Dilx(e) — y(@] + D21 ! (x(0) — (o))
b| M. M . dQ
+r(rn)/n(1°g?) 1(Dﬂx(@ y(e)| + Dzl (x (Q)—y(e))l)?
+ Y2 Dalx(4) —y(045)
n 1 M; Mg Tq— - - de
X 10870 (D@ vl + DI (x(0) —v(@)])
1 T9— Ty d
+W/ (lo gg) 1<D1|x(g)—y(Q)|+Dz\IM$(x(Q)—y(g))\)f
+ZD4]x(M;)—y<M;)]
(lOg M) (]og M)Ts—l
: |a+b| [" [(t_1+1) (D”Dzm)llx—y\l
bl(log M) (log M) n(log M)™ 1 (log M)™ 1
W(D“LDZF( ))” H} ﬁ(D1+D2m)Hx_y”
(log M)™ (log M)™ Ib|
+W(D1+Dzm)”x—y“+(\a+b|+1)ZD4Hx—y||
L (n+1)(log M)™ (log M)*
(m +1> [ 2(\/5_ 0 (Dl +D2m) +11D4} llx =yl

Ergo, by (17), the operator S forms a contraction. Thus, S involves a fixed point
uniquely which is the unique solution of the BVP (1)-(3). O

Remark 3. Theorems 3 and 4 offer existence and uniqueness results for impulsive systems of
fractional differential equations of the hybrid Caputo—Hadamard type with variable order. These
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results extend the results for differential equations with variable Caputo—Hadamard type fractional
derivatives [27,28] to the impulsive case. Additionally, our results extend and complement some
recently published results on impulsive fractional differential equations involving Caputo-Hadamard
type constant order derivatives [41,42] considering variable order fractional differential equations.

4. Ulam-Hyers Stability

To apply the obtained existence and uniqueness results, in this section we will consider
the Ulam-Hyers stability of solutions of the BVP (1)-(3).

Theorem 5. Consider the hypotheses of Theorem 4. Then, the BVP (1)—(3) is (UH) stable.

Proof. Assume z(t) satisfies the inequality (8). Then the integral inequality

1 LI M M _ . do
t b / log —)T-171g (o, N agQ
20+ — | L) S 008 (@:z(e) I (0D,

b M M., _ z, d n B
+m/ (log =)™ 1T(Q,Z(Q),1MIZ(Q))?Q+bs;d>s(z(Ms ))_c}

1 M M, . d
~ T f L Oos T 020 I 2(e)

0<M5<t F(T871) E Ms—l Q

1 gt b do _ M
- log =) 1¥(0,2(0), I = - Os(z(M7)) < e———
o) /Mﬂ<og DY Y@ LT — T M) < e

holds.
According to Proposition 5, for t € (My, My.1], & =1,...,n the unique solution x of
the BVP (1)-(3) is given by

15 & 1 M Ms o _ _ d
() = L ey [ (0BT e x(@) i x(@)

(108 )™ (0, x(e). I x(0) Y + 0 L 0u(x(M. )~

1 Ms Ms 1 - dQ
+ 7/ log—)%17"%(0,x(0), 3" x(0))—
O<§s<t o) S 10870 (0,x(@), Tys' (e,

1 )/A;g(logéﬁﬂ1‘1’(@/x<@>f%x(0>)d§+ Y @s(x(M)).

+7
['(ty 0<M;<t

Lett € (My, My,1], 9 =1,...,n. Then, we get

|2(£) = x(t)]
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14 0f 18

B n M MS T 1—1 T 1
= e+ [ Lt Tsl/ (log —=) 5171 (g, x(g), I%7" x(0)) =2

Ms—l Q s—1 Q

b [ o My w0000, 15 x(@) % 40 Fo (x4

s=1
1 /MS MS 1 dQ
- — log )51 ¥ (g, x(0), I ()%
0<Ms<tr(TS—1) Msfl( 8 0 ) (e, x(e), MI (0)) 0

_r(iﬁ)/t (logé)Tﬂ_l‘P(er(Q)/IXZ;X(Q))dQ— Z (I)S(X(Ms—))’

0<Ms<t

< [0+ g b Ly [ Oes g e ) 1 )
b M., _ . d L _
e [ o 20 2(0), 1 20) 22 40 L @M~
1 Ms M, 7 qi— T d£
- X [, (og=0)" ¥ (o,2(0) I =(e))
1 t tor,— do -
) Ju 108 H @D )T - T ()|
1 n 1 Ms Ms. o - T [ d
+ |a+b|{|b|gr(T5_1)/Msl(logQ) ; 1"1’(@,2(9) Ve Z(Q)) ¥(o,x(0),1 M x(Q))’?Q
r'(l;[) /MMaogAj)T" ¥ (0,2(0), Iy, 2(0)) ~ ¥lex(e) T x(0)| 2
+|b|2 u(z(M)) = @s(x(M;)]|
1 Ms Ms o - T - d
I%N@ [, (og =)™ ¥ (o 2(e), I =(0)) ~ ¥lo. (@), 1! x(0)|F
ey o 008 0 ¥l 2(0) 200 %2 — (e, xle), @) %
+ Y |e(zMy)) — (M)
0<M;<t
M™
< €e——
- 2(\6—1)
Ms M; -1 Ts—1 dQ
i 15y [y (0B )™ (Dul=(e) = @)+ Dalif? (x(0) —(@)]) 2
s /MMaogf)f"l(Dnz(e) ~x(0)|+ DalI, (2(e) ~ x()]) 2
#1632 Daf=(0) — x(0 )|
Y 1 Ms Ms\7 - Ts-1 do
+ Xt [, (tog =)% 17 (Dule@) ~ x() |+ Dall! (=(e) ~x(e)) )7
1

s=1

n(log M)*- (log M)™
2(v2-1) |a+b| “ | [(t-1+1) (D +D ’T(x 71_‘_1))”2*3(”

! t T9— Ty dQ Z _ _
o) /Mg(logé) 1(D1\Z(Q)—x(Q)\+D2|IM+(Z(Q)—x(Q))\)?+ZD4‘Z(MS ) — x(M;)
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|b|(log M)™ (log M)* (log M)t (log M)~
Ty (P Dapep gy )l xl] + m([’ﬁfbm)ilz—xu
+§F§fﬁl§<m +D2§1Z)2Af)1))llz—xll “(gs b 41) ZD4||z—x||

MT |b| (n+1)(logM)™ (D DM)+nD4]||z—x||.

ez(ﬁf1)+(la+b\+1>[ 2(V2-1) 2(vV2-1)

Then,

o[t~ (o2 +1) U”Z(l&gjgfj)“ (o, +DZ%) inp)]] s e M

Thus, we obtain,

MT
" 22— (g ) [ (o ) 0]

Consequently, the BVP (1)—(3) is (UH) stable. [

€ 1= CyE.

Remark 4. In [42], the authors studied the Ulam—Hyers stability of a class of Hadamard fractional
differential equations with integral boundary value condition and impulses. Our Ulam—Hyers sta-
bility result extend and generalized these results to the case of variable order of fractional derivatives
considering the hybrid type of Caputo—Hadamard derivatives. In fact, fractional derivatives of vari-
able order are more general and expand the possibilities for applications of fractional-order models.
Additionally, the stability result presented in this section show the applicability of the existence and
uniqueness criteria established in Theorems 3 and 4 in the investigation of the qualitative properties
of the introduced BVP (1)—(3).

5. An Example
As an example, consider the following impulsive BVP,
—3(t-1)
CD;/E;lx(t) = = ¢ , teE@:=wyUwm, (18)
(logt)3(e " +5)(1+ |x(t)| + Iy, x(1)])

[(x(3))]
Ax|t_2 = 2 = (19)
10+ [(x(3 )|
3x(1) +2x(M) =5, (20)
where
3 3
M():l, M1:*, Mz—MZZ, n=1, [1 2] @q [1,5], @1 [5,2],
and .
27 te @y,
) =< % 21
m={3 e e
Let
o3(t-1)
Y(t,x,y) = R , (tx,y) €@ xRxR.

(logt)3(es © +5)(1+|x| + |y])
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For each t € @ and x1, x2, 1,2 € R, we have

(log )3 [¥(t, x1,11) — ¥ (L, x2,92)| < (|1 = x| + [y1 — y2|)-

e+5

Thus, assumption (A2) is satisfied with D; = Dy = e% and v = %
Let

Forall x,y € [0,00), we have

@1(x) ~ @ (y) < 7 [x— vl

Then, the assumption (A4) holds with D = %
We will also check that assumption (17) is fulfilled with M = 2, n =1, v = %,

D1 =D, = ﬁ, Dy = % and T* = % Indeed,

<a|i|b| +1) [(n Z(l\)fg(iéf)/[) (D1 +D22<1(‘i;8§”£)1)) + nD4} ~ (0.8372 < 1.

Hence, assumption (17) is satisfied. By Theorem 4, the BVP (18)—(20) has a unique
solution on PC(®, R).
In addition, according to Theorem 5, the BVP (18)—(20) is (UH) stable.

Remark 5. The elaborated example again demonstrates the efficiency of our existence and unique-
ness results. Additionally, it shows that the obtained fundamental criteria for differential equations
with Caputo-type Hadamard derivatives of variable order and impulses can be easily applied in the
study of their the Ulam—Hyers stability properties. Since the proposed criteria are represented as
algebraic inequalities, they can be easily applied in the investigation of other qualitative properties of
such equations.

6. Conclusions

In this paper, we introduce a BVP for impulsive differential equations with Caputo—
Hadamard fractional derivatives of variable order. We study the existence and uniqueness
of solutions of the proposed fractional BVP. The obtained new results extend and comple-
ment some existing results on Caputo-Hadamard differential equations with constant-order
fractional derivatives. The proposed existence and uniqueness criteria are also applied
to establish Ulam-Hyers stability results. One example is presented to show the validity
and applicability of the obtained results. The fundamental results presented in this paper
open up many possibilities for future research. The obtained results can be applied in the
qualitative study of the introduced fractional-order systems, such as stability, periodicity,
almost periodicity, oscillations, asymptotic behavior, etc. In addition, it is possible to extend
the proposed results to the uncertain case and study robust stability of such systems with
uncertain terms. An important future topic is to apply the derived Ulam-Hyers stability
results to fractional neural networks with Caputo-Hadamard fractional derivatives of
variable order. An interesting future direction of research is to extend and implement the
developed results to the class of fractional-order octonion-valued bidirectional associative
memory neural networks introduced in [47] considering impulsive perturbations and vari-
able order Caputo-Hadamard fractional derivatives. In addition, an analysis on the global
Mittag-Leffler stability and synchronization problems for the established class of impulsive
fractional differential equations and related neural network systems can be provided.
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