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Abstract: In the present article, we iteratively deduce new monotonic properties of a class from
the positive solutions of fourth-order delay differential equations. We discuss the non-canonical
case in which there are possible decreasing positive solutions. Then, we find iterative criteria that
exclude the existence of these positive decreasing solutions. Using these new criteria and based
on the comparison and Riccati substitution methods, we create sufficient conditions to ensure that
all solutions of the studied equation oscillate. In addition to having many applications in various
scientific domains, the study of the oscillatory and non-oscillatory features of differential equation
solutions is a theoretically rich field with many intriguing issues. Finally, we show the importance of
the results by applying them to special cases of the studied equation.
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1. Introduction

In this work, we study the asymptotic behavior of solutions to the fourth-order delay
differential equation of the form

(h(r)(Φ′′′(r))α)′ + q(r)Φα(τ(r)) = 0, (1)

where r ≥ ro. Through the paper, the next conditions are satisfied:

(V1) α > 0 is a quotient of odd positive integers;
(V2) h, q, τ ∈ C([ro, ∞), (0, ∞)), τ(r) < r, limr→∞ τ(r) = ∞, and

η(ro) =
∫ ∞

ro
h−1/α(v)dv < ∞. (2)

By a solution of (1), we mean a function Φ ∈ C([r∗, ∞),R), r∗ ≥ ro such that Φ(r)
satisfies (1) on [r∗, ∞). In what follows, we suppose that solutions of (1) exist and can be
continued indefinitely to the right. Furthermore, we consider only solutions Φ(r) of (1)
that satisfy sup{|Φ(r)| : r∗ ≤ r} > 0 for all r ≥ r∗, and we tacitly assume that (1) possesses
such solutions.

Definition 1. A solution Φ of (1) is said to be non-oscillatory if, essentially, it is positive or
negative; otherwise, it is said to be oscillatory. If all of its solutions oscillate, the equation itself is
called oscillatory.
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The delay differential equations are a subclass of functional differential equations. The
concept of delay in systems is proposed as a key role in modeling when representing the
time taken to complete some hidden operations. Examples of the delay in the predator–prey
model occur when the predator birth rate is affected by previous levels of predator or prey
rather than only current levels. With the rapid development of communication technologies,
sending measured signals to the remote-control center has become increasingly simple.
However, the main problem facing engineers is the inevitable time delay between the
measurement and the signal received by the controller, and this time delay must be taken
into account at the design stage to avoid risks of experimental instability and potential
damage, see [1,2].

Differential equations of the fourth-order delay can be found in the mathematical
models of numerous biological, chemical, and physical phenomena. Examples of such ap-
plications include elastic problems and soil settlement. One model that can be represented
by a fourth-order oscillatory equation with delay is the oscillatory traction of a muscle,
which occurs when the muscle is under an inertial load [3].

One of two things is necessarily required to explain natural phenomena and problems
that use differential equations in their modeling: either finding solutions to these equations
or studying the properties of these solutions. However, the equations resulting from
the modeling of natural phenomena are often non-linear differential equations that are
difficult to find a closed-form solution to, and this has strongly stimulated the study of
the qualitative behavior of these models. From here, strong interest has emerged in the
study of the qualitative theory of differential equations, one of the most important branches
of which is the theory of oscillation. Obtaining lower bounds for the separation between
succeeding zeros, taking into account the number of zeros, studying the laws of distribution
of the zeros, and establishing the conditions for the existence of oscillatory (non-oscillatory)
solutions and/or convergence to zeroconstitute the essence of oscillation theory, see [4].

Finding sufficient conditions for the oscillatory and non-oscillatory properties of
second and higher-order differential equations has been a persistent area of research over
the last few years, see [5–7]. Among the numerous papers dealing with this subject, we
refer in particular to the following.

Onose [8] focused on the oscillation of fourth-order functional differential equations(
h(r)Φ′′(r)

)′′
+ f (Φ(τ(r)), r) = 0

and (
h(r)Φ′′(r)

)′′
+ q(r) f (Φ(τ(r))) = τ(r),

under the canonical case. The oscillation and non-oscillation of the fourth and higher-
order differential equations have been the focus of the attention of numerous authors since
this paper was first published.

Wu [9] and Kamo and Usami [10] studied the oscillatory of a fourth-order differen-
tial equation (

h(r)
∣∣Φ′′(r)∣∣α−1Φ′′(r)

)′′
+ q|Φ(r)|β−1Φ(r) = 0,

when the noncanonical holds and the constants α and β are positive.
Grace et al. [11] focused on the oscillatory behavior of the fourth-order differential

equation of the form (
h
(
Φ′
)α
)′′′

(r) + q(r) f (Φ(g(r))) = 0,

under the noncanonical case.
Zhang et al. [12] and Baculikova et al. [13] studied the oscillatory behavior of the

higher-order differential equation(
h(r)

(
Φn−1(r)

)α)′
+ q(r) f (Φ(τ(r))) = 0. (3)
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Ref. [12] provided some oscillation criteria for Equation (3), in which f (Φ) = Φβ

and β is a quotient of odd positive integers. In [13], various techniques have been used in
investigating higher-order differential equations. In the case where n = 4 and f (Φ) = Φα,
by the Riccatti technique, Zhang et al. [14] established some new criteria for the oscillation
of all solutions of the fourth-order differential Equation (3).

Theorem 1. Ref. [12] Let n ≥ 2. Suppose that (2) holds. Further, assume that for some constant
λ0 ∈ (0, 1), the differential equation

Φ′(r) + q(r)
(

λ0τn−1(r)

(n− 1)!h1/α(τ(r))

)β

Φβ/α(τ(r)) = 0, (4)

is oscillatory. If

lim sup
r→∞

∫ r

r0

(
Mβ−αq()

(
λ1τn−2()

(n− 2)!

)β

ηα()− αα+1

(α + 1)α+1
1

η()h1/α()

)
d = ∞, (5)

for some constant λ1 ∈ (0, 1) and for every constant M > 0, then every solution of (6) is oscillatory
or tends to zero.

Zhang et al. [15] suggested some new oscillation criteria for an even-order delay
differential equation (

h(r)
(

Φn−1(r)
)α)′

+ q(r)Φβ(τ(r)) = 0, (6)

in the noncanonical case with n ≥ 4, where β is a quotient of odd positive integers.

Theorem 2. Ref. [15] Let n ≥ 4 be even, (V1), (V2), and (2). Suppose that differential Equation
(4) is oscillatory for some constant λ0 ∈ (0, 1). If (5) and

lim sup
r→∞

∫ r

ro

[
Mβ−αq()Hα()− αα+1

(α + 1)α+1
(H′())α+1

H()ηα
1 ()

]
d = ∞,

hold for some constants λ1 ∈ (0, 1) and for every constant M > 0, then (6) is oscillatory, where

H(r) =
∫ ∞

r
(− r)η()d.

By using a generalized Riccatti substitution, in the case f (Φ) = qΦβ where q is a
nonnegative function and β is a quotient of odd positive integers, Moaaz and Muhib [16]
provided a new criterion for the oscillation of solutions of fourth-order quasi-linear differ-
ential equations (

h(r)
(
Φ′′′(r)

)α
)′

+ f (r, Φ(σ(r))) = 0. (7)

Theorem 3. Ref. [16] Suppose that α ≥ 1 and the differential equation

Φ′(r) + q(r)
(

λ0τ3(r)

3!h1/α(τ(r))

)β

Φβ/α(τ(r)) = 0, (8)

oscillates where λ0 ∈ (0, 1). If there is a positive function γ ∈ C1([ro, ∞), (0, ∞)) such that

lim sup
r→∞

∫ r

r0

(
ϕ()− h()γ()

(α + 1)α+1

(
γ′()

γ()
+

(1 + α)

h1/α()η()

)α+1
)

d = ∞, (9)
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holds for any positive constants c1 and c2 and for λ1 ∈ (0, 1), where

ϕ(r) = γ(r)q
(

λ1

2!
τ2
)β

+ (1− α)
γ(r)

h1/α(r)ηα+1(r)

then every solution of (6) is oscillatory or tends to zero.

Theorem 4. Ref. [16] Suppose that Equation (8) oscillates where λo ∈ (0, 1). If there is a function
γ ∈ C1([ro, ∞), (0, ∞)) such that

lim sup
r→∞

ηα(r)

γ(r)

∫ r

ro

(
γ()q()

(
λ1

2!
τ2()

)α

− h()(γ′())α+1

(α + 1)α+1γα()

)
d > 1, (10)

then every solution of (7) is oscillatory or converges to zero as r→ ∞ for λ1 ∈ (0, 1).

Theorem 5. Ref. [16] Suppose that α ≥ 1 and the differential Equation (8) is oscillatory or some
constant λo ∈ (0, 1). If there is a function γ ∈ C1([ro, ∞), (0, ∞)) such that (9) and

lim sup
r→∞

∫ r

ro

[
ψ()− γ()

(α + 1)(α+1)ηα
1 (r)

(
γ′()

γ()
+

(1 + α)η1()

η2()

)α+1
]

d = ∞, (11)

holds for λ1 ∈ (0, 1), where

ψ(r) = qγ(r) + (1− α)γ(r)η1(r)/ηα+1
2 (r).

Then, (7) is oscillatory .

Elabbasy et al. [17] considered the even-order neutral differential equation with sev-
eral delays

(h(r)(z(n−1)(r))α)′ +
k

∑
i=1

qi(r) f (Φ(τi(r))) = 0,

where z(r) = Φ(r)+ p(r)Φ(τ(r)) and n ≥ 4 with the noncanonical operator. Moaaz et al. [18]
studied the fourth-order delay differential equation of the form

(h(r)(Φ′′′(r))α)′ + f (r, Φ(σ(r))) = 0,

under the noncanonical case.

Lemma 1. Ref. [19] Let f ∈ Cn([ro, ∞), (0, ∞)). If the derivative f (n)(r) is eventually of one
sign for all large r, then there is a rΦ such that rΦ ≥ ro and an integer l, 0 ≤ l ≤ n, with n + l
even for f (n)(r) ≥ 0, or n + l odd for f (n)(r) ≤ 0 such that

l > 0 implies f (k)(r) > 0 for r ≥ rΦ, k = 0, 1, . . . , l − 1,

and
l ≤ n− 1 implies (−1)l+k f (k)(r) > 0 for r ≥ rΦ, k = l, l + 1, . . . , n− 1.

Lemma 2. Ref. [12] Let α be a ratio of two odd positive integers. Then,

Lv
(α+1)/α − Kv ≥ − αα

(α + 1)α+1
Kα+1

Lα
, L > 0 (12)

and
A(α+1)/α − (A− B)(α+1)/α ≤ 1

α
B1/α[(1 + α)A− B], α ≥ 1, AB ≥ 0. (13)
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The main purpose of this work is to test the oscillation of solutions of a fourth-order
delay differential Equation (1). This paper is organized as follows: In Section 2, we create
new properties that help us achieve more effective terms in the oscillation of the studied
equation. In Section 3, we apply the Riccati substitution in the general form and the
comparison method to obtain criteria that excluded decreasing solutions. In Section 4, by
combining the results known in the literature and the results we obtained, we set criteria
that ensure the oscillation of the studied equation and offer an illustrative example to show
our results. Finally, in Section 5, we conclude the article with a summary.

2. New Monotonic Properties

It is well known that positive solutions of delay differential equations must be catego-
rized based on the sign of their derivatives when investigating their oscillatory behavior.
Now, we assume that Φ is an eventually positive solution of (1). From the differential
equation in (1) and taking into account that q(r) > 0, we have that h(r)(Φ′′′(r))α is a
nonincreasing function. Furthermore, according to Lemma 1, we obtain the following three
cases, eventually:

Case (1) : Φ′(r) > 0, Φ′′′(r) > 0 and Φ(4)(r) < 0;
Case (2) : Φ′(r) > 0, Φ′′(r) > 0 and Φ′′′(r) < 0;
Case (3) : Φ′(r) < 0, Φ′′(r) > 0 and Φ′′′(r) < 0,

for r ≥ r1, where r1 is sufficiently large. For convenience, we will symbolize the set of
all eventually positive solutions of the Equation (1) by +and the set of all solutions with
satisfying case (3) by +

3 .
In order to prove our main results, we define the following:

ηi(r) =
∫ ∞

r
ηi−1()d for i = 1, 2.

and

β∗ = lim inf
r→∞

1
α

q(r)η−1
1 (r)ηα+1

2 (r).

In addition, we put

µ∗ = lim inf
r→∞

η2(τ(r))

η2(r)
.

It is useful to note that in view of (V2), µ∗ ≥ 1. In the proofs, we will often use
that there is r1 ≥ ro sufficiently large such that, for arbitrary β ∈ (0, β∗) and µ ∈ [1, µ∗),
we have

q(r)η−1
1 (r)ηα+1

2 (r) ≥ αβ, (14)

and
η2(τ(r))

η2(r)
≥ µ.

on [r1, ∞).
Below, we define a sequence that is used to improve the monotonic properties of the

positive solutions of (1).

Definition 2. We define sequence {βn} as βo = α
√

β∗ and

βn =
βoµ

βn−1
∗

α
√

1− βn−1
, n ∈ N. (15)
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Remark 1. By induction, it is easy to see that if, for any n ∈ N, βi < 1, for i = 0, 1, 2, . . . , n.
Then, βn+1 exists and

βn+1 = `nβn > βn, (16)

where `n is defined by

`o =
µ

βo
∗

α
√

1− βo
,

and

`n+1 = µ
βo(`n−1)
∗

α

√
1− βn

1− `nβn
, n ∈ No.

Lemma 3. Assume that Φ ∈ C([ro, ∞), (0, ∞)) is a solution of (1) and Case (3) holds. If

∫ ∞

ro

(
1

h(v)

∫ v

r1

q()d

)1/α

dv = ∞, (17)

then Φ(r) converges to zero and Φ(r)/η2(r) is eventually nondecreasing.

Proof. Assume that Φ ∈ + and satisfies case (3). Then, we obtain that limr→∞ Φ(r) = δ ≥ 0.
We claim that lim

r→∞
Φ(r) = 0. Assume the contrary that δ > 0. Thus, there is r1 ≥ ro such

that Φ(τ(r)) ≥ δ for r ≥ r1, and hence(
h(r)

(
Φ′′′(r)

)α
)′

= −q(r)Φα(τ(r)) ≤ −δαq(r),

for r ≥ r1. Integrating the above inequality twice from r1 to r, we have

Φ′′′(r) ≤ −δ

(
1

h(r)

∫ r

r1

q()d

)1/α

and

Φ′′(r) ≤ Φ′′(r1)− δ
∫ r

r1

(
1

h(v)

∫ v

r1

q()d

)1/α

dv.

Letting r→ ∞ and using (17), we obtain that limr→∞ Φ′′(r) = −∞, which contradicts
Φ′′(r) > 0. Thus, the proof is complete. Using the fact that h1/α(r)Φ′′′(r) is nonincreasing,
we see that

Φ′′(r) ≥ −
∫ ∞

r
h−1/α()h1/α()Φ′′′()d ≥ −h1/α(r)Φ′′′(r)η(r). (18)

Now, we have(
Φ′′(r)
η(r)

)′
=

η(r)Φ′′′(r) + h−1/α(r)Φ′′(r)
η2(r)

=
1

h1/α(r)η2(r)

[
h1/α(r)Φ′′′(r)η(r) + Φ′′(r)

]
≥ 0. (19)

Thus, we obtain

Φ′(r) ≤ −
∫ ∞

r
η()

Φ′′()

η()
d ≤ −Φ′′(r)

η(r)
η1(r), (20)
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which implies (
Φ′(r)
η1(r)

)′
=

η1(r)Φ′′(r) + η(r)Φ′(r)
η2

1(r)

=
1

η2
1(r)

[
Φ′′(r)η1(r) + Φ′(r)η(r)

]
≤ 0. (21)

This leads to

Φ(r) ≥ −
∫ ∞

r
η1()

Φ′()

η1()
d ≥ −Φ′(r)

η1(r)
η2(r), (22)

hence (
Φ(r)

η2(r)

)′
=

η2(r)Φ′(r) + η1(r)Φ(r)

η2
2(r)

=
1

η2
2(r)

[
η2(r)Φ′(r) + η1(r)Φ(r)

]
≥ 0. (23)

This completes the proof.

Lemma 4. Let β∗ > 0 and µ∗ < ∞. If Φ ∈ C([ro, ∞), (0, ∞)) is a solution of (1) and Case (3)
holds, then for any n ∈ No (

Φ(r)

η
βn
2 (r)

)′
< 0.

Proof. Assume that Φ ∈ + and satisfies case (3) on [r1, ∞) where r1 ≥ ro such that
Φ(τ(r)) > 0 and (14) holds for r ≥ r1. Integrating (1) from r1 to r, we have

h(r)
(
Φ′′′(r)

)α
= h(r1)

(
Φ′′′(r1)

)α −
∫ r

r1

q()Φα(τ())d

≤ h(r1)
(
Φ′′′(r1)

)α −Φα(r)
∫ r

r1

q()d.

By using (14) in the above inequality, we obtain

h(r)
(
Φ′′′(r)

)α ≤ h(r1)
(
Φ′′′(r1)

)α − βΦα(r)
∫ r

r1

α

η−1
1 ()ηα+1

2 ()
d

≤ h(r1)
(
Φ′′′(r1)

)α − β
Φα(r)

ηα
2 (r)

+ β
Φα(r)

ηα
2 (r1)

.

From Lemma 3, we have that limr→∞ Φ(r) = 0. Hence, there is a r2 ∈ [r1, ∞) such that

h(r1)
(
Φ′′′(r1)

)α
+ β

Φα(r)

ηα
2 (r1)

< 0,

for r ≥ r2. Thus,

h(r)
(
Φ′′′(r)

)α
< −β

Φα(r)

ηα
2 (r)

or
h1/α(r)Φ′′′(r)η2(r) < − α

√
βΦ(r) = −εoβoΦ(r), (24)
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where εo = α
√

β/βo is an arbitrary constant from (0, 1). Note that,

h1/α(r)Φ′′′(r)η(r) ≥
∫ ∞

r
h−1/α()h1/α()Φ′′′()d ≥ −Φ′′(r),

then,
Φ′′(r) ≥ −h1/α(r)η(r)Φ′′′(r).

By repeating this step twice over [r, ∞), we obtain

Φ′(r) ≤ h1/α(r)η1(r)Φ′′′(r) (25)

and
Φ(r) ≥ −h1/α(r)η2(r)Φ′′′(r).

From (24) and (25), we obtain

Φ′(r)
η1(r)

≤ h1/α(r)Φ′′′(r)

and
Φ′(r)
η1(r)

≤ − α
√

β
Φ(r)

η2(r)
,

hence,
η2(r)Φ′(r) + α

√
βη1(r)Φ(r) ≤ 0.

Therefore, Φ(r)

η
α
√

β

2 (r)

′ =
η

α
√

β

2 (r)Φ′(r) + α
√

βη
α
√

β−1
2 (r)η1(r)Φ(r)

η
2 α
√

β

2 (r)

=
η

α
√

β−1
2

[
α
√

βη1(r)Φ(r) + η2(r)Φ′(r)
]

η
2 α
√

β

2 (r)

=
1

η
α
√

β+1
2 (r)

[
α
√

βη1(r)Φ(r) + η2(r)Φ′(r)
]

≤ 0.

Integrating (1) from r2 to r and using that Φ(r)/η
α
√

β

2 (r) is decreasing, we have

h(r)
(
Φ′′′(r)

)α ≤ h(r2)
(
Φ′′′(r2)

)α −
∫ r

r2

q()η
α α
√

β

2 (τ())
Φα(τ())

η
α α
√

β

2 (τ())

d

≤ h(r2)
(
Φ′′′(r2)

)α −

 Φ(τ(r))

η
α
√

β

2 (τ(r))

α ∫ r

r2

q()η
α α
√

β

2 (τ())d,

hence,

h(r)
(
Φ′′′(r)

)α ≤ h(r2)
(
Φ′′′(r2)

)α −

 Φ(r)

η
α
√

β

2 (r)

α ∫ r

r2

q()

(
η2(τ())

η2()

)α α
√

β

η
α α
√

β

2 ()d.

It is clear that from (14), we have
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h(r)
(
Φ′′′(r)

)α ≤ h(r2)
(
Φ′′′(r2)

)α − β

(
Φ(r)

η
α
√

β(r)

)α ∫ r

r2

α
(

η2(τ())
η2()

)α α
√

β

η1()η
α+1−α α

√
β

2 ()

d

≤ h(r2)
(
Φ′′′(r2)

)α − β

1− α
√

β
µα α
√

β

 Φ(r)

η
α
√

β

2 (r)

α ∫ r

r2

α
(
1− α

√
β
)

η1()η
α+1−α α

√
β

2 ()

d,

which implies that,

h(r)
(
Φ′′′(r)

)α ≤ h(r2)
(
Φ′′′(r2)

)α −

β

1− α
√

β
µα α
√

β

 Φ(r)

η
α
√

β

2 (r)

α 1

η
α(1− α
√

β)
2 (r)

− 1

η
α(1− α
√

β)
2 (r2)

.

(26)

Now, we claim that limr→∞ Φ(r)/η
α
√

β

2 (r) = 0. It is enough to show that there is

ε > 0 such that Φ(r)/η
α
√

β+ε

2 (r) is eventually decreasing. Since η2(r) tends to zero, there is
a constant

` ∈

 α

√
1− α

√
β

µ
α
√

β
, 1


and a r3 ≥ r2 such that

1

η
α(1− α
√

β)
2 (r)

− 1

η
α(1− α
√

β)
2 (r2)

> `α 1

η
α(1− α
√

β)
2 (r)

, (27)

for r ≥ r3. By using (27) in (26), we obtain

h(r)
(
Φ′′′(r)

)α ≤ − `αβ

1− α
√

β
µα α
√

β

(
Φ(r)

η2(r)

)α

,

its mean ,

h1/α(r)Φ′′′(r) ≤ −
(

α
√

β + ε
)Φ(r)

η2(r)
, (28)

where

ε = α
√

β

 `µ
α
√

β

α

√
1− α

√
β
− 1

 > 0.

Thus, from (28),  Φ(r)

η
α
√

β+ε

2 (r)

′ ≤ 0,

for r ≥ r3, and hence the claim is valid. Therefore, for r4 ∈ [r3, ∞),

h(r2)
(
Φ′′′(r2)

)α
+

β

1− α
√

β
µα α
√

β

 Φ(r)

η
α
√

β

2 (r)

α

1

η
α(1− α
√

β)
2 (r2)

< 0,
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for r ≥ r4. By using the above inequality in (26), we have

h(r)
(
Φ′′′(r)

)α ≤ h(r2)
(
Φ′′′(r2)

)α − β

1− α
√

β
µα α
√

β

 Φ(r)

η
α
√

β

2 (r)

α

1

η
α(1− α
√

β)
2 (r)

+
β

1− α
√

β
µα α
√

β

 Φ(r)

η
α
√

β

2 (r)

α

1

η
α(1− α
√

β)
2 (r2)

≤ h(r2)
(
Φ′′′(r2)

)α − β

1− α
√

β
µα α
√

β

(
Φ(r)

η2(r)

)α

+
β

1− α
√

β
µα α
√

β

 Φ(r)

η
α
√

β

2 (r)

α

1

η
α(1− α
√

β)
2 (r2)

hence,

h(r)
(
Φ′′′(r)

)α
< − β

1− α
√

β
µα α
√

βΦα(r),

or

h1/α(r)Φ′′′(r) < −
α
√

β

α

√
1− α

√
β

µ
α
√

βΦ(r) = −ε1β1Φ(r),

for r ≥ r4, where

ε1 = α

√
β
(
1− α

√
β∗
)

β∗
(
1− α

√
β
) µ

α
√

β

µ
α
√

β∗
∗

is an arbitrary constant from (0, 1) approaching 1 if β→ β∗ and µ→ µ∗. Hence,(
Φ(r)

η
ε1β1
2 (r)

)
< 0,

for r ≥ r4. One can show that through induction, for any n ∈ No and r large enough,(
Φ(r)

η
εn βn
2 (r)

)′
< 0,

where εn given by

εo =
α

√
β

β∗

εn+1 = εo
α

√
1− βn

1− εnβn

µεn βn

µ
βn
∗

, n ∈ No

is an arbitrary constant from (0, 1) approaching 1 if β→ β∗ and µ→ µ∗. Finally, we claim
that from any n ∈ No (

Φ(r)

η
εn+1βn+1
2 (r)

)′
< 0

implies that from (16) and the fact that εn+1 is arbitrary close to 1,

εn+1βn+1 > βn.

Hence, for r large enough,

h1/α(r)Φ′′′(r)η2(r) < −εn+1βn+1Φ(r) < −βnΦ(r).
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So, for any n ∈ No and r large enough,(
Φ(r)

η
βn
2 (r)

)′
< 0.

The proof is complete.

3. Nonexistence of Solutions in the Class +
3

Theorem 6. Suppose that (V1) and (V2) hold. If

lim sup
r→∞

∫ r

ro

[
Hα()q()

η
αβn
2 (τ())

η
αβn
2 ()

− αα

(α + 1)α+1
(H′())α+1

H()ηα
1 ()

]
d = ∞, (29)

then +
3 = ∅. Where

H(r) =
∫ ∞

r
(− r)η()d.

Proof. Consider the case where (1) has a nonoscillatory solution. We can suppose that
Φ ∈ + eventually without losing generality. Assume that Φ satisfies case (3). Since
h(r)(Φ′′′(r))α is nonincreasing, we obtain

h1/α()Φ′′′() ≤ h1/α(r)Φ′′′(r),  ≥ r ≥ r1. (30)

By dividing (30) by h1/α() and integrating the resulting inequality from r to `,
we obtain

Φ′′(`) ≤ Φ′′(r) + h1/α(r)Φ′′′(r)
∫ `

r
h1/α()d.

Letting `→ ∞, we have

0 ≤ Φ′′(r) + h1/α(r)Φ′′′(r)η(r),

which produces
Φ′′(r) ≥ −η(r)h1/α(r)Φ′′′(r). (31)

Integrating (31) from r to ∞, yields

−Φ′(r) ≥ −h1/α(r)Φ′′′(r)
∫ ∞

r
η()d. (32)

Again, integrating (32) from r to ∞, we obtain

Φ(r) ≥ −h1/α(r)Φ′′′(r)
∫ ∞

r
(− r)η()d.

Now, define the function ω by

ω(r) :=
h(r)(Φ′′′(r))α

(Φ(r))α , r ≥ r1. (33)

Then, we see that ω(r) < 0 for r ≥ r1. Differentiating (33), we obtain

ω′(r) =
(h(r)(Φ′′′(r))α)′

(Φ(r))α − α
h(r)(Φ′′′(r))αΦ′(r)

(Φ(r))α+1 .

It follows from (1) and (32) that

ω′(r) ≤ −q(r)
Φα(τ(r))

(Φ(r))α − αω1+1/α(r)
∫ ∞

r
η()d.
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ω′(r) ≤ −q(r)
η

αβn
2 (r)

(Φ(r))α
Φα(τ(r))

η
αβn
2 (r)

− αω1+1/α(r)
∫ ∞

r
η()d.

Lemma 4 yields

−
η

αβn
2 (τ(r))

(Φ(τ(r)))α ≥ −
η

αβn
2 (r)

(Φ(r))α ,

hence,

ω′(r) ≤ −q(r)
η

αβn
2 (τ(r))

η
αβn
2 (r)

− αω1+1/α(r)
∫ ∞

r
η()d. (34)

Multiplying (34) by Hα(r) and integrating the resulting inequality from r1 to r,
we have

Hα(r)ω(r)− Hα(r1)ω(r1)− α
∫ r
r1

H′()Hα−1()ω()d +
∫ r
r1

q()
η

αβn
2 (τ())

η
αβn
2 ()

Hα()d

+α
∫ r
r1

ω1+1/α()η1()Hα()d ≤ 0.

By using the inequality (12) with K = −H′()Hα−1(), L = η1()Hα(), and v = −ω(),
we obtain

∫ r

r1

[
q()

η
αβn
2 (τ())

η
αβn
2 ()

Hα()− αα

(α + 1)α+1
(H′())α+1

H()ηα
1 ()

]
d ≤ Hα(r1)ω(r1) + 1,

we obtain a contradiction with (29) by taking the lim sup on both sides of this inequality.
The proof is now complete.

Theorem 7. Suppose that α ≥ 1. If there is a function γ ∈ C1([ro, ∞), (0, ∞)) such that

lim sup
r→∞

∫ r

ro

[
ψ()− γ()

(α + 1)(α+1)ηα
1 (r)

(
γ′()

γ()
+

(1 + α)η1()

η2()

)α+1
]

d = ∞, (35)

where

ψ(r) = γ(r)q(r)
η

αβn
2 (τ(r))

η
αβn
2 (r)

+ (1− α)γ(r)η1(r)/ηα+1
2 (r).

Then +
3 = ∅.

Proof. Consider the case where (1) has a nonoscillatory solution. We can suppose that
Φ ∈ + eventually without losing generality. Assume that Φ satisfies case (3). Since
h(r)(Φ′′′(r))α is non-increasing, we obtain

Φ′′(v)−Φ′′(r) =
∫ v

r

1
h1/α(ζ)

(
h(ζ)(Φ′′′(ζ))α

)1/αdζ

≤ h1/α(r)Φ′′′(r)
∫ v

r

1
h1/α(ζ)

dζ.

Letting v→ ∞, we have

Φ′′(r) ≥ −h1/α(r)Φ′′′(r)η(r). (36)

Integrating (36) from r to ∞ yields

−Φ′(r) ≥ −h1/α(r)Φ′′′(r)η1(r). (37)
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Again, integrating (37) from r to ∞, we obtain

Φ(r) ≥ −h1/α(r)Φ′′′(r)η2(r).

Now, define the function ω1 by

ω1(r) = γ(r)

(
h(r)(Φ′′′(r))α

(Φ(r))α +
1

ηα
2 (r)

)
, r ≥ r1. (38)

Then, we see that ω1(r) > 0 for r ≥ r1. Therefore, we have

ω′1(r) =
γ′(r)

γ(r)
ω1(r) + γ(r)

(
h(r)(Φ′′′(r))α)′

(Φ(r))α − αγ(r)
h(r)(Φ′′′(r))αΦ′(r)

(Φ(r))α+1 − αγ(r)
η′2(r)

ηα+1
2 (r)

.

It follows from (1) that

ω′1(r) =
γ′(r)

γ(r)
ω1(r)− q(r)γ(r)

η
αβn
2 (r)

(Φ(r))α
Φα(τ(r))

η
αβn
2 (r)

− αγ(r)
h(r)(Φ′′′(r))αΦ′(r)

(Φ(r))α+1 − αγ(r)
η′2(r)

ηα+1
2 (r)

.

From (37) and (38), we find

ω′1(r) ≤
γ′(r)

γ(r)
ω1(r)− q(r)

η
αβn
2 (r)

(Φ(r))α
Φα(τ(r))

η
αβn
2 (r)

− αγ(r)η1(r)

(
ω1(r)

γ(r)
− 1

ηα
2 (r)

)1+1/α

+αγ(r)
η1(r)

ηα+1
2 (r)

.

From Lemma 4, we obtain

−
η

αβn
2 (τ(r))

(Φ(τ(r)))α ≥ −
η

αβn
2 (r)

(Φ(r))α ,

hence,

ω′1(r) ≤
γ′(r)

γ(r)
ω1(r)− γ(r)q(r)

η
αβn
2 (τ(r))

η
αβn
2 (r)

+ αγ(r)
η1(r)

ηα+1
2 (r)

− αγ(r)η1(r)

(
ω1(r)

γ(r)
− 1

ηα
2 (r)

)1+1/α

.

By using the inequality (13) with A = ω1(r)/γ(r) and  = 1/ηα
2 (r), we obtain

ω′1(r) ≤
γ′(r)

γ(r)
ω1(r)− γ(r)q(r)

η
αβn
2 (τ(r))

η
αβn
2 (r)

+ αγ(r)
η1(r)

ηα+1
2 (r)

−αγ(r)η1(r)

{(
ω1(r)

γ(r)

)1+1/α

− 1
η2(r)

(
(1 + α)

ω1(r)

γ(r)
− 1

ηα
2 (r)

)}
,

hence,

ω′1(r) ≤
(

γ′(r)

γ(r)
+

(1 + α)η1(r)

η2(r)

)
ω1(r)− γ(r)q(r)

η
αβn
2 (τ(r))

η
αβn
2 (r)

− αη1(r)

γ1/α(r)
ω1+1/α

1 (r)

−γ(r)η1(r)

ηα+1
2 (r)

+
αγ(r)η1(r)

ηα+1
2 (r)

.
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Using the inequality (12) with K = γ′(r)/γ(r)+ (1 + α)η1(r)/η2(r), L = αη1(r)/γ1/α(r),
and v = ω1(r), we obtain

ω′1(r) ≤ −γ(r)q(r)
η

αβn
2 (τ(r))

η
αβn
2 (r)

+ (α− 1)
γ(r)η1(r)

ηα+1
2 (r)

+
γ(r)

(α + 1)(α+1)ηα
1 (r)

(
γ′(r)

γ(r)
+

(1 + α)η1(r)

η2(r)

)α+1

. (39)

Integrating (39) from r1 to r, we have

∫ r

r1

[
ψ()− γ()

(α + 1)(α+1)ηα
1 (r)

(
γ′()

γ()
+

(1 + α)η1()

η2()

)α+1
]

d ≤ ω1(r1),

we obtain a contradiction with (35) by taking the lim sup on both sides of this inequality.
The proof is now complete.

Theorem 8. Suppose that Φ ∈ C((ro, ∞), (0, ∞)) is a solution of (1). If the differential equation

Φ′(r) +
1

η2(τ(r))

(∫ ∞

r

∫ ∞

ζ

η2(τ(v))
h1/α(v)

(∫ v

r1

q()d

)1/α

dvdζ

)
Φ(τ(r)) = 0. (40)

is oscillatory, then +
3 = ∅.

Proof. Assume that Φ ∈ + and satisfies case (3). From (1) and integrating from r1 to r,
we obtain

h(r)
(
Φ′′′(r)

)α ≤ −Φα(τ(r))
∫ r

r1

q()d. (41)

As in the proof of Lemma 3, we obtain that (19), (21), and (23) hold. Now, integrating
(41) from r to ∞ and using (23), we obtain

−Φ′′(r) ≤ −
∫ ∞

r

Φ(τ(v))
η2(τ(r))

η2(τ(r))

h1/α(v)

(∫ v

r1

q()d

)1/α

dv.

From Lemma 3, note that Φ(r)/η2(r) is nondecreasing and yields

−Φ′′(r) ≤ −Φ(τ(r))

η2(τ(r))

∫ ∞

r

η2(τ(r))

h1/α(v)

(∫ v

r1

q()d

)1/α

dv. (42)

Integrating (42) from r to ∞, we find

Φ′(r) ≤ −
∫ ∞

r

Φ(τ(ζ))

η2(τ(ζ))

∫ ∞

ζ

η2(τ(r))

h1/α(v)

(∫ v

r1

q()d

)1/α

dvdζ

≤ −Φ(τ(r))

η2(τ(r))

∫ ∞

r

∫ ∞

ζ

η2(τ(v))
h1/α(v)

(∫ v

r1

q()d

)1/α

dvdζ.

As a result, it is clear that Φ is a positive solution to the first-order delay differential inequality

Φ′(r) +
1

η2(τ(r))

(∫ ∞

r

∫ ∞

ζ

η2(τ(v))
h1/α(v)

(∫ v

r1

q()d

)1/α

dvdζ

)
Φ(τ(r)) ≤ 0.

According to [20], Equation (40) also has a solution that is positive, creating a contra-
diction. The proof is now complete.
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Corollary 1. Assume that Φ ∈ C((ro, ∞), (0, ∞)) is a solution of (1). If

lim inf
r→∞

∫ r

τ(r)

1
η2(τ(ξ))

(∫ ∞

ξ

∫ ∞

ζ

η2(τ(v))
h1/α(v)

(∫ v

r1

q()d

)1/α

dvdζ

)
dξ >

1
e

, (43)

then +
3 = ∅.

Proof. We remark that (43) ensures the oscillation of (40) using [20]. The proof is
now complete.

4. Application in Oscillation Theory

The criteria for oscillation depend on finding conditions that exclude each case of the
derivatives of the solution separately. In many cases, we note that the most influential
condition in the test of oscillation of the equation is the condition of excluding decreasing
solutions. Therefore, improving the conditions for excluding decreasing solutions necessar-
ily affects the improvement of oscillation criteria. In this section, we will set the criteria
for testing oscillation for (1) to combine conditions known in the literature that exclude
cases (1) and (2) of the derivatives of the solution with the new conditions in the previous
section that exclude the existence of solutions that fulfill case (3).

In the next theorems, the proof of the case where (1) or (2) holds is the same as that
of [16] (Theorem 2.1, Theorem 2.2). Moreover, either conditions (29) or (35), or (43), excludes
case (3) .

Theorem 9. Assume that (29) holds. If (8) and (10) hold for some λ1 ∈ (0, 1), then (1) oscillates.

Theorem 10. Assume that (35) holds. If (8) and (10) hold for some λ1 ∈ (0, 1), then (1) oscillates.

Theorem 11. Assume that (43) holds. If (8) and (10) hold for some λ1 ∈ (0, 1), then (1) oscillates.

Example 1. We consider(
eαr
(
Φ′′′(r)

)α
)′

+ qoeαrΦα
(
r− arcsin

(√
10/10

))
= 0, (44)

where h(r) = eαr, q(r) = qoeαr, τ(r) = r− arcsin
(√

10/10
)

and η(r) = e−r. Note that

H(r) =
∫ ∞

r
(− r)e−d

= e−r.

If we choose γ(r) = e−αr, then we see that

η1(r) = e−r, η2(r) = e−r and η2(τ(r)) = e−(r−arcsin(
√

10/10)).

It is easy to verify that

`o =
e
√

qo/α arcsin(
√

10/10)√
1−

√√
qo/α

, µ∗ =
e−(r−arcsin(

√
10/10))

e−r
= earcsin(

√
10/10),

n = 0, β∗ = qo/α, and βo =
√

qo/α.
By using Theorem 9, we find conditions (8) and (10) are satisfied and the condition (29)

holds if

qo >
(α)α+1

(α + 1)α+1eα
√

qo/α arcsin(
√

10/10)
. (45)
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Therefore, Equation (44) is oscillatory if (45) holds. Additionally, by using Theorem 10, we
find that condition (35) is satisfied if

qo >
1

eα
√

qo/α arcsin(
√

10/10)

(
1

(α + 1)α+1 − (1− α)

)
. (46)

Therefore, Equation (44) is oscillatory if (46) holds. Now, by using Theorem 2 and Theorem 5,
Equation (44) is oscillatory if

qo >
(α)α+1

(α + 1)α+1 . (47)

Figure 1 illustrates the efficiency of conditions (45)–(47) in studying the oscillation of solutions
of (44).

Remark 2. To the best of our knowledge, the known related sharp criterion for (44) based on
Example 1 gives

q0 >

(
α

α + 1

)α+1
. (48)

Note firstly that our criteria (45) and (46) essentially take into account the influence of the
delay argument τ(r), which has been neglected in all previous results of fourth-order equations.

Secondly, in the case where α = 1, we get the results in Table 1. Therefore, we note that condi-
tions (45) and (46) support the most efficient and sharp criterion for oscillation of Equation (44).

Table 1. Comparison of the different oscillation criteria of (44) with α = 1.

Condition (45) (46) (48)
Criterion q0 > 0.215 q0 > 0.215 q0 > 0.250

Figure 1. Regions for which conditions (45)–(47) are satisfied.

5. Conclusions

The study of oscillations for delay differential equations always begins with the classi-
fication of positive solutions based on the sign of their derivatives. The oscillation criteria
depend on the conditions that exclude each case of the positive solutions. In many cases, the
exclusion of decreasing solutions is the condition that has the most effect on the test for the
oscillation of the equation. Therefore, improving the criteria for oscillation must obviously
have an effect on improving the conditions for excluding decreasing solutions. In this
work, we study the asymptotic properties of solutions to the fourth-order delay differential
equation with the non-canonical operator. We have created new properties that help us
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have more effective terms in the oscillation of the Equation (1). We use the comparison
theorem and more than one compensation for Riccatti to obtain criteria that guarantee the
exclusion of decreasing solutions. After that, by combining well-known results with the
results of Section 3, we set new criteria for the oscillation of the studied equation. Finally,
we gave an example to illustrate the novelty and importance of our results. An open ques-
tion is whether the neutral delay equation can be studied with the same technique used in
this research.
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