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Abstract: In this paper, we introduce a second-order strong subdifferential of set-valued maps, and
discuss some properties, such as convexity, sum rule and so on. By the new subdifferential and its
properties, we establish a necessary and sufficient optimality condition of set-based robust efficient
solutions for the uncertain set-valued optimization problem. We also introduce a Wolfe type dual
problem of the uncertain set-valued optimization problem. Finally, we establish the robust weak
duality theorem and the robust strong duality theorem between the uncertain set-valued optimization
problem and its robust dual problem. Several main results extend to the corresponding ones in the
literature.
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1. Introduction

Robust optimization is an important deterministic technique for studying optimization
problems with data uncertainty, which is protected against data uncertainty and has
grown significantly, see [1–6]. The optimization theory mainly includes multi-objective
optimization and focuses on finding global optimal solutions or global efficient solutions.
However, in real-world situations where the solutions are very susceptible to perturbations
from the variables, we might not always be able to identify the global optimal solutions.
To reduce the sensitivity to variable perturbations under these conditions, we are going to
find the robust solutions.

The set-valued optimization problem:

(SOP)

{
min H(z) = {H1(z), H2(z), . . . , Hk(z), . . . , Hq(z)}
s.t. z ∈ M, Bj(z) ⊆ R−, j = 1, . . . , l

has been widely studied by scholars, where M is a closed and convex subset of a real
topological linear space X, Hk : M → 2R, k = 1, . . . , q and Bj : M → 2R, j = 1, . . . , l
are given functions. Set-valued optimization is a thriving research field with numerous
applications, for example in risk management [7,8], statistics [9], and others. Hamel and
Heyde [7] defined set-valued (convex) measures of risk and their acceptance sets, and they
gave dual representation theorems. Hamel et al. [8] defined set-valued risk measures on Lp

d
with 0 6 p 6 ∞ for conical market models, and primal and gave dual representation results.
Hamel and Kostner [9] discussed relationships to families of univariate quantile functions
and to depth functions, and introduced a corresponding Value at Risk for multivariate
random variables as well as stochastic orders by the set-valued approach. The vectorial
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criterion and the set criterion are the two different forms of solution criteria for set-valued
optimization problems. Each different criterion has been studied independently. The
challenge of minimizing a function, when the representation of a point is actually a set,
is dealt by set-valued optimization. Since there is no way to minimize a set by a total
order relation, it is necessary to give a definition for minimizing the set-valued objective
function. The literature [10–12] introduced the concepts of preorders to compare sets. These
preorders enable the formulation of set-valued optimization problems pertaining to the
robustness of multi-objective optimization problems. Eichfelder and Jahn [10] presented
different optimality notions such as minimal, weakly minimal, strongly minimal and
properly minimal elements in a pre-ordered linear space and discussed the relations among
these notions. Young [11] introduced the upper set less relation and lower set less relation
and then used these set relations to analyze the upper and lower limits of real number
sequences. Kuroiwa et al. [12] referred to the upper-type set relation and considered
some duality theorems of a set optimization problem. Furthermore, six other forms of set
relations [13] were also used by Kuroiwa et al. [12] to solve set optimization problems.
By generalized differentiable assumptions, a separation scheme is used to construct some
robust necessary conditions for uncertain optimization problems by Wei et al. [14]. By
using the constraint qualification and the regularity condition, Wang et al. [15] developed
weak and strong KKT robust necessary conditions for a nonconvex nonsmooth uncertain
multiobjective optimization problem under the conditions of upper semi-continuity.

Rockafellar and Tyrrell [16] first introduced subdifferential concepts of convex func-
tions. Recently, many authors have generalized subdifferentials of a vector-valued map to
the one of a set-valued map [17,18]. There are two main approaches to define the subdiffer-
ential of set-valued mappings: one is to define the subdifferential by the derivative of the
set-valued maps [17], the other is to define subdifferential by using algebraic forms [18–22].
Tanino [18] pioneered conjugate duality for vector optimization problems and introduced
weak efficient points of a set to provide a weak subdifferential for set-valued mappings.
A few characteristics of this weak subdifferential were covered by Sach [19]. By using an
algebraic form, Yang [20] defined a weak subdifferential for set-valued mappings, demon-
strated an extension theorem of the Hahn-Banach theorem, and talked about the existence
of the weak subgradients. Chen and Jahn [21] introduced a kind of weak subdifferential,
which is more powerful than the weak subdifferential [20]. By the weak subdifferential,
they established a sufficient optimality condition for set-valued optimization problems.
Borwein [22] introduced a strong subgradient, and proved a Lagrange multiplier theorem
and a Sandwich theorem for convex maps. Peng et al. [23] proved the existence of the
Borwein-strong subgradient and Yang-weak subgradient for set-valued maps and pre-
sented a new Lagrange multiplier theorem and a new Sandwich theorem for set-valued
maps. Li and Guo [24] investigated the features of the weak subdifferential that was
first proposed in [21], as well as the necessary and sufficient conditions for optimality
in set-valued optimization problems. Hernández and Rodríguez-Marín [25] presented
a new definition of the strong subgradient for set-valued mappings that were stronger
than the weak subgradient of set-valued mappings introduced by Chen and Jahn [21].
Long et al. [26] obtained two existence theorems for weak subgradients of set-valued
mappings described in [21]. They also deduced several features of the weak subdifferential
for set-valued mappings. İnceŏglu [27] defined the second-order weak subdifferential and
examined some properties of the concept.

Recently, the dual theorem in the face of data uncertainty has received a great deal
of attention due to the reality of uncertainty in many real-world optimization problems.
Suneja et al. [28] constructed strong/weak duality results between the primary problem
and its Mond-Weir type dual problem using Clarke’s generalized gradients and sufficient
optimality criteria for the vector optimization problems. Chuong and Kim [29] established
sufficient conditions for (weakly) efficient solutions of a nonsmooth semi-infinite multiob-
jective optimization problem and proposed types of Wolfe and Mond-Weir dual problems
via the limiting subdifferential of locally Lipschitz functions. Moreover, they explored
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weak and strong duality. By means of multipliers and limiting subdifferentials of the
related functions, Chuong [30] established necessary/sufficient optimality conditions for
robust (weakly) Pareto solutions of a robust multiobjective optimization problem involving
nonsmooth/nonconvex real-valued functions. In addition, they addressed a dual (robust)
multiobjective problem to the primal one, and explored weak/strong duality. By virtue
of subdifferential [31], Sun et al. [32] obtained optimality condition and established Wolfe
type robust duality between the uncertain optimization problem and its uncertain dual
problem under the conditions of continuity and cone-convex-concavity.

To the best of our knowledge, there are a few concepts of solutions for the uncertain
set-valued optimization problem through set-order relation. Moreover, there is very little
literature on the optimality condition and the dual theorem for set-based robust efficient
solutions of uncertain set-valued optimization problems by terms of the second-order
strong differential of a set-valued mapping. Lately, Som and Vetrivrl [33] introduced
robustness for set-valued optimization to generalize some existing concepts of robustness
for scalar and vector-valued optimization, and they followed the set approach for solutions
to set-valued optimization problems.

To weaken the conditions of continuity and cone-convex-concavity [15,32], inspired
by the subdifferential [20,22] and set-order relations [34], we introduce a new second-order
strong subdifferential of set-valued mapping and define the set-based robust efficient
solution for an uncertain set-valued optimization problem. Meanwhile, by using the
second-order strong subdifferential of set-valued maps, we put forward Wolfe type dual
problem and investigate the robust weak duality and robust strong duality of the set-based
robust efficient solutions for uncertain set-valued optimization problems.

This paper is organized as follows. We quickly go through the concepts in Section 2
before introducing a brand-new second-order strong subdifferential of a set-valued map.
We derive some crucial new subdifferential features in Section 3. We obtain a necessary
and sufficient condition for the set-based robust efficient solutions to the uncertain set-
valued optimization problem in Section 4 thanks to the concept of the second-order strong
subdifferential of set-valued mappings. The robust weak duality and robust strong duality
of the uncertain set-valued optimization problem are established in Section 5. Section 6 is a
short conclusion of the paper.

2. Preliminaries and Definitions

Throughout the paper, let X and Y be two real topological linear spaces with their
topological dual spaces X∗ and Y∗, respectively. 0X and 0Y denote the original points of X
and Y, respectively. Let K ⊆ Y be a solid closed convex pointed cone. The dual cone of K is
defined by

K∗ = {y∗ ∈ Y∗ : 〈y∗, y〉 > 0, ∀y ∈ K}.

Let N be a natural number and n, m, l ∈ N. Let D ⊆ Y be a nonempty subset. clD and intD
denote the closure and interior of D, respectively. T (Y) := {E ⊆ Y | E is nonempty}.

Let M be a subset of X and H : M→ 2Y be a set-valued map. The domain, graph and
epigraph of H are defined, respectively, by

domH := {z ∈ M : H(z) 6= ∅}, grH := {(z, y) ∈ M×Y : y ∈ H(z), z ∈ M}

and
epiH := {(z, y) ∈ M×Y : y ∈ H(z) + K}.

A partial order relation(�K) of space Y caused by the cone K as follows:

e �K s if and only if s− e ∈ K,

e ≺K s if and only if s− e ∈ intK, ∀e, s ∈ Y.

Definition 1 ([34]). Let E, S ∈ T (Y) be arbitrarily chosen sets.
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(i) The lower set less order relation is defined by

E �l
K S⇔ E + K ⊇ S⇔ ∀s ∈ S, ∃e ∈ E : e �K s,

E ≺l
K S⇔ E + intK ⊇ S⇔ ∀s ∈ S, ∃e ∈ E : e ≺K s.

(ii) The upper set less order relation is defined by

E �u
K S⇔ S− K ⊇ E⇔ ∀e ∈ E, ∃s ∈ S : e �K s,

E ≺u
K S⇔ S− intK ⊇ E⇔ ∀e ∈ E, ∃s ∈ S : e ≺K s.

Definition 2 ([35]). Let E, S ∈ T (Y) be arbitrarily chosen sets. Then the certainly less order
relation is defined by

E �c
K S⇔ (E = S) or (E 6= S, ∀e ∈ E, ∀s ∈ S : e �K s),

or equivalently, E = S or, S− E ⊆ K whenever E 6= S.

Definition 3 ([31]). Let M be a nonempty subset of X. M is said to be convex if for any x, z ∈ M
and for all β ∈ [0, 1],

βx + (1− β)z ∈ M.

Definition 4 ([31]). Let M be a nonempty convex subset of X. H : M→ 2R is called K-convex if
for any x, z ∈ M and for all β ∈ [0, 1],

βH(x) + (1− β)H(z) ⊆ H(βx + (1− β)z) + K.

Definition 5. A function H : M→ 2R has a global minimum at (x1, y1) if

y1 �R+
y2, ∀x2 ∈ M, y2 ∈ H(x2).

Definition 6 ([22]). Let H : M→ 2Y be a set-valued map and be K-convex, x1 ∈ M, y1 ∈ H(x1)
and H(x1)− y1 ⊆ K, the set

∂H(x1, y1) = {ξ ∈ X∗ | y2 − y1 − 〈ξ, x2 − x1〉 ∈ K, ∀x2 ∈ M, y2 ∈ H(x2)}

is called the Borwein-strong subdifferential of H at (x1, y1).

Enlightened by the Borwein-strong subdifferential in [22,23], we put forward the new
notion of second-order strong subdifferential for a set-valued map.

Definition 7. Let H : M → 2R be a set-valued map, x1 ∈ M, y1 ∈ H(x1) and H(x1)− y1 ⊆
R+. Then ξ ∈ X∗ is said to be a second-order strong subgradient of H at (x1, y1) if

y2 − y1 − 〈ξ, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2).

The set

∂2
s H(x1, y1) = {ξ ∈ X∗ | y2 − y1 − 〈ξ, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2)}

is said to be the second-order strong subdifferential of H at (x1, y1). If ∂2
s H(x1, y1) 6= ∅, then H is

said to be second-order strong subdifferentiable at (x1, y1).

The following example shows Definition 7.
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Example 1. Let H : R→ 2R be a set-valued map with H(x) = {y ∈ R | y ≥ x2} for any x ∈ R.
Take (x1, y1) = (0, 0). A simple calculation shows that H(x1)− y1 ⊆ R+. Then we obtain

∂2
s H(0, 0) = {ξ ∈ R : ξ ∈ [−1, 1]}.

Remark 1. Let H : M → 2R be a set-valued map. If the condition H(x1)− y1 ⊆ R+ is not
satisfied, Definition 7 is not complete. The following example shows the case.

Example 2. Let H : R+ → 2R be a set-valued map with H(x) = {y ∈ R | y ≤ x2} for any
x ∈ R+. Take (x1, y1) = (1,−1). A simple calculation shows that H(x1)− y1 * R+. Then it
follows from Definition 7 that ξ does not exist, i.e.,

∂2
s H(1,−1) = ∅.

Therefore, the condition H(x1)− y1 ⊆ R+ is necessary in Definition 7.

Remark 2. Let H : M→ 2R be a set-valued map. Obviously, if the second-order strong subdiffer-
ential exists, then 0 ∈ ∂2

s H(x1, y1). However, 0 ∈ ∂H(x1, y1) may not necessarily be true. Now
we give an example to illustrate the case.

Example 3. Let H : R+ → 2R be a set-valued map, and let H(x) = {y ∈ R | y ≥ − 1
2 x} for

any x ∈ R+. Take (x1, y1) = (0, 0). A simple calculation shows that H(x1)− y1 ⊆ R+. Then
we have

∂2
s H(0, 0) = {ξ ∈ R : ξ = 0}.

and
∂H(0, 0) = {ξ ∈ R : ξ ∈ (−∞,−1

2
]}.

Thus, 0 ∈ ∂2
s H(0, 0), but 0 /∈ ∂H(0, 0).

3. Properties of a Second-Order Strong Subdifferential of Set-Valued Maps

In this section, we present some properties of a second-order strong subdifferential of
set-valued maps. Firstly, we introduce the following lemma.

Lemma 1. Let x ∈ X, ξ, η ∈ X∗ and β ∈ [0, 1]. Set hx(ξ) := 〈ξ, x〉. Then

βh2
x(ξ) + (1− β)h2

x(η) > h2
x(βξ + (1− β)η).

Proof. Let x ∈ X, ξ, η ∈ X∗ and β ∈ [0, 1]. Since β2 − β 6 0 and hx is a linear function,

h2
x(βξ + (1− β)η) =[hx(βξ) + hx((1− β)η)]2

=h2
x(βξ) + h2

x((1− β)η) + 2hx(βξ)hx((1− β)η)

=βh2
x(ξ) + (1− β)h2

x(η)

+ (β2 − β)(h2
x(ξ) + h2

x(η)− 2h2
x(ξ)h

2
x(η))

6βh2
x(ξ) + (1− β)h2

x(η).

This proof is complete.

Theorem 1. Let H : M→ 2R be a set-valued map, x1 ∈ M, y1 ∈ H(x1) and H(x1)− y1 ⊆ R+.
Then the set ∂2

s H(x1, y1) is convex.

Proof. If ∂2
s H(x1, y1) = ∅, then there is nothing to be demonstrated.

Suppose ∂2
s H(x1, y1) 6= ∅. Let ξ ∈ ∂2

s H(x1, y1), η ∈ ∂2
s H(x1, y1) and λ ∈ [0, 1]. Then,

y2 − y1 − 〈ξ, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2)
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and
y2 − y1 − 〈η, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2),

i.e.,

λ(y2 − y1)− λ〈ξ, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2) (1)

and

(1− λ)(y2 − y1)− (1− λ)〈η, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2). (2)

By Lemma 1, it follows from (1) and (2) that

y2 − y1 − (λ〈ξ, x2 − x1〉2 + (1− λ)〈η, x2 − x1〉2)

6y2 − y1 − 〈λξ + (1− λ)η, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2).

Thus,
λξ + (1− λ)η ∈ ∂2

s H(x1, y1).

This proof is complete.

Theorem 2. Let H : M→ 2R be a set-valued map, x1 ∈ M, y1 ∈ H(x1) and H(x1)− y1 ⊆ R+.
Let H be second-order strong subdifferentiable at (x1, y1). Then H has a global minimum at (x1, y1)
if and only if 0X∗ ∈ ∂2

s H(x1, y1).

Proof. (⇒) Since H has a global minimum at (x1, y1),

y2 − y1 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2).

Then,
y2 − y1 − 〈0X∗ , x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2),

which implies that 0X∗ ∈ ∂2
s H(x1, y1).

(⇐) Let 0X∗ ∈ ∂2
s H(x1, y1). Then, by Definition 7, we obtain

y2 − y1 − 〈0X∗ , x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2),

which implies that y2 − y1 ∈ R+ for all x2 ∈ M, y2 ∈ H(x2). Therefore, according to
Definition 5, H has a global minimum at (x1, y1). This proof is complete.

Theorem 3. Let H : M → 2R be a set-valued map and α > 0. Let x1 ∈ M, y1 ∈ H(x1) and
H(x1)− y1 ⊆ R+. If H and αH are second-order strong subdifferentiable at (x1, y1) and (x1, αy1),
respectively, then

∂2
s (αH)(x1, αy1) =

√
α∂2

s H(x1, y1).

Proof. Let ξ ∈ ∂2
s (αH)(x1, αy1). Then

αy2 − αy1 − 〈ξ, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2)

⇔y2 − y1 −
1
α
〈ξ, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2)

⇔y2 − y1 − 〈
1√
α

ξ, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2)

⇔ 1√
α

ξ ∈ ∂2
s H(x1, y1)

⇔ξ ∈
√

α∂2
s H(x1, y1).
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Here we finish the proof.

Now, we provide an illustration of Theorem 3.

Example 4. Let H : R → 2R be a set-valued map, and let H(x) = {y ∈ R | y ≥ 3x2}. Take
(x1, y1) = (0, 0). A simple calculation shows that H(x1)− y1 ⊆ R+. Then for any α > 0, we
obtain

∂2
s (αH)(0, 0) = {ξ ∈ R : ξ ∈ [−

√
3α,
√

3α]}

and

√
α∂2

s H(0, 0) = {ξ ∈ R : ξ ∈ [−
√

3α,
√

3α]}.

Therefore, ∂2
s (αH)(0, 0) =

√
α∂2

s H(0, 0).

Theorem 4. Let H and Q : M → 2R be set-valued maps, x1 ∈ M, y1 ∈ H(x1), y2 ∈ Q(x1),
H(x1)− y1 ⊆ R+ and Q(x1)− y2 ⊆ R+. If H and Q are second-order strong subdifferentiable
at (x1, y1) and (x1, y2), respectively, then

∂2
s H(x1, y1) + ∂2

s Q(x1, y2) ⊆
√

2∂2
s (H + Q)(x1, y1 + y2).

Proof. Let ξ1 ∈ ∂2
s H(x1, y1) and ξ2 ∈ ∂2

s Q(x1, y2). Then,

y3 − y1 − 〈ξ1, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y3 ∈ H(x2)

and
y4 − y2 − 〈ξ2, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y4 ∈ Q(x2),

i.e.,

1
2
(y3 − y1)−

1
2
〈ξ1, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y3 ∈ H(x2) (3)

and

1
2
(y4 − y2)−

1
2
〈ξ2, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y4 ∈ Q(x2). (4)

According to Lemma 1, it follows from (3) and (4) that

1
2
[(y3 − y1) + (y4 − y2)]− [

1
2
〈ξ1, x2 − x1〉2 +

1
2
〈ξ2, x2 − x1〉2]

6
1
2
[(y3 + y4)− (y1 + y2)]− 〈

1
2

ξ1 +
1
2

ξ2, x2 − x1〉2 ∈ R+,

∀x2 ∈ M, y3 + y4 ∈ (H + Q)(x2).

Thus, √
2

2
ξ1 +

√
2

2
ξ2 ∈ ∂2

s (H + Q)(x1, y1 + y2),

i.e.,
ξ1 + ξ2 ∈

√
2∂2

s (H + Q)(x1, y1 + y2).

Therefore, ∂2
s H(x1, y1) + ∂2

s Q(x1, y2) ⊆
√

2∂2
s (H + Q)(x1, y1 + y2). This proof is com-

plete.
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Corollary 1. Let Hi : M → 2R be set-valued maps, i = 1, . . . , m, x1 ∈ M, yi ∈ Hi(x1) and
Hi(x1)− yi ⊆ R+. If Hi is second-order strong subdifferentiable at (x1, yi), i = 1, . . . , m, then

m

∑
i=1

∂2
s Hi(x1, yi) ⊆

√
m∂2

s

m

∑
i=1

Hi(x1,
m

∑
i=1

yi).

Remark 3. Let H and Q : M→ 2R be set-valued maps. If H and Q are strong subdifferentiable at
(x1, y1) and (x1, y2), respectively, then

∂H(x1, y1) + ∂Q(x1, y2) ⊆ ∂(H + Q)(x1, y1 + y2).

However,
√

2 can not be omitted in Theorem 4.

We take into consideration the following examples to demonstrate Theorem 4 and
Remark 3.

Example 5. Let H and Q : R → 2R be set-valued maps with H(x) = {y ∈ R | y ≥ x2} and
Q(x) = {y ∈ R | y ≥ 4x2}. Take x1 = 1, y1 = 1 ∈ H(x1) and y2 = 4 ∈ Q(x1). A simple
calculation shows that H(x1)− y1 ⊆ R+ and Q(x1)− y2 ⊆ R+. Then we obtain

∂2
s H(1, 1) = {ξ1 ∈ R : ξ1 ∈ [−1, 1]}

and
∂2

s Q(1, 4) = {ξ2 ∈ R : ξ2 ∈ [−2, 2]},

so,
∂2

s H(1, 1) + ∂2
s Q(1, 4) = {ξ1 + ξ2 ∈ R : ξ1 + ξ2 ∈ [−3, 3]}.

Moreover,
∂2

s (H + Q)(1, 5) = {ξ3 ∈ R : ξ3 ∈ [−
√

5,
√

5]}.

and √
2∂2

s (H + Q)(1, 5) = {
√

2ξ3 ∈ R :
√

2ξ3 ∈ [−
√

10,
√

10]}.

In fact, 3 ≮
√

5 and 3 <
√

10. Therefore, ∂2
s H(x1, y1) + ∂2

s Q(x1, y2) * ∂2
s (H + Q)(x1, y1 +

y2) and ∂2
s H(x1, y1) + ∂2

s Q(x1, y2) ⊆
√

2∂2
s (H + Q)(x1, y1 + y2).

Example 6. Let H and Q : R → 2R be set-valued maps, and let H(x) = {y ∈ R | y ≥ x},
Q(x) = {y ∈ R | y ≥ 4x}. Take (x1, y1) = (0, 0) = (x1, y2). A simple calculation shows that
H(x1)− y1 ⊆ R+ and Q(x1)− y2 ⊆ R+. Then we obtain

∂H(0, 0) = {ξ1 ∈ R : ξ1 6 1}

and
∂Q(0, 0) = {ξ2 ∈ R : ξ2 6 4},

so,
∂H(0, 0) + ∂Q(0, 0) = {ξ1 + ξ2 ∈ R : ξ1 + ξ2 6 5}.

Moreover,
∂(H + Q)(0, 0) = {ξ3 ∈ R : ξ3 6 5}.

Therefore, ∂H(x1, y1) + ∂Q(x1, y2) ⊆ ∂(H + Q)(x1, y1 + y2).

4. The Optimality Condition for the Uncertain Set-Valued Optimization Problem

Problem (SOP) has been studied extensively without taking into account data uncer-
tainty. However, in most real-world practical applications, there are more uncertainties in
optimization problems. To define an uncertain set-valued optimization problem (USOP),
we assume that uncertainties in the objective function are given as scenarios from a known
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uncertainty set U = {u1, u2, . . . , um} ⊆ Rm, where ui is an uncertain parameter, i = 1, . . . , m.
The following uncertain set-valued optimization problem (USOP) can be used to describe
the problem (SOP) when there is data uncertainty for both the objectives and the constraints:

(USOP)

{
min H(z, ui) = {H1(z, ui), H2(z, ui), . . . , Hk(z, ui), . . . , Hq(z, ui)}
s.t. z ∈ M, ui ∈ U, Bj(z, vj) ⊆ R−, ∀vj ∈ Vj, j = 1, . . . , l,

where Hk : M × Rm → 2R, k = 1, . . . , q and Bj : M × Rl → 2R, j = 1, . . . , l are given
functions, and the uncertain parameter vj belongs to a compact and convex uncertainty set
Vj ⊆ Rl .

Let G : M×U → 2R be a set-valued map, max
ui∈U

G(z, ui) is defined as follows:

G(z, ui) �l
R+

max
ui∈U

G(z, ui), ∀i = 1, . . . , m.

In this paper, we investigate problem (USOP) using a robust approach. As we all
know, there is no proper method to directly solve problem (USOP), so it is necessary to
replace problem (USOP) by the deterministic version, that is, the robust counterpart of
problem (USOP). By this means, various concepts of robustness have been proposed on
the basis of different robust counterparts to describe the preferences of decision makers.

The most celebrated and researched robustness concept is called worst-case robustness
(also known as min-max robustness or strict robustness in the literature). The idea is to
minimize the worst possible objective function value, and search for a solution that is
good enough in the worst case. Meanwhile, the constraints should be satisfied for every
parameter vj ∈ Vj, j = 1, . . . , l. Worst-case robustness is a conservative concept and reveals
the pessimistic attitude of a decision maker. Then, the robust (worst-case) counterpart of
problem (USOP) is as follows :

(URSOP)


min max

ui∈U
H(z, ui) = {max

ui∈U
H1(z, ui), max

ui∈U
H2(z, ui), . . . , max

ui∈U
Hk(z, ui),

. . . , max
ui∈U

Hq(z, ui)}

s.t. z ∈ M, Bj(z, vj) ⊆ R−, ∀vj ∈ Vj, j = 1, . . . , l.

Definition 8. The robust feasible set of problem (USOP) is defined by

A := {z ∈ M | Bj(z, vj) ⊆ R−, ∀vj ∈ Vj, j = 1, . . . , m}.

We assume that A 6= ∅. Obviously, the set of all robust feasible solutions to problem (USOP) is the
same as the set of all feasible solutions to problem (URSOP).

Definition 9. z̆ ∈ A is said to be a �l
R+

-robust efficient solution to problem (USOP) if z̆ is a
�l
R+

-efficient solution to problem (URSOP), i.e., for all z ∈ A such that

max
ui∈U

Hk(z̆, ui) �l
R+

max
ui∈U

Hk(z, ui).

In this part, we create a necessary and sufficient optimality condition of the�l
R+

-robust
efficient solution to problem (USOP).

Theorem 5. Let Hk : M×Rm → 2R, k = 1, . . . , q and Bj : M×Rl → 2R, j = 1, . . . , l be set-
valued maps, z̆ ∈ M, y̆ ∈ ⋂

ui∈U Hk(z̆, ui) and y̆j ∈
⋂

vj∈Vj
Bj(z̆, vj). Assume that the following

conditions hold:

(i) Hk is bounded on M×U;
(ii) max

ui∈U
Hk(z, ui) exists for all z ∈ M;

(iii) for any i, j and k, Hk(z̆, ui)− y̆ ⊆ R+ and Bj(z̆, vj)− y̆j ⊆ R+;
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(iv) for any j and k, Hk, Bj is second-order strong subdifferentiable at (z̆, y̆) and (z̆, y̆j), respec-
tively.

Then z̆ is a �l
R+

-robust efficient solution to problem (USOP) if and only if for any i, j and k,
there exist ŭi ∈ U, v̆j ∈ Vj and µ̆j ∈ R+ such that

0 ∈ ∂2
s Hk(·, ŭi)(z̆, y̆) +

l

∑
j=1

µ̆j∂
2
s Bj(·, v̆j)(z̆, y̆j),

(µ̆jBj)(z̆, v̆j) = {0}

and
Hk(z̆, ŭi) = max

ui∈U
Hk(z̆, ui).

Proof. (⇒) Let z̆ be a�l
R+

-robust efficient solution to problem (USOP). Then z̆ ∈ A. Hence,
for all vj ∈ Vj, we have Bj(z̆, vj) ⊆ R−. Thus, take v̆j ∈ Vj such that

Bj(z̆, v̆j) ⊆ R−.

Moreover, for any j, there exists µ̆j ∈ R+ such that

(µ̆jBj)(z̆, v̆j) = {0}. (5)

In fact, there are two cases to illustrate (5) as follows:

(i) If Bj(z̆, v̆j) = {0}, then take arbitrary µ̆j > 0, we get (µ̆jBj)(z̆, v̆j) = {0}.
(ii) If Bj(z̆, v̆j) ⊆ R− \ {0}, then take µ̆j = 0, we can easily get that (µ̆jBj)(z̆, v̆j) = {0}.

Since U is a finite set and Hk is bounded, there exists ŭi ∈ U such that

Hk(z̆, ŭi) = max
ui∈U

Hk(z̆, ui).

According to the definition of the second-order strong subdifferential, one obtains

0 ∈ ∂2
s Hk(·, ŭi)(z̆, y̆) and 0 ∈

l

∑
j=1

µ̆j∂
2
s Bj(·, v̆j)(z̆, y̆j).

Therefore, we get

0 ∈ ∂2
s Hk(·, ŭi)(z̆, y̆) +

l

∑
j=1

µ̆j∂
2
s Bj(·, v̆j)(z̆, y̆j).

(⇐) Assume that for any i, j and k, there exist z̆ ∈ A, ŭi ∈ U, v̆j ∈ Vj and µ̆j ∈ R+ such
that

0 ∈ ∂2
s Hk(·, ŭi)(z̆, y̆) +

l

∑
j=1

µ̆j∂
2
s Bj(·, v̆j)(z̆, y̆j),

(µ̆jBj)(z̆, v̆j) = {0}

and

Hk(z̆, ŭi) = max
ui∈U

Hk(z̆, ui). (6)
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By Theorem 3 and Corollary 1, we get

∂2
s Hk(·, ŭi)(z̆, y̆)+

l

∑
j=1

µ̆j∂
2
s Bj(·, v̆j)(z̆, y̆j)

=∂2
s Hk(·, ŭi)(z̆, y̆) +

l

∑
j=1

∂2
s (µ̆

2
j Bj)(·, v̆j)(z̆, µ̆2

j y̆j)

⊆
√

l + 1∂2
s (Hk(·, ŭi) +

l

∑
j=1

(µ̆2
j Bj)(·, v̆j))(z̆, y̆ +

l

∑
j=1

µ̆2
j y̆j).

Since 0 ∈ ∂2
s Hk(·, ŭi)(z̆, y̆) + ∑l

j=1 µ̆j∂
2
s Bj(·, v̆j)(z̆, y̆j), one has

0 ∈
√

l + 1∂2
s (Hk(·, ŭi) +

l

∑
j=1

(µ̆2
j Bj)(·, v̆j))(z̆, y̆ +

l

∑
j=1

µ̆2
j y̆j).

Therefore,

0 ∈ ∂2
s (Hk(·, ŭi) +

l

∑
j=1

(µ̆2
j Bj)(·, v̆j))(z̆, y̆ +

l

∑
j=1

µ̆2
j y̆j).

Obviously, y̆ ∈ Hk(z̆, ŭi), y̆j ∈ Bj(z̆, v̆j). Then by Definition 7, we get

y− y̆ +
l

∑
j=1

µ̆2
j yj −

l

∑
j=1

µ̆2
j y̆j ∈ R+, ∀z ∈ A, y ∈ Hk(z, ŭi), yj ∈ Bj(z, v̆j). (7)

Since (µ̆jBj)(z̆, v̆j) = {0} for any j, we calculate that ∑l
j=1(µ̆

2
j Bj)(z̆, v̆j) = {0},

i.e., for the preceding element y̆j ∈ Bj(z̆, v̆j), we have ∑l
j=1 µ̆2

j y̆j = 0. Together with

∑l
j=1(µ̆

2
j Bj)(z, v̆j) ⊆ R− for all z ∈ A, i.e., ∑l

j=1 µ̆2
j yj ∈ R− for all z ∈ A and yj ∈ Bj(z, v̆j), it

follows from (7) that
y− y̆ ∈ R+, ∀z ∈ A, y ∈ Hk(z, ŭi),

i.e.,
Hk(z̆, ŭi) �l

R+
Hk(z, ŭi), ∀z ∈ A.

Moreover, by the transitivity of �l
R+

set-order relation, it follows from (6) and
Hk(z, ŭi) �l

R+
max
ui∈U

Hk(z, ui), one has

max
ui∈U

Hk(z̆, ui) �l
R+

max
ui∈U

Hk(z, ui), ∀z ∈ A.

Thus, z̆ is a �l
R+

-robust efficient solution to problem (USOP). This proof is complete.

Remark 4.

(i) We extend the uncertain scalar optimization problem in [32] (Theorem 3.1) to the uncertain
set-valued optimization problem (USOP) in Theorem 5.

(ii) Ref. [32] (Theorem 3.1) is established under the conditions of continuity and cone-convex-
concavity, [15] (Corollaries 3.1 and 3.2) are established under the conditions of upper semi-
continuity, it is under the conditions of existence of the maximum and boundedness that we
obtain Theorem 5. Since bounded functions may not be continuous, our result in Theorem 5
extends [32] (Theorem 3.1) and [15] (Corollaries 3.1 and 3.2).
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5. Wolfe Type Robust Duality of Problem (USOP)

The robust weak duality and the robust strong duality are covered in this section,
which begin by introducing a Wolfe type dual problem (DSOPW) for the uncertain set-
valued optimization problem (USOP).

We now consider the Wolfe type dual problem (DSOPW) of problem (USOP):

max (H1(z, ui) + ∑l
j=1(µjBj)(z, vj), . . . , Hq(z, ui) + ∑l

j=1(µjBj)(z, vj))

s.t. 0 ∈ ∂2
s Hk(·, ui)(z, y) + ∑l

j=1 µj∂
2
s Bj(·, vj)(z, yj),

(µjBj)(z, vj) ⊆ R−, j = 1, . . . , l,
ui ∈ U, i = 1, . . . , m, vj ∈ Vj, µj ∈ R+,
z ∈ A, y ∈ Hk(z, ui), yj ∈ Bj(z, vj), k = 1, . . . , q.

Definition 10. The robust feasible solution set P of problem (DSOPW) is defined by

P := {(z, µj, ui, vj) |0 ∈ ∂2
s Hk(·, ui)(z, y) +

l

∑
j=1

µj∂
2
s Bj(·, vj)(z, yj),

(µjBj)(z, vj) ⊆ R−, vj ∈ Vj, µj ∈ R+, j = 1, . . . , l,

ui ∈ U, i = 1, . . . , m, z ∈ A, y ∈ Hk(z, ui),

yj ∈ Bj(z, vj), k = 1, . . . , q}.

In this section, we suppose that P 6= ∅.

Definition 11. (x̆, µ̆j, ŭi, v̆j) ∈ P is said to be a≺u
R+

-robust efficient solution to problem (DSOPW)

if there is no feasible solution (z, µj, ui, vj) ∈ P other than (x̆, µ̆j, ŭi, v̆j) such that

Hk(x̆, ŭi)−
l

∑
j=1

(µ̆jBj)(x̆, v̆j) ≺u
R+

Hk(z, ui)−
l

∑
j=1

(µjBj)(z, vj),

i = 1, . . . , m, k = 1, . . . , q.

Theorem 6. (Robust weak duality) If for any k, Hk is bounded and closed, and max
ui∈U

Hk(x, ui)

exists for all x ∈ M, then for any feasible solution x to problem (URSOP) and any feasible solution
(z, µj, ui, vj) to problem (DSOPW), we have

max
up∈U

Hk(x, up) ⊀u
R+

Hk(z, ui) +
l

∑
j=1

(µjBj)(z, vj), i = 1, . . . , m, k = 1, . . . , q. (8)

Proof. Let x be a feasible solution to problem (URSOP) and (z, µj, ui, vj) be a feasible
solution to problem (DSOPW).

To the contrary, suppose that (8) does not hold. Then, there exist x̆, z̆ ∈ A, ŭi ∈ U,
v̆j ∈ Vj and µ̆j ∈ R+ such that

max
up∈U

Hk(x̆, up) ≺u
R+

Hk(z̆, ŭi) +
l

∑
j=1

(µ̆jBj)(z̆, v̆j). (9)

From ∑l
j=1(µ̆jBj)(x̆, v̆j) ⊆ R−, we have

max
up∈U

Hk(x̆, up) +
l

∑
j=1

(µ̆jBj)(x̆, v̆j) ≺u
R+

Hk(z̆, ŭi) +
l

∑
j=1

(µ̆jBj)(z̆, v̆j).
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Then, for all ẙ ∈ maxup∈U Hk(x̆, up) and yj ∈ Bj(x̆, v̆j), there exist y̆ ∈ Hk(z̆, ŭi) and
y̆j ∈ Bj(z̆, v̆j) such that

ẙ +
l

∑
j=1

µ̆jyj ≺R+
y̆ +

l

∑
j=1

µ̆jy̆j,

i.e.,

(ẙ +
l

∑
j=1

µ̆jyj)− (y̆ +
l

∑
j=1

µ̆jy̆j) ∈ intR−. (10)

Due to Hk(x̆, ŭi) �c
R+

max
up∈U

Hk(x̆, up), we can conclude that Hk(x̆, ŭi) 6= max
up∈U

Hk(x̆, up).

In fact, suppose that Hk(x̆, ŭi) = max
up∈U

Hk(x̆, up). Then, it follows from (9) that

Hk(x̆, ŭi) ≺u
R+

Hk(x̆, ŭi) +
l

∑
j=1

(µ̆jBj)(x̆, v̆j).

Since Hk is bounded and closed, and ∑l
j=1(µ̆jBj)(x̆, v̆j) ⊆ R−, we obtain

max
up∈U

Hk(x̆, up) ≺u
R+

Hk(x̆, ŭi) +
l

∑
j=1

(µ̆jBj)(x̆, v̆j),

which is impossible. Thus, Hk(x̆, ŭi) 6= max
up∈U

Hk(x̆, up). And then, by the definition of �c
R+

set-order relationship, one has

y �R+
ẙ, ∀y ∈ Hk(x̆, ŭi), ẙ ∈ max

up∈U
Hk(x̆, up). (11)

It follows from 0 ∈ ∂2
s Hk(·, ŭi)(z̆, y̆) and (11) that

y− y̆− 〈0, x− z̆〉2 ∈ R+, ∀x ∈ A, y ∈ Hk(x, ŭi),

i.e.,

ẙ− y̆− 〈0, x− z̆〉2 ∈ R+, ∀x ∈ A, ẙ ∈ max
up∈U

Hk(x, up). (12)

Moreover, it follows from 0 ∈ ∑l
j=1 µj∂

2
s Bj(·, v̆j)(z̆, y̆j), one has

l

∑
j=1

µ̆jyj −
l

∑
j=1

µ̆jy̆j − 〈0, x− z̆〉2 ∈ R+, ∀x ∈ A, yj ∈ Bj(x, v̆j). (13)

Thus, it follows from (12) and (13) that

(ẙ +
l

∑
j=1

µ̆jyj)− (y̆ +
l

∑
j=1

µ̆jy̆j) ∈ R+, ∀ẙ ∈ max
up∈U

Hk(x̆, up), yj ∈ Bj(x̆, v̆j),

which contradicts (10). Therefore, for any feasible solution x to problem (URSOP) and any
feasible solution (z, µj, ui, vj) to problem (DSOPW), we have

max
up∈U

Hk(x, up) ⊀u
R+

Hk(z, ui) +
l

∑
j=1

(µjBj)(z, vj), i = 1, . . . , m, k = 1, . . . , q.
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We complete the proof.

Theorem 7 (Robust strong duality). Let Hk : M×Rm → 2R, k = 1, . . . , q and Bj : M×Rl →
2R, j = 1, . . . , l be set-valued maps, x̆ ∈ M, y̆ ∈ ⋂

ui∈U Hk(x̆, ui) and y̆j ∈
⋂

vj∈Vj
Bj(x̆, vj).

Assume that the following conditions hold:

(i) Hk is bounded on M×U for any k;
(ii) max

ui∈U
Hk(x, ui) exists for all x ∈ M and k;

(iii) for any i, j and k, Hk(x̆, ui)− y̆ ⊆ R+ and Bj(x̆, vj)− y̆j ⊆ R+;
(iv) for any j and k, Hk and Bj are second-order strong subdifferentiable at (x̆, y̆) and (x̆, y̆j),

respectively;
(v) x̆ ∈ A is a �l

R+
-robust efficient solution to problem (USOP).

Then for any i, j, k, there exist ŭi ∈ U, v̆j ∈ Vj and µ̆j ∈ R+ such that (x̆, µ̆j, ŭi, v̆j) is a
≺u
R+

-robust efficient solution to problem (DSOPW).

Proof. Let x̆ be a�l
R+

-robust efficient solution to problem (USOP). By Theorem 5, we know
that for any i, j and k, there exist ŭi ∈ U, v̆j ∈ Vj and µ̆j ∈ R+ such that

0 ∈ ∂2
s Hk(·, ŭi)(x̆, y̆) +

l

∑
j=1

µ̆j∂
2
s Bj(·, v̆j)(x̆, y̆j),

(µ̆jBj)(x̆, v̆j) = {0} (14)

and

Hk(x̆, ŭi) = max
ui∈U

Hk(x̆, ui), k = 1, 2, . . . , q. (15)

Therefore, (x̆, µ̆j, ŭi, v̆j) is a feasible solution to problem (DSOPW). Then, for any feasible
solution (z, µj, ui, vj) to problem (DSOPW), it follows from (14) and (15) and Theorem 6 that

Hk(x̆, ŭi)−
l

∑
j=1

(µ̆jBj)(x̆, v̆j) =max
ui∈U

Hk(x̆, ui)

*Hk(z, ui) +
l

∑
j=1

(µjBj)(z, vj)− intR+.

Hence, (x̆, µ̆j, ŭi, v̆j) is a ≺u
R+

-robust efficient solution to problem (DSOPW). This proof is
complete.

Remark 5. Theorems 10 and 11 generalize Theorems 4.1 and 4.2 in [32] from a scalar case to a
set-valued one, respectively.

6. Conclusions

In this paper, we introduce a new second-order strong subdifferential of the set-
valued maps and the robust efficient solutions for set approach of the uncertain set-valued
optimization problems, and then a necessary and sufficient optimality condition is derived
for set-based robust efficient solutions of the uncertain set-valued optimization problem.
Finally, we demonstrate robust strong duality and robust weak duality for the dual problem
of the uncertain set-valued optimization problem. Our discussion makes it desirable to
investigate optimality conditions and the duality theorem of a set-valued optimization
problem, and the main results can be applied to risk management.
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27. İnceoğlu, G. Some properties of second-order weak subdifferentials. Turkish J. Math. 2021, 45, 955–960.
28. Suneja, S.K.; Khurana, S.; Bhatia, M. Optimality and duality in vector optimization involving generalized type I functions over

cones. J. Glob. Optim. 2011, 49, 23–35. [CrossRef]
29. Chuong, T.D.; Kim, D.S. Nonsmooth semi-infinite multiobjective optimization problems. J. Optim. Theory Appl. 2014, 160, 748–762.

[CrossRef]
30. Chuong, T.D. Optimality and duality for robust multiobjective optimization problems. Nonlinear Anal. 2016, 134, 127–143.

[CrossRef]
31. Rockafellar, R.T. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 1970.

http://doi.org/10.1016/j.orl.2008.09.010
http://dx.doi.org/10.1007/s101070100286
http://dx.doi.org/10.1137/100791841
http://dx.doi.org/10.1016/j.na.2011.04.006
http://dx.doi.org/10.1007/s10957-014-0564-0
http://dx.doi.org/10.1137/080743494
http://dx.doi.org/10.1007/s11579-011-0047-0
http://dx.doi.org/10.1016/j.jmva.2018.04.004
http://dx.doi.org/10.1007/BF01457934
http://dx.doi.org/10.1016/S0362-546X(97)00213-7
http://dx.doi.org/10.1080/02331934.2020.1836636
http://dx.doi.org/10.1007/s10957-022-02075-2
http://www.ncbi.nlm.nih.gov/pubmed/36106136
http://dx.doi.org/10.1080/0233193031000120051
http://dx.doi.org/10.1016/0022-247X(92)90237-8
http://dx.doi.org/10.1007/s10957-007-9173-5
http://dx.doi.org/10.1080/02331939208843803
http://dx.doi.org/10.1007/s001860050021
http://dx.doi.org/10.7146/math.scand.a-11911
http://dx.doi.org/10.1007/s001860400397
http://dx.doi.org/10.1016/j.na.2009.04.065
http://dx.doi.org/10.1007/s10957-010-9787-x
http://dx.doi.org/10.1007/s10957-013-0469-3
http://dx.doi.org/10.1007/s10898-009-9522-z
http://dx.doi.org/10.1007/s10957-013-0314-8
http://dx.doi.org/10.1016/j.na.2016.01.002


Axioms 2022, 11, 648 16 of 16

32. Sun, X.K.; Peng, Z.Y.; Guo, X.L. Some characterizations of robust optimal solutions for uncertain convex optimization problems.
Optim. Lett. 2016, 10, 1463–1478. [CrossRef]

33. Som, K.; Vetrivel, V. On robustness for set-valued optimization problems. J. Glob. Optim. 2021, 79, 905–925. [CrossRef]
34. Kuroiwa, D. The natural criteria in set-valued optimization research on nonlinear analysis and convex analysis. Surikaisekik-

Enkyusho Kokyuroku 1998, 1031, 85–90.
35. Chiriaev, A.; Walster, G.W. Interval Arithmetic Specification; Technical Report. 1998. Available online: http://www.mscs.mu.

edu/globsol/walster-papers.html (accessed on 2 October 2022).

http://dx.doi.org/10.1007/s11590-015-0946-8
http://dx.doi.org/10.1007/s10898-020-00959-z
http://www.mscs.mu.edu/ globsol/walster-papers.html
http://www.mscs.mu.edu/ globsol/walster-papers.html

	Introduction
	Preliminaries and Definitions
	Properties of a Second-Order Strong Subdifferential of Set-Valued Maps
	The Optimality Condition for the Uncertain Set-Valued Optimization Problem
	Wolfe Type Robust Duality of Problem (USOP)
	Conclusions
	References

