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1. Introduction

It is known that the averaging method is one of the most effective tools for solving
various optimal control problems for differential equations [1–4] as well as for differen-
tial inclusions with fast-oscillating coefficients [5–7]. Of the many published papers in
which similar problems are considered (e.g., minimax, robust, and adaptive control), we
mention [8–10]. The Krasnoselski–Krein theorem [2] and its multi-valued analogue [11]
play an essential role for the investigation of the above-mentioned problems. When dealing
with multi-valued mappings, one faces specific problems; nevertheless, the application
of the well-developed averaging method for the optimal control problems is possible in
this case.

In the present paper, we consider the optimal control problem of a non-linear system
of differential inclusions with fast-oscillating parameters. First, we prove the existence
of solutions for the initial perturbed optimal control problem and the corresponding
problem with averaged coefficients. Then, we prove that the optimal control of the problem
with averaging coefficients can be considered as “approximately” optimal for the initial
perturbed one.

2. Statement of the Problem

Let us consider an optimal control problem as follows.
ẋ(t) ∈ X( t

ε , x(t), u(t)), t ∈ (0, T),
x(0) = x0, u(·) ∈ U,

J[x, u] =
T∫
0

L(t, x(t), u(t))dt + Φ(x(T))→ inf .
(1)

Here ε > 0 is a small parameter, x : [0, T]→ R is an unknown phase variable, u : [0, T]→
Rm is an unknown control function, X : R+ × Rn × Rm → conv(Rn) is a multi-valued
function, and U ⊂ L2(0, T) is a fixed set.
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Assume that uniformly with respect to x for every u ∈ Rm that we have the following:

distH

1
s

s∫
0

X(τ, x, u)dτ, Y(x, u)

→ 0, s→ ∞, (2)

where the limits for multi-valued functions are considered in the sense of [12,13], distH is
the Hausdorff metric, Y : Rn ×Rm → conv(Rn), and the integral of multi-valued function
is considered in the sense of Aumann [14]. We consider the following problem with an
averaged right-hand side.

ẏ(t) ∈ Y(y(t), u(t)),
y(0) = x0, u(·) ∈ U,

J[y, u] =
T∫
0

L(t, y(t), u(t))dt + Φ(y(T))→ inf .
(3)

Under the natural assumptions on X, L, Φ, and U, we will show that problems (1)
and (3) have solutions {xε, uε} and {y, u}, respectively:

Jεn → J, εn → 0,

where Jεn := J[xεn , uεn ], J := J[y, u], and up to a subsequence.

uεn → u in L2(0, T),

xεn → y in C([0, T]).

In what follows, we consider the problem of finding an approximate solution of (1)
by transitions to the problem with averaged coefficients. We note that such transitions can
essentially simplify the problem.

3. Assumptions and Notations

Let Q = {t ≥ 0, x ∈ Rn, u ∈ Rm} and assume that the following assumptions hold.

Assumption 1. Mapping t, x, u 7→ X(t, x, u) is continuous in Hausdorff metric.

Assumption 2. Multi-valued function X(t, x, u) satisfies the growth property: ∃M > 0 such that

||X(t, x, u)||+ ≤ M(1 + ||x||) ∀(t, x, u) ∈ Q,

where ||X(t, x, u)||+ = supξ∈X(t,x,u) ||ξ||, ||ξ|| is the Euclidian norm of ξ ∈ Rn.

Assumption 3. Multi-valued function X(t, x, u) satisfies the Lipschitz condition: ∃λ > 0
such that

distH(X(t, x1, u1), X(t, x2, u2)) ≤ λ(||x1 − x2||+ ||u1 − u2||)

Assumption 4. (x, u) 7→ L(t, x, u) is a continuous mapping, moreover, function t 7→ L(t, x, u)
is measurable ∀x ∈ Rn, u ∈ Rm, and

|L(t, x, u)| ≤ c(t)(1 + ||u||),

where c(·) ∈ L2(0, T) is a given function.

Assumption 5. Φ : Rn → R is a continuous function.

Assumption 6. U ⊂ L2(0, T) is a compact set.
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Remark 1. Under the Assumptions 1–3 for all u ∈ L2(0, T), the Cauchy problem{
ẋ ∈ X

( t
ε , x, u

)
, t ∈ (0, T)

x(0) = x0
(4)

has a solution (e.g., [15]); that is, there exists an absolutely continuous function x : [0, T]→ Rn

satisfying inclusion (4) a.e.

Remark 2. Under condition (2), the multi-valued mapping Y satisfies Assumptions 2 and 3; hence,
∀u ∈ L2(0, T), the Cauchy problem{

ẏ ∈ Y(y, u), t ∈ (0, T)
y(0) = x0

(5)

has a solution.

We will consider the next multi-valued analogue of the Krasnoselsky–Krein theorem.

Theorem 1 ([2,5,11,16]). Suppose the following conditions are fulfilled for the differential inclusion

ẋ ∈ F(t, x, λ), (6)

with multi-valued mapping F(t, x, λ) taking values in conv(Rn) (that is, the subspace from
conv(Rn), which consists of convex sets), defined for 0 ≤ t ≤ T; x ∈ D, D is a bounded do-
main in Rn; λ ∈ Λ, where Λ is a set of values for parameter λ for which λ0 ∈ Λ is the limit point.

(1) Multi-valued mapping F(t, x, λ) is uniformly bounded, continuous on t, uniformly contin-
uous on x with respect to t, and λ: ∀ε > 0∃δ = δ(ε) > 0 : ∀t ∈ [0, T], x ∈ D, x′ ∈ D and λ ∈ Λ;
we have

distH
(

F(t, x′, λ)− F(t, x, λ)
)
< ε

once |x′ − x| < δ.
(2) Multi-valued mapping F(t, x, λ) is integrally continuous on λ at point λ0; that is, for

0 ≤ t1 ≤ t2 ≤ T and for any x ∈ D, we have the following:

distH

 t2∫
t1

F(s, x, λ)ds,
t2∫

t1

F(s, x, λ0)ds

→ 0, λ→ λ0,

where we consider integrals in the sense of Aumann [14].
(3) Solutions x(t, λ0) of the inclusion

ẋ ∈ F(t, x, λ0), (7)

satisfying the condition x(0, λ0) = x0 ∈ D1 ⊂ D are defined for 0 ≤ t ≤ T and belong to domain
D together with some ρ-neighborhood.

Then, for each η > 0, there is a neighborhood U(λ0) of point λ0 such that for λ ∈ U(λ0)
and for an arbitrary solution x(t, λ) of the inclusion (6) defined on 0 ≤ t ≤ T and satisfying
the initial condition x(0, λ) = x0, there exists a solution x(t, λ0) of inclusion (7), and inequality
||x(t, λ)− x(t, λ0)|| < η, 0 ≤ t ≤ T, holds.

Remark 3. The concept of an integral continuity plays a key role in the investigation of the
considered optimal control problem using an averaging method. It is known [17] that (2) is
equivalent to the integral continuity.
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4. Main Results

Theorem 2. Under Assumptions 1–6, problem (1) (resp. the problem (3)) has the solution {xε, uε}
(resp. {y, u}).

Proof. Fix ε > 0 and suppress it in what follows. Under the conditions on L and Φ, the cost
functional in (1) reaches its finite extremum. Now deduce a priory estimate for x(t). Since
x is an absolutely continuous function, then t 7→ ||x(t)|| is absolutely continuous too and

d
dt
||x(t)|| ≤ ||ẋ(t)|| a.e.

Then,

d
dt
||x(t)|| ≤ ||ẋ(t)|| ≤ ||X(t, x, u)||+ ≤ M(1 + ||x||)

and

||x(t)|| ≤ ||x(0)||+
t∫

0

M(1 + ||x||)ds = ||x(0)||+ MT +

t∫
0

M||x||ds

Taking into account Gronwall’s inequality, we have

||x(t)|| ≤ (||x(0)||+ MT)e

t∫
0

Mds
= (||x(0)||+ MT)eMt ≤ (||x(0)||+ MT)eMT (8)

Let {xn, un}n∈N be a minimizing sequence for problem (1) and J(xn, un, ) ≤ J + 1
n .

Due to (8), we have the uniform boundedness of sequence {xn}n∈N on every finite interval
[0, T], i.e., ∃L > 0.

sup
t∈[0,T]

||xn(t)|| ≤ L, t ∈ [0, T]

Moreover,
sup

t∈[0,T]
||ẋn(t)|| ≤ L, t ∈ [0, T] (9)

and

||xn(t2)− xn(t1)|| ≤
t2∫

t1

M(1 + L)ds = M(1 + L)(t2 − t1)

Thus, sequence {xn}n∈N is precompact in C([0, T]). Due to the Arzelà–Ascoli theorem,
xn → x in C([0, T]) up to a subsequence.

From [13] and (9), we deduce that x is absolutely continuous and ẋn → ẋ ∗-weakly as
n→ ∞ in L∞(0, T). Since ∀ε > 0 for a.e. t, there exists n0 such that ∀n ≥ n0

λ(||xn(t)− x(t)||+ ||un(t)− u(t)||) < ε,

Then, by the Assumption 3, we have

ẋn(t) ∈ X
(

t
ε

, xn(t), un(t)
)
⊂ Oε

(
X
(

t
ε

, xn(t), un(t)
))

.

Taking into account the convergence theorem ([18], p. 60) for a.e. t, we have

ẋ(t) ∈ X
(

t
ε

, x(t), u(t)
)

.

By Assumption 6, we obtain convergence un → u, n→ ∞ in L2[0, T] up to a subsequence.
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Now we will show that {x, u} is the solution of (1). Since un(t)→ u(t) and xn(t)→
x(t), n→ ∞ a.e., by Assumption 4, we obtain

L(t, xn(t), un(t))→ L(t, x(t), u(t)) a.e., n→ ∞,

and {L(t, xn, un)} is bounded in L2(0, T). Therefore, by Lemma 1.3 in [19], we have it that
L(t, xn, un)→ L(t, x, u) is weak in L2(0, T) for n→ ∞.

Hence,

T∫
0

L(t, xn(t), un(t))dt→
T∫

0

L(t, x(t), u(t))dt, n→ ∞,

With convergence Φ(xn(T)) → Φ(x(T)), we have lim
n→∞

J[xn, un] = J[x, u] = J; there-

fore, {x, u} is the solution of (1).

Consider the following assumption.

Assumption 7. Suppose that for all u(·) ∈ U, problem (5) has a unique solution.

Theorem 3. Suppose Assumptions 1–6 and (2) hold. Under Assumption 7,

Jεn = J[xεn , uεn ]→ J := J[y, u], as εn → 0,

and up to a subsequence

uεn → u in L2(0, T), εn → 0,
xεn → y in C(0, T), εn → 0,

where {xεn , uεn} is the solution of (1), and {y, u} is the solution of (3).

Proof. (1) First, we prove that if un → û in L2(0, T), xn is the solution of (4) with ε = εn,
u = un; then,

xn → ŷ in C([0, T]), (10)

where ŷ is the solution of (5) with u = û.
Let ŷ be the unique solution of (5) with control u = û. Then,

||xn(t)− ŷ(t)|| ≤ distH

(
t∫

0
X
(

s
εn

, xn(s), un(s)
)

ds,
t∫

0
Y(ŷ(s), û(s))ds

)

≤ distH

(
t∫

0
X
(

s
εn

, xn(s), un(s)
)

ds,
t∫

0
X
(

s
εn

, ŷ(s), û(s)
)

ds

)

+ distH

(
t∫

0
X
(

s
εn

, ŷ(s), û(s)
)

ds,
t∫

0
Y(s, ŷ(s), û(s))ds

)
≤ λ

t∫
0
(||xn(s)− ŷ(s)||+ ||un(s)− û(s)||)ds + In,

where

In = distH

 t∫
0

X
(

s
εn

, ŷ(s), û(s)
)

ds,
t∫

0

Y(ŷ(s), û(s))ds

.

It is known that every function in L2(0, T) can be approximated with continuous
functions in L2-norm, and any continuous function can be approximated by a piecewise
constant function in the continuous norm. Then, for any η > 0, let ˆ̂u ∈ C([0, T]) be such that
the following is the case.
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|| ˆ̂u− û||L2(0,T) ≤
η

3
.

Denote u(t) = ∑N
k=1 αk · χ[tk ,tk+1]

(t) (N depends only on η) such that

sup
t∈[0,T]

|| ˆ̂u(u)− u(t)|| ≤ η

3
,

then

In ≤ λ
t∫

0
|| ˆ̂u− û||ds + λ

t∫
0
|| ˆ̂u− u||ds

+ distH

(
t∫

0
X
(

s
εn

, ŷ(s), u(s)
)

,
t∫

0
Y(ŷ(s), u(s))ds

)
.

Let τi =
T·i
m , i = 0, m and choose an m that is large enough so that ∀k ∈ 1, N at least

one of {τi} belongs to [tk, tk+1). By joining sets {tk} and {τi} and denoting the resulting
set as {ti}N

i=0 with N ≤ N + m, we obtain the following.

|ti+1 − ti| ≤
1
m

, u(t) =
N

∑
i=0

αi · χ[ti ,ti+1]
(t).

Then,
In ≤ λ · T1/2 η

3 + λT · η
3

+∑N
i=0 distH

(
ti+1∫
ti

X
(

s
εn

, ŷ(s), αi

)
,

ti+1∫
ti

X
(

s
εn

, ŷ(ti), αi

))

+∑N
i=0 distH

(
ti+1∫
ti

X
(

s
εn

, ŷ(ti), αi

)
,

ti+1∫
ti

Y(ŷ(ti), αi)

)

+∑N
i=0

ti+1∫
ti

||Y(ŷ(ti), αi)−Y(ŷ(s), αi)||ds

= λT1/2 · η
3 + λT η

3 + I(1)n + I(2)n + I(3)n .

Now, we derive the upper bound for I(1)n :

I(1)n ≤
N

∑
i=0

λ

ti+1∫
ti

||ŷ(s)− ŷ(ti)||ds.

Since

ŷ(s)− ŷ(ti) =

s∫
ti

Y(ŷ(τ), û(τ))dτ

and taking into account the boundedness of ŷ, we have the boundedness of the multi-valued
function, Y, with constant C; therefore, we obtain

||ŷ(s)− ŷ(ti)|| ≤ C|ti+1 − ti| ≤
C
m

.

Finally,

I(1)n ≤ (N + m)
C

m2

Using similar arguments, we derive the same upper bound for I(3)n .
Now, taking into account (2) and Theorem 1, we chose n0 such that ∀n ≥ n0

I(2)n ≤ N · η

3 · N
=

η

3
.
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Therefore,

In ≤ λ · T1/2 η

3
+ λT

η

3
+

2C(N + m)

m2 +
η

3
.

By choosing m such that 2C(N+m)
m2 < η

3 , we obtain In → 0, n → ∞, which proves
convergence (10).

(2) Let εn → 0, n → ∞, and xn := xεn , un := uεn is the optimal process in (1). Then,
up to a subsequence un → u in L2(0, T) and using the result from part (1) of the proof,
we have:

xn → y in C([0, T]),

where {y, u} is the admissible process in (3). Taking into account the convergence

L(t, xn(t), un(t))→ L(t, y(t), u(t)) a.e.

and inequality

|L(t, xn(t), un(t))| ≤ c(t)(1 + ||un(t)||),

where c ∈ L2(0, T) (due to Lemma 1.3 in [19]), we obtain

L(t, xn, un)→ L(t, y, u) weakly in L2(0, T), n→ ∞.

Then, we have the following.

lim
n→∞

J[xn, un] = lim
n→∞

 T∫
0

L(t, xn(t), un(t))dt + Φ(xn(T))

 = J[y, u].

On the other hand, for any admissible pair {xn, u} in (1), we have the following.

J[xn, un] ≤ J(xn, u).

Using the result from part (1) of the proof, we have xn → y in C([0, T]), where {y, u}
is an admissible pair in (3). In addition, we have

J(xn, u)→ J[y, u], n→ ∞.

Therefore,

lim
n→∞

J[xn, un] = J[y, u] ≤ J[y, u]

and we conclude that {y, u} is the optimal process for (3).

We will end this section with an example. Let us consider the following problem.
ẋ(t) ∈ [1− 2 sin2( t

ε · x
)
, 1 + 2 sin2( t

ε · x
)
] · u, t ∈ (0, T),

x(0) = x0, u(·) ∈ [−1, 1],
J[x, u] = x(T)→ inf .

(11)

The corresponding averaged problem is
ẏ(t) = u(t), t ∈ (0, T),
y(0) = x0, u(·) ∈ [−1, 1],
J[y, u] = y(T)→ inf .

(12)
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The assumptions of the Theorems 2 and 3 are fulfilled for problems (11) and (12).
Therefore,

y(T) = x0 +

T∫
0

u(t)dt

and u(t) ≡ −1 is the approximate control.

5. Conclusions and Future Research

We sought to obtain a theoretical result that demonstrates the effectiveness of the
averaging method of finding an approximate solution of the optimal control problem of a
non-linear system of differential inclusions with fast-oscillating parameters. We proved
that the optimal control of the problem with averaging coefficients can be considered as
”approximately” optimal for the initial perturbed system. To demonstrate the effectiveness
of the method, we plan to continue research focusing on the practical applications and
simulation results using particular genetic algorithms.
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