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Abstract: The main goal of this paper is to introduce a new scheme, known as the Aboodh homotopy
integral transform method (AHITM), for the approximate solution of wave problems in multi-
dimensional orders. The Aboodh integral transform (AIT) removes the restriction of variables in
the recurrence relation, whereas the homotopy perturbation method (HPM) derives the successive
iterations using the initial conditions. The convergence analysis is provided to study a wave equation
with multiple dimensions. Some computational applications are considered to show the efficiency of
this scheme. Graphical representation between the approximate and the exact solution predicts the
high rate of convergence of this approach.
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results

MSC: 35L05; 35A22

1. Introduction

In the real world, partial differential equations (PDEs) are used to analyze a wide
range of physical phenomena that occur in different branches of applied sciences, including
fluid dynamics, mathematical biology, quantum physics, chemical kinetics, and linear
optics [1–3]. Various approaches have been introduced to obtain the analytical solutions
of these PDEs. Although the calculations for these strategies are pretty straightforward,
their limitations are predicated on the assumption of small parameters. As a result, many
researchers developed some novel methods to get around these restrictions. Numerous
scientists have studied multiple innovative and unique methods to obtain analytical so-
lutions that are reasonably close to the precise solutions, such as the homotopy analysis
method [4], modified extended tanh method [5], new Kudryashov method [6], Chun-Hui
He’s iteration method [7], the sub-equation method [8], Exp-function method [9], modified
exponential rational method [10], homotopy asymptotic method [11], modified extended
tanh expansion [12], fractal variational iteration transform method [13], residual power
series (RPS) method [14] and Adomian decomposition method [15]. In the past, many
experts and researchers established the application of the homotopy perturbation method
(HPM) [16–18] in various physical problems and showed the performance of this approach
in consistently transforming the challenging issues into a straightforward resolution.
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The wave equation is a partial differential equation for a scalar function that describes
the propagation phenomenon in different areas of engineering, physics, and scientific
applications [19,20]. Wazwaz [21] studied linear and nonlinear problems in bounded and
unbounded domains using the variational iteration method. Ghasemi et al. [22] employed
the homotopy perturbation method to derive the numerical solution of two-dimensional
nonlinear differential equations. Keskin and Oturanc [23] applied the reduced differential
transform method to various wave equations. Ullah et al. [24] proposed the optimal
homotopy asymptotic method to obtain the analytic series solution of wave equations.
Adwan et al. [25] presented the numerical solutions of multi-dimensional wave equations
and showed the accuracy of the proposed techniques. Jleli et al. [26] studied the framework
of the homotopy perturbation transform method for analytic treatment of wave equations.
Mullen and Belytschko [27] provided the finite element scheme for the examination of
two-dimensional wave equations and considered some semi-discretizations. These schemes
have many limitations and assumptions in finding the approximate solutions of the prob-
lems. To overcome these limitations and restrictions of variables, we introduce a new
iterative strategy for the approximate solutions of multi-dimensional wave problems.

The variational iteration method (VIM), Laplace transform and homotopy analysis
method (HAM) have some limitations, such as the VIM involving integration and produc-
ing the constant of integration, the Laplace transform involving the convolution theorem
and the HAM also considering some assumptions. The Aboodh integral transform is very
easy to implement for differential problems. The purpose of this paper is to apply the
AHITM with a combination of the Abdooh integral transform and the HPM for wave
problems of different dimensions. Less computations, fast convergence and significant
results make this scheme unique and different from other approaches in the literature. This
strategy derives a series of solutions with fast convergence and yields an approximate
solution very close to the precise solution. This paper is structured as follows. In Section 2,
we give brief details about the Abdooh integral transform. In Section 3, we present the
formulation of the AHITM for solving multi-dimension problems. We provide the conver-
gence analysis in Section 4. Some computational applications are demonstrated to show
the effectiveness in Section 5, and finally, we discuss the conclusions in Section 6.

2. Preliminary Definitions of AIT

In this section, we describe a few fundamental characteristics and concepts of AIT that
are very helpful in the formulation of this scheme:

Definition 1. If we let ϑ(φ) be a function precise for σ ≥ 0, then

L{ϑ(φ)} = F(s) = θ
∫ ∞

0
ϑ(φ)e−σφdφ, (1)

is called a Laplace transform.

Definition 2. The AIT of a function ϑ(φ) is defined as [28]

A[ϑ(φ)] = R(σ) =
1
σ

∫ ∞

0
ϑ(φ)e−σφdφ. φ ≥ 0, k1 ≤ σ ≤ k2 (2)

where A represents the symbol of AIT, k1 and k2 are constants and σ is the independent variable of
the transformed function φ. Conversely, since R(σ) is the AIT of function ϑ(φ), then

A−1[R(σ)] = ϑ(φ), A−1

is called the inverse AIT.
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Proposition 1. If we let A{ϑ1(φ)} = R1(σ) and A{ϑ2(φ)} = R2(σ), then [29]

A{au1(φ) + bu2(φ)} = aS{ϑ1(φ)}+ bS{ϑ2(φ)},
⇒ A{au1(φ) + bu2(φ)} = aR1(σ) + bR2(σ).

(3)

Proposition 2. If A{ϑ(φ)} = R(σ), then the differential properties are defined as follows [29,30]:

(1) A{ϑ′(φ)} = σR(σ)− ϑ(0)
σ

;

(2) A{ϑ′′(φ)} = σ2R(σ)− ϑ(0)− ϑ′(0)
σ

;

(3) A{ϑm(φ)} = σmR(σ)− ϑ(0)
σ2−m −

ϑ′(0)
σ3−m − · · · −

ϑm−1(0)
σ

.

(4)

3. Formulation of AHITM

In this segment, we formulate the strategy of the AHITM for finding the approximate
solutions of 1D, 2D and 3D wave equation flows. We observe that this strategy is indepen-
dent of integration and any hypotheses during the formulation of this scheme. We consider
a differential problem such that

ϑ′′(ς, φ) = ϑ(ς, φ) + g(ϑ) + g(ς, φ), (5)

with the initial condition

ϑ(ς, 0) = a1, ϑφ(ς, 0) = a2, (6)

where ϑ denotes the function in a region of time φ and g(ϑ) is considered a nonlinear term
with the source term g(ς, φ) of arbitrary constat a. Employing the AIT in Equation (5) yields

A[ϑ′′(ς, φ)] = A[ϑ(ς, φ) + g(ϑ) + g(ς, φ)].

Using the proposition in Equation (4) for the AIT, we obtain

σ2R(σ)− ϑ(ς, 0)− ϑ′(ς, 0)
σ

= A[ϑ(ς, φ) + g(ϑ) + g(ς, φ)].

Hence, R(σ) is evaluated such that

R[σ] =
ϑ(ς, 0)

σ2 +
ϑ′(ς, 0)

σ3 +
1
σ2A[ϑ(ς, φ) + g(ϑ) + g(ς, φ)]. (7)

By using the inverse AIT on Equation (7), we obtain

ϑ(ς, φ) = ϑ(ς, 0) + φϑ′(ς, 0) +A−1
[ 1

σ2A
{

ϑ(ς, φ) + g(ϑ) + g(ς, φ)
}]

,

Using the initial conditions, we obtain

ϑ(ς, φ) = a1 + φa2 +A−1
[ 1

σ2A
{

ϑ(ς, φ) + g(ϑ) + g(ς, φ)
}]

.

Using the proposition in Equation (3), we obtain

ϑ(ς, φ) = a1 + φa2 +A−1
[ 1

σ2A
{

g(ς, φ)
}]

+A−1

[
1
σ2A

[
ϑ(ς, φ) + g(ϑ)

]]
.
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This implies that

ϑ(ς, φ) = G(ς, φ) +A−1

[
1
σ2A

[
ϑ(ς, φ) + g(ϑ)

]]
(8)

where

G(ς, φ) = a1 + φa2 +A−1
[ 1

σ2A
{

g(ς, φ)
}]

.

Equation (8) is called the recurrence relation, which is now suitable for the implemen-
tation of the HPM such that

ϑ(ς, φ) =
∞

∑
i=0

piϑi(ς, φ) = ϑ0 + p1ϑ1 + p2ϑ2 + · · · , (9)

The nonlinear terms g(ϑ) are evaluated by considering the algorithm

g(ϑ) =
∞

∑
i=0

pi Hi(ϑ) = H0 + p1H1 + p2H2 + · · · , (10)

where the Hn polynomials are derived as follows:

Hn(ϑ0 + ϑ1 + · · ·+ ϑn) =
1
n!

∂n

∂pn

(
g
( ∞

∑
i=0

piϑi

))
p=0

, n = 0, 1, 2, · · · (11)

We use Equations (9)–(11) in Equation (8) to compare the identical power of p such
that

p0 : ϑ0(ς, φ) = G(ς, φ),

p1 : ϑ1(ς, φ) = A−1

[
1
σ2A

{
ϑ0(ς, φ) + H0(ϑ)

}]
,

p2 : ϑ2(ς, φ) = A−1

[
1
σ2A

{
ϑ1(ς, φ) + H1(ϑ)

}]
,

p3 : ϑ3(ς, φ) = A−1

[
1
σ2A

{
ϑ2(ς, φ) + H2(ϑ)

}]
,

...

Proceeding with this process yields

ϑ(ς, φ) = ϑ0 + ϑ1 + ϑ2 + · · · =
∞

∑
i=0

ϑi. (12)

Thus, Equation (12) is the approximate result of the differential problem in Equation (5).

4. Convergence Analysis

Statement: Let P and Q be Banach spaces where X : P→ Q is a nonlinear mapping. If the series
produced by HPM is

ϑn(P, ς) = X(ϑn−1(P, ς)) =
n−1

∑
i=0

ϑi(P, ς), n = 1, 2, 3 . . .
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then the following conditions must be true:

(1) ‖ϑn(P, ς)− ϑ(P, ς)‖ ≤ ϕn‖ϑ(P, ς)− ϑ(P, ς)‖;
(2) ϑn(P, ς) is forever in the neighborhood of ϑ(P, x) meaning ϑn(P, ς) ∈ B(ϑ(P, ς), r) =

{ϑ∗(P, ς)/‖ϑ∗(P, ς)− ϑ(P, ς)‖};
(3) limn→∞ ϑn(P, x) = ϑ(P, ς).

Proof.

(1) Consider condition (1) by recognition of n such that ‖ϑ1 − ϑ‖ = ‖T(ϑ0)− ϑ‖, and the
Banach fixed point theorem states that X has a fixed point ϑ (i.e., X(ϑ) = ϑ). Therefore,
we have

‖ϑ1 − ϑ‖ = ‖G(ϑ0)− ϑ‖ = ‖G(ϑ0)− G(ϑ)‖ ≤ ϕ‖ϑ0 − ϑ‖ = ϕ‖ϑ(P, ς)− ϑ‖.

where X is a nonlinear mapping. By considering that ‖ϑn−1 − ϑ‖ ≤ ϕn−1‖ϑ(P, 0)−
ϑ(P, x)‖ is an induction hypothesis, then

‖ϑn − ϑ‖ = ‖G(ϑn−1)− G(ϑ)‖ ≤ ϕ‖ϑn−1 − ϑ‖ ≤ ϕϕn−1‖ϑ(P, ς)− ϑ‖.

(2) Our initial challenge is to demonstrate ϑ(P, ς) ∈ B(ϑ(P, ς), r), which is attained by
replacing m. Thus, for m = 1, ‖ϑ(P, ς) − ϑ(P, ς)‖ = ‖ϑ(P, 0) − ϑ(P, ς)‖ ≤ r with
ϑ(P, 0) as an initial condition. Consider that ‖ϑ(P, x)− ϑ(P, ς)‖ ≤ r for m− 2 is an
induction theory. Thus, we have

‖ϑ(P, ς)− ϑ(P, ς)‖ = ϑm−2(P, ς)− fm(P)
Γ(δ−m + 1)

xδ−m‖

≤ ‖ϑm−1(P, ς)− ϑ(P, ς)‖+
∥∥∥∥ fm(P)

Γ(δ−m + 1)
xδ−m

∥∥∥∥
= r.

Now, ∀ n ≥ 1, using (1), we obtain

‖ϑn − ϑ‖ ≤ ϕn‖ϑ(P, ς)− ϑ‖ ≤ ϕnr ≤ r.

(3) Using condition (2) and limn→∞ ϕn = 0, it follows that limn→∞‖ϑn − ϑ‖ = 0, and
hence

lim
n→∞

ϑn = ϑ,

Thus, ϑ converges.

5. Computational Applications

We illustrate some computational applications to check the validity and authenticity of
the AHITM. We observe that this strategy is extremely convenient to utilize and generates
the series of convergence much easier than other schemes. We also study the physical
behaviors of the these surface solutions. The error distribution is obtained graphically to
show that the results obtained by the AHITM are very close to the precise results.

5.1. Example 1

Suppose a one-dimensional wave equation

∂2ϑ

∂φ2 =
∂2ϑ

∂ς2 − 3ϑ, (13)
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with the initial condition

ϑ(ς, 0) = 0, ϑφ(ς, 0) = 2 cos(ς), (14)

and boundary condition

ϑ(0, φ) = sin(2φ), ϑς(π, φ) = − sin(2φ). (15)

Using the AIT on Equation (13), we obtain R(σ) such that

R[σ] =
ϑ(ς, 0)

σ2 +
ϑ′(ς, 0)

σ3 +
1
σ2A

[∂2ϑ

∂ς2 − 3ϑ
]
.

Using the inverse AIT yields

ϑ(ς, φ) = ϑ(ς, 0) + φϑφ(ς, 0) +A−1
[ 1

σ2A
{∂2ϑ

∂ς2 − 3ϑ
}]

.

Now, we apply the HPM to obtain a relation such that

∞

∑
i=0

piϑi(ς, φ) = 2φ cos(ς) +A−1
[ 1

σ2A
{ ∞

∑
i=0

pi ∂2ϑi
∂ς2 − 3

∞

∑
i=0

piϑ
}]

. (16)

When evaluating similar components of p, we obtain

p0 : ϑ0(ς, φ) = ϑ(ς, 0) = 2φ cos(ς),

p1 : ϑ1(ς, φ) = A−1

[
1
σ2A

{
∂2ϑ0

∂ς2 − 3ϑ0

}]
= − (2φ)3

3!
cos(ς),

p2 : ϑ2(ς, φ) = A−1

[
1
σ2A

{
∂2ϑ1

∂ς2 − 3ϑ1

}]
=

(2φ)5

5!
cos(ς),

p3 : ϑ3(ς, φ) = A−1

[
1
σ2A

{
∂2ϑ2

∂ς2 − 3ϑ2

}]
= − (2φ)7

7!
cos(ς),

p4 : ϑ4(ς, φ) = A−1

[
1
σ2A

{
∂2ϑ3

∂ς2 − 3ϑ3

}]
=

(2φ)9

9!
cos(ς),

....

In a similar way, we can consider the approximate series such that

ϑ(ς, φ) = ϑ0(ς, φ) + ϑ1(ς, φ) + ϑ2(ς, φ) + ϑ3(ς, φ) + ϑ4(ς, φ) + · · · ,

= cos(ς)

(
2φ− (2φ)3

3!
+

(2φ)5

5!
− (2φ)7

7!
+

(2φ)9

9!

)
+ · · · .

(17)

which can approach

ϑ(ς, φ) = cos(ς) sin(2φ). (18)

Figure 1 contains two diagrams: (a) the AHITM results of ϑ(ς, φ) and (b) the exact
results of ϑ(ς, φ) at−2 ≤ ς ≤ 2 and 0 ≤ φ ≤ 0.5 for a 1D wave problem. Figure 2 represents
the graphical error of the 1D wave equation between the approximate and precise solutions
at 0 ≤ ς ≤ 20 with φ = 0.5. Table 1 presents the absolute error between the approximate
solution obtained by the AHITM and the exact solution at ς = 0.5, 1 and 0.25, 0.50, 0.75, 1.
We observe that the current approach demonstrated strong agreement with a precise answer
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to the problem (Section 5.1) only after a few iterations. The rate of convergence shows that
the AHITM is a relatable approach for ϑ(ς, φ). This means that we can effectively model
any surface in accordance with the desired physical processes appearing in science and
engineering.

(a) (b)

Figure 1. Surface solutions of 1D wave equation. (a) Surface plot for approximate results. (b) Surface
plot for precise results.

Exact

Approximate

5 10 15 20
t

-0.5

0.5

ϑ (ϛ, ϕ)

Figure 2. Graphical error between the approximate and precise results of ϑ(ς, φ).

Table 1. Absolute error between the approximate and exact solutions for Example 1.

ς φ Approximate Exact Absolute Error

0.5

0.25 0.420735 0.420735 1 × 10−8

0.50 0.73846 0.73846 1.7 × 10−7

0.75 0.875386 0.875384 2 × 10−6

1.0 0.798027 0.797984 4.3 × 10−5

1.0

0.25 0.259035 0.259035 1 × 10−9

0.5 0.454649 0.454649 1.5 × 10−8

0.75 0.53895 0.538949 2.3 × 10−7

1.0 0.491323 0.491295 2.8 × 10−6

5.2. Example 2

Suppose a two-dimensional wave equation

∂2ϑ

∂φ2 = 2

(
∂2ϑ

∂ς2 +
∂2ϑ

∂ξ2

)
+ 6φ + 2ς + 4ξ, (19)

with the initial condition

ϑ(ς, ξ, 0) = 0, ϑφ(ς, ξ, 0) = 2 sin(ς) sin(ξ), (20)
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and boundary condition

ϑ(0, ξ, φ) = φ3 + 2φ2ξ, ϑς(π, ξ, φ) = φ3 + πφ2 + 2φ2ξ,

ϑ(ς, 0, φ) = φ3 + φ2ς, ϑς(ς, π, φ) = φ3 + 2πφ2 + φ2ς.
(21)

By using the AIT on Equation (19), we obtain R(σ) such that

R[σ] =
6
σ5 +

2ς

σ4 +
4ξ

σ4 +
ϑ(0)
σ2 +

ϑ′(0)
σ3 +

1
σ2A

[
2
(∂2ϑ

∂ς2 +
∂2ϑ

∂ξ2

]
.

Using the inverse AIT yields

ϑ(ς, ξ, φ) = φ3 + ςφ2 + 2ξφ2 + ϑ(ς, 0) + φϑφ(ς, 0) +A−1
[ 1

σ2A
{

2
(∂2ϑ

∂ς2 +
∂2ϑ

∂ξ2

}]
.

Now, we apply the HPM to obtain a relation such that

∞

∑
i=0

piϑi(ς, ξ, φ) = φ3 + ςφ2 + 2ξφ2 + 2φ sin(ς) sin(ξ) +A−1
[ 1

σ2A
{

2
( ∞

∑
i=0

pi ∂2ϑi
∂ς2 +

∞

∑
i=0

pi ∂2ϑi
∂ξ2

)}]
. (22)

By evaluating similar components of p, we obtain

p0 : ϑ0(ς, ξ, φ) = ϑ(ς, 0) = φ3 + ςφ2 + 2ξφ2 + 2φ sin(ς) sin(ξ),

p1 : ϑ1(ς, ξ, φ) = A−1

[
1
σ2A

{
∂2ϑ0

∂ς2 +
∂2ϑ0

∂ξ2

}]
= − (2φ)3

3!
sin(ς) sin(ξ),

p2 : ϑ2(ς, ξ, φ) = A−1

[
1
σ2A

{
∂2ϑ1

∂ς2 +
∂2ϑ1

∂ξ2

}]
=

(2φ)5

5!
sin(ς) sin(ξ),

p3 : ϑ3(ς, ξ, φ) = A−1

[
1
σ2A

{
∂2ϑ2

∂ς2 +
∂2ϑ2

∂ξ2

}]
= − (2φ)7

7!
sin(ς) sin(ξ),

p4 : ϑ4(ς, ξ, φ) = A−1

[
1
σ2A

{
∂2ϑ3

∂ς2 +
∂2ϑ3

∂ξ2

}]
=

(2φ)9

9!
sin(ς) sin(ξ),

....

In a similar way, we can consider the approximate series such that

ϑ(ς, ξ, φ) = ϑ0(ς, ξ, φ) + ϑ1(ς, ξ, φ) + ϑ2(ς, ξ, φ) + ϑ3(ς, ξ, φ) + ϑ4(ς, ξ, φ) + · · · ,

= φ3 + ςφ2 + 2ξφ2 + sin(ς) sin(ξ)

(
2φ− (2φ)3

3!
+

(2φ)5

5!
− (2φ)7

7!
+

(2φ)9

9!

)
+ · · · .

(23)

which can approach

ϑ(ς, ξ, φ) = φ3 + ςφ2 + 2ξφ2 + sin(ς) sin(ξ) sin(2φ). (24)

Figure 3 contains two diagrams: (a) the AHITM results of ϑ(ς, ξ, φ) and (b) the exact
results of ϑ(ς, ξ, φ) at −1 ≤ ς ≤ 1 and 0 ≤ φ ≤ 0.1 with ξ = 0.5 for the 2D wave
problem. Figure 4 represents the graphical error of the 2D wave equation between the
approximate and precise solutions at 0 ≤ ς ≤ 20 with ξ = 0.01 and φ = 0.01. Table 2
presents the absolute error between the approximate solution obtained by the AHITM and
the exact solution at ς = 0.5, 1 and 0.25, 0.50, 0.75, 1, where ξ = 0.5. We observe that the
current approach demonstrated strong agreement with the precise answer to the problem
(Section 5.2) only after a few iterations. The rate of convergence shows that the AHITM is a
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reliable approach for ϑ(ς, ξ, φ). This means that we can effectively model any surface in
accordance with the desired physical processes appearing in nature.

(a) (b)

Figure 3. Surface solutions of 2D wave equation. (a) Surface plot for approximate results. (b) Surface
plot for precise results.

Exact

Approximate

5 10 15 20
t

0.0005

0.0010

0.0015

0.0020

ϑ (ϛ, ξ, ϕ)

Figure 4. Graphical error between the approximate and precise results of ϑ(ς, ξ, φ).

Table 2. Absolute error between the approximate and exact solutions for Example 2.

ς φ Approximate Exact Absolute Error

0.5

0.25 0.365286 0.365286 1 × 10−7

0.50 1.08947 1.08947 1 × 10−7

0.75 2.23054 2.23054 1.5 × 10−6

1.0 3.86685 3.86683 2 × 10−5

1.0

0.25 0.542593 0.542593 1 × 10−8

0.5 1.47082 1.47082 1.2 × 10−7

0.75 2.81568 2.81567 2.3 × 10−6

1.0 4.64388 4.64385 3 × 10−5

5.3. Example 3

Consider the three-dimensional wave problem

∂2ϑ

∂φ2 =
ς2

18
∂2ϑ

∂ς2 +
ξ2

18
∂2ϑ

∂ξ2 +
η2

18
∂2ϑ

∂η2 − ϑ, (25)

with the initial condition

ϑ(ς, ξ, η, 0) = 0, ϑφ(ς, ξ, η, 0) = ς4ξ4η4, (26)
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and boundary condition

ϑ(0, ξ, η, φ) = 0, ϑ(1, ξ, η, φ) = ξ4η4 sinh(φ),

ϑ(ς, 0, η, φ) = 0, ϑ(ς, 1, η, φ) = ς4η4 sinh(φ),

ϑ(ς, ξ, 0, φ) = 0, ϑ(ς, ξ, 1, φ) = ς4ξ4 sinh(φ).

(27)

By using the AIT in Equation (25), we obtain R(σ) such that

R[σ] =
ϑ(ς, 0)

σ2 +
ϑ′(ς, 0)

σ3 +
1
σ2A

[ ς2

18
∂2ϑ

∂ς2 +
ξ2

18
∂2ϑ

∂ξ2 +
η2

18
∂2ϑ

∂η2 − ϑ
]
.

Using the inverse AIT yields

ϑ(ς, ξ, η, φ) = ϑ(ς, 0) + φϑφ(ς, 0) +A−1

[
1
σ2A

{
ς2

18
∂2ϑ

∂ς2 +
ξ2

18
∂2ϑ

∂ξ2 +
η2

18
∂2ϑ

∂η2 − ϑ

}]
.

Now, we apply the HPM to obtain a relation such that

∞

∑
i=0

piϑ(ς, ξ, η, φ) = φς4ξ4η4 +A−1

[
1
σ2A

{
∞

∑
i=0

pi ς2

18
∂2ϑi
∂ς2 +

∞

∑
i=0

pi ξ2

18
∂2ϑi
∂ξ2 +

∞

∑
i=0

pi η2

18
∂2ϑi
∂η2 −

∞

∑
i=0

piϑ

}]
. (28)

By evaluating similar components of p, we obtain

p0 : ϑ0(ς, ξ, η, φ) = ϑ(ς, ξ, η, 0) = φς4ξ4η4,

p1 : ϑ1(ς, ξ, φ) = A−1

[
1
σ2A

{
ς2

18
∂2ϑ0

∂ς2 +
ξ2

18
∂2ϑ0

∂ξ2 +
η2

18
∂2ϑ0

∂η2 − ϑ0

}]
=

φ3

3!
ς4ξ4η4,

p2 : ϑ2(ς, ξ, φ) = A−1

[
1
σ2A

{
ς2

18
∂2ϑ1

∂ς2 +
ξ2

18
∂2ϑ1

∂ξ2 +
η2

18
∂2ϑ1

∂η2 − ϑ1

}]
=

φ5

5!
ς4ξ4η4,

p3 : ϑ3(ς, ξ, φ) = A−1

[
1
σ2A

{
ς2

18
∂2ϑ2

∂ς2 +
ξ2

18
∂2ϑ2

∂ξ2 +
η2

18
∂2ϑ2

∂η2 − ϑ2

}]
=

φ7

7!
ς4ξ4η4,

p4 : ϑ4(ς, ξ, φ) = A−1

[
1
σ2A

{
ς2

18
∂2ϑ3

∂ς2 +
ξ2

18
∂2ϑ3

∂ξ2 +
η2

18
∂2ϑ3

∂η2 − ϑ3

}]
=

φ9

9!
ς4ξ4η4,

....

In a similar way, we can consider the approximate series such that

ϑ(ς, ξ, η, φ) = ϑ0(ς, ξ, η, φ) + ϑ1(ς, ξ, η, φ) + ϑ2(ς, ξ, η, φ) + ϑ3(ς, ξ, η, φ) + ϑ4(ς, ξ, η, φ) + · · · ,

= ς4ξ4η4
(

φ +
φ3

3!
+

φ5

5!
+

φ7

7!
+

φ9

9!

)
+ · · · .

(29)

which can approach

ϑ(ς, ξ, η, φ) = ς4ξ4η4 sinh(φ). (30)

Figure 5 contains two diagrams: (a) the AHITM results of ϑ(ς, ξ, η, φ) and (b) the exact
results of ϑ(ς, ξ, η, φ) at −5 ≤ ς ≤ 5 and 0 ≤ φ ≤ 0.05 with ξ = 0.5 and η = 0.5 for the 3D
wave problem. Figure 6 represents the graphical error of the 3D wave equation between the
approximate and precise solutions at 0 ≤ ς ≤ 10 with ς = 0.5, ξ = 0.5 and φ = 0.1. Table 3
presents the absolute error between the approximate solution obtained by the AHITM and
the exact solution at ς = 0.5, 1 and 0.25, 0.50, 0.75, 1, where ξ = 0.5 and η = 0.5. We observe
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that the current approach demonstrated the strong agreement, with a precise answer to the
problem (Section 5.3) only after a few iterations. The rate of convergence shows that the
AHITM is a reliable approach for ϑ(ς, ξ, η, φ). This means that we can effectively model
any surface in accordance with the desired physical processes appearing in nature.

(a) (b)

Figure 5. Surface solutions of 3D wave equation. (a) Surface plot for approximate results. (b) Surface
plot for precise results.

Exact

Approximate

2 4 6 8 10
t

1

2

3

4
ϑ (ϛ, ξ, η, ϕ)

Figure 6. Graphical error between the approximate and precise results of ϑ(ς, ξ, η, φ).

Table 3. Absolute error between the approximate and exact solutions for Example 3.

ς φ Approximate Exact Absolute Error

0.5

0.25 0.0157883 0.0157883 1 × 10−9

0.50 0.0325685 0.0325685 1.2 × 10−9

0.75 0.0513948 0.0513948 1.4 × 10−8

1.0 0.0734501 0.0734501 2 × 10−7

1.0

0.25 0.252612 0.252612 1 × 10−9

0.5 0.521095 0.521095 1.8 × 10−8

0.75 0.822317 0.822317 2.5 × 10−7

1.0 1.1752 1.1752 2.9 × 10−6

6. Conclusions

In this paper, we employed the AHITM for obtaining the approximate solutions to
1D, 2D and 3D wave equations. The main advantage of the AIT is that the recurrence
relation produces the iteration without any assumption of a small parameter. The HPM
helps to produce successive iterations in the recurrence relation. The obtained results show
that this approach is very simple to utilize and derives the series solution in convergence
form. The graphical error of plot distortion shows that the AHITM had the best agreement
between the approximate solution and the exact solution. We encourage readers to extend
this scheme for the numerical solution of a nonlinear coupled system of a fractional order
in science and engineering for their future works.
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