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Abstract: In this work, we analyzed the nonlinear fractional dynamics in the equations of motion of a
bar coupled to support under the effect of a potential described by two equally spaced magnetic poles.
We also considered Bouc–Wen damping in the equations of motion. For external force vibrations,
we considered an equation of a non-ideal motor based on the parameters that related the interaction
between the oscillation and the excitation source. With such considerations, we explored the influence
of the fractional derivative operator parameter on the average power generated by the device and the
dynamic behavior to determine the chaotic and periodic regions. We use Bifurcation Diagrams, Test
0–1, Phase Portrait, and Poincaré Maps. As a conclusion, we established a set of parameters for the
fractional differential equations to obtain higher average powers and the periodicity windows that
corroborate the establishment of energetic orbits for energy harvesting.
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1. Introduction

In recent decades, researchers from the most diverse areas have sought new tech-
nologies to produce clean and sustainable energy from the kinetic movements of the
environment. An example is the capture of energy produced by the movement of the winds.
Another example widely explored by researchers is a structure excited by environmental
vibrations with piezoelectric materials (PZT) to produce clean energy. A kinetic energy
collection device with piezoelectric materials is of the portal frame type. Portal frame
structures are applied in different ways, such as in houses, buildings, bridges, etc. [1–3].

Another widely explored example is the oscillator, as such devices can be applied
both in the micro and the macro scale. One oscillator that has attracted considerable
attention is the Duffing oscillator, as it has a rich dynamic behavior and several modalities
in applications in mechanics, chemistry, and engineering systems. It can be described by a
mathematical model that is based on the transverse deflection of a bent beam. Works such
as Holmes [4] analyzed the chaotic dynamics of a bistable oscillator using a ferromagnetic
beam deviated from the central position with attractive magnetic fields symmetrically
arranged. This oscillator will often include harmonic external force excitation of the type
f (t) = Asin(ωt), where A is the external force amplitude and ω is the frequency applied to
the oscillator. The excitation of the applied force can also be stochastic [5].

This structure has been widely explored both experimentally and theoretically in various
applications. However, the application that has gained prominence is in energy production.
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Many authors couple pieces of piezoceramic material to the oscillator, which, when under-
going deformation, generate electrical charge movement and are collected by an electrical
circuit. Analyses of the nonlinear dynamic behavior of this oscillator have determined the
frequency bands for relatively high output powers because the analysis of the non-linear
effects of the magnetic field guarantees an increase in the efficiency of energy capture under
variable frequency and amplitude, and has a so-called frequency broadband effect [4–8].

However, it is not only the magnetic fields that guarantee this efficiency in the production
of energy. Another highly analyzed factor is the excitation force applied to the oscillator. As
we mentioned earlier, such an excitation force can have several types, of which the most
applied is a sinusoidal force. Several authors have explore the amplitude of the force and
its frequency for the production of energy with the coupled piezoceramic material. In this
line, many works explore the obtaining of control techniques to keep the oscillator in periodic
orbits that optimize the energy production in a more efficient way, since there is the possibility
of a chaotic regime being followed due to the non-linearities of the system.

Another aspect addressed is hysteresis, as it is a common phenomenon in ferromag-
netic materials. Hysteresis modeling has been extensively investigated, however, it remains
a challenging problem due to its non-linearity and memory effect [9–14]. Among the hys-
teresis models, the Bouc–Wen model shows good results to describe the hysteretic behavior
of mechanical vibrations, such as positioning devices such as piezoceramic actuators. The
memory effect of these materials can be analyzed using the fractional derivatives. Ac-
cording to [15–17], the effect of memory on the system can be represented by fractional
derivative operators. In this paper, we applied the Riemann–Liouville operator as its
discretization for numerical analysis is more efficient, and one can consider the memory
effect in a more simplified way. Another aspect is when the fractional derivative operator
is close to 1 there is a loss of memory effect [18,19].

Therefore, our paper explores the application of an external force generated by a
non-ideal motor that causes vibrations in a Duffing oscillator. Such an external force is
based on the time-varying force from an eccentric mass that rotates due to a non-ideal
motor torque [9].

The motivation of this work is to explore with numerical simulations a structure
for energy harvesting in a simple way, containing the piezoceramic material and under
the action of a non-ideal motor. In [20], the same symmetry-breaking device to energy
harvesting was explored, considering the displacement of human walking. These results
have experimental data on the power and frequency applied to the system.

Other works, such as [20–24], experimentally explored the behavior of the system
considering different types of external force (random, harmonic, and under human motion
excitation). This study examines the voltage generated in these structures and thus shows
the dynamic behavior of the basins of attraction. Basins of attraction describe the behavior
of initial conditions that go asymptotically to attractors. The authors also established a
range for the frequency of the applied external force for better energy harvesting in an
experimental way.

Authors such as [25] analyze a model of a higher-order nonlocal deformation gradient
plate developed for vibrations of nanofilms of piezoelectric materials as mass sensors.
The authors explore the behavior of nanoparticles transport to different locations, being
subjected to thermoelectromechanical loads and thus proposing a mathematical model
to describe the phenomenon and possible solutions to the equations. Other works in the
literature [25] explore the behavior of a model, using partial differential equations that
describe the bending of nanotubes for energy harvesting.

However, our work explores the dynamics of the bar with a simple circuit model
containing the piezoceramic material. The electrical circuit equation is well-explored in
Refs. [26–37]. The proposal of a device theoretically is approached in several experiments,
considering an external force with the vibration caused by a sinusoidal function. We
propose analyzing the system considering a non-ideal motor described by an equation that
considers only active interaction between the oscillating system and the excitation source.
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The time-varying frequency applied to the Duffing system in this manuscript depends
on two essential parameters linked to the active interaction between the oscillator and
the oscillation source. Such an external force applied by the non-ideal motor can lead
to a better understanding of energy harvesting. Thus, our manuscript is based on the
equations of motion of a cantilever containing piezoceramic material in which we adopted
Bouc–Wen damping for our fractional numerical analyses. This work is entirely theoretical
and numerical.

2. Magneto Piezo Oscillator Device

Piezo oscillator type collectors, composed of a ferromagnetic beam, are a recent
addition to the stable of energy harvesting devices. It consists of a ferromagnetic beam
fixed to a support (See Figure 1). Two magnets are located symmetrically at the base near
the free end. The distance between the magnets determines the stable points.
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Figure 1. Energy Harvesting model subjected to the kinematic excitation fext(t) and magnetic poles
symmetrically arranged. R is load resistance and ϕ is angular displacement.

We consider that the system has two unstable potentials and that the mechanical
system has a double well potential. According to [6,7,18,19], the double well potential
occasionally leads to a higher power generation when the beam displacement moves
between the potential wells.

Piezo ceramic patches were made at the root of beam and thus we obtain a bimorphic
generator, as the piezo ceramic patches are connected to a resistor and a maintenance
output is through the load due to the kinematic excitations caused by the external force, as
shown in Figure 1, being of primary interest for an energy harvest.

3. Mathematical Modeling

For description of the mathematical model, we consider Figure 1 of the previous
section. The double well potential (DWP) is generated by the magnet field potential of
two magnets arranged symmetrically. The DWP allows for near-optimal representative
dynamic analysis and it is described in (1) [6,7,18–23,26–38].

V(x) = − x
4

2
+

x4

8
, (1)

where x is beam displacement. This mathematical model considers the fractional calculation
applied to Bouc–Wen (ΦBW(x)) damping for the hysteresis caused by the piezo ceramic
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material coupled to the Duffing oscillator beam [6–8,18–23,26–39]. The dimensionless
equations is

..
x + 2η

.
x +

∂V(x)
∂x

− χν + ΦBW(x) = fext. (2)

The equation describing the voltage in the electrical circuit is defined by:

.
ν + λν + κ

.
x = 0, (3)

where x is the beam displacement, ν is the dimensionless voltage across the load resistor,
η is damping coeficient of the beam, χ is the coupling term of the piezoelectric system in
electrical equations, κ is the coupled constant of electrical circuit, λ ≈ 1/RC is the reciprocal
of the dimensionless time constant of the electrical circuit, R is load resistance and C is
capacitance of piezoceramic patches material [6–8,18,22].

The mathematical modeling analyzed numerically was systematically explored for
energy harvesting in systems of small dimensions. Our manuscript numerically analyzes
the dimensionless system containing an external force of a non-ideal motor proposed
by [38–45] and containing the dimensionless Bouc–Wen damping.

The non-ideal motor coupled to the device, as shown in Figure 1, assumes that the
non-ideal motor has time-varying frequency from an eccentric mass that rotates due to a
torque actuator, defined as:

dϕ

dt
= ω + a0 cos(b0ωt), (4)

where ω is frequency of external force. The parameters a0 and b0 are defined by the inter-
action between the oscillations and the non-ideal motor oscillation source. We consider a
force external to the system described as follows:

fext = f0 cos(ωt + a0 sin(b0ωt)), (5)

where f0 is the force amplitude of non-ideal motor. The parameters a0 and b0 are defined
by the active interaction between the oscillating system and the excitation source. In
addition, they are considered control parameters. If a0 = 0, then it corresponds to harmonic
excitation [1,9,10]. Note that for a0 = 0 we have no action of the non-ideal motor. Figure 2
depicts the first five of these functions, which aids in understanding the effect of the
nonideal excitation.
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Figure 2. External force behavior for different values for a0 and b0.

We considered the Bouc–Wen damping in the structure, i.e., the system has a hysteresis
process in the beam containing the PZT patches material. The Bouc–Wen damping (ΦBW)
is defined as:

ΦBW(x) = k1a x + (1− a)Dk1z (6)
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.
z = D−1

(
A

.
x− β

∣∣ .
x
∣∣|z|n−1 − γx| .z

∣∣n),

where
.
z is derivative with respect to time, n ≥ 1 and 0 < a <1. This model was originally

developed in the context of mechanical systems. ΦBW is a restoring force with the su-
perposition of a linear component k1 > 0 and a purely hysteretic, D > 0 is the constant
flow displacement and k1 ∈ (0,1) is the post/precedence stiffness ratio. A, β, γ, and n are
parameters of shape and the size of the hysteresis loop [1,13–15,42–44].

Using Equations (1)–(5), we have the equation of motion:

..
x + 2η

.
x− x

2

(
1− x2

)
− χν + k1ax + (1− a)Dk1z = f0 cos(ωt + a0 sin(b0ωt))

.
ν + λν + κ

.
x = 0 (7)

.
z = D−1

(
A

.
x− β

∣∣ .
x
∣∣|z|n−1 − γx| .z

∣∣n)
Rewriting these equations in state space notation:

.
x1 = x2

.
x2 = −2ηx2 +

x1
2

(
1− x2

1

)
+ χx3 − k1ax1 − (1− a)Dk1x4 + f0 cos(ωt + a0 sin(b0ωt)) (8)

.
x3 = −λx3 − κx2

.
x4 = D−1(Ax2 − β|x2||x4|n−1 − γx1|x4|n

)
,

where x1 = x, x2 =
.
x, x3 = ν and x4 = z. When applied, the Riemann–Louville operator (RL) yields:

Dq1 x1 = x2

Dq2 x2 = −2ηx2 +
x1
2

(
1− x2

1

)
+ χx3 − k1ax1 − (1− a)Dk1x4 + f0 cos(ωt + a0 sin(b0ωt)) (9)

Dq3 x3 = −λx3 − κx2

Dq4 x4 = D−1(Ax2 − β|x2||x4|n−1 − γx1|x4|n
)
,

where 0 < qi < 1 and i = 1, 2, 3 and 4. For our numerical analysis, we used the algorithm proposed
by Petras in [29,30] for the discretization of a fractional derivative (Appendix A). By definition, the
Riemman-Liouville (RL) operator is [45–49]:

Dq f (t)=
1

Γ(1− q)
d
dt

∫ t

0

f (τ)
(t− τ)q dτ, (10)

where 0 < q < 1 is RL operator parameter.

4. Numerical Results
The results obtained in this analyses are numerical, due to the non-linearities involved in the process,

and the initial condition adopted for our analyses is x0 = [0.0, 0.0, 0.0, 0.0]. The numerical analyses were
obtained with time of integration of the fractional differential equations t = 105 [s] and transient time
ttrans = 4000 [s] and with an h = 0.01. The parameter is available in Table 1, and the numerical algorithm
for the integration and discretization of the fractional operator was proposed by Petrás [45,46].

Table 1. Parameters used for numerical analysis of fractional differential equations described in
Equation (6). Adapted from [8].

Parameter Values Parameter Values

η 0.01 λ 0.01
k1 0.25 κ 0.5
χ 0.05 A 1.0
D 1.0 β 0.55
ω 1.1 γ 0.45
n 3 f0 0.2
a 0.5
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Here, the analyses for the fractional model consider the parameters of the fractional derivative
operator q1 = 1, q2 = 1, q3 = 1. However, we analyzed the q4 ∈ [0.85, 1.0], which makes the
hysteresis equation Bouc–Wen fractional to represent asymmetry of piezoelectric hysteresis. We also
considered a range for the parameters connected to the external force, that is, a0 ∈ [0, 1] and b0 ∈ [0, 1].
According to [21,50,51]„ the average power (Pavg) was:

Pavg =
1
T

∫ T

t0

λv2dτ (11)

We analyzed the behavior of the average power obtained by Equation (10) in the following
parameter spaces (a0 × q4) and (b0 × q4), that is, the parameters that are linked to the external force
of the system and the parameter of the fractional derivative operator that is related to BW damping.

Figures 2–4 show computational simulations to obtain the Pavg considering the parameters of
Table 1 to observe the behavior of the parameter related to non-ideal motor rotation and the parameter
of the fractional derivative. The values a0 close to zero with b0 = 0.5 and values of q4 close to 0.85
have a low average power value (Figure 2a). However, for values of b0 with values between 0 and 1
and q4 close to 0.85, there is a decrease in average power with a0 = 0.5.
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Figure 3a shows the behavior of Pavg for the parameter space of (a0 × q4) and Figure 3b shows
Pavg for the parameter space (b0 × q4). In both figures, dark red represents the minimum power and
yellow represents the maximum power. We can determine the regions where the power Pavg is at
the maximum value or minimum values for the parameters a0 and b0 related to the parameter q4,
referring to the Bouc–Wen damping.

As we can see in Figures 3 and 4, there is the appearance of minimum and maximum Pavg
regions with the variation of the parameters (a0, b0, and q4), and changes in the behavior in the
hysteresis of the piezoceramic materials caused by the system of Equation (8) reaches orbits with
larger beam displacement amplitudes. This larger displacement causes vibrations in the piezoceramic
material, allowing for a higher average power, considering the parameters adopted (See Table 1).
Another aspect associated with the piezoceramic material is defined by [40–53], which establishes
that changes observed in the hysteresis curves can characterize hard-type piezoceramic materials,
which have a piezoelectric constant with low values, or soft-type piezoceramic materials with high
piezoelectric constants.

However, an analysis considering the motor parameters is not ideal, considering some values
of q4. For values of q4 = 0.8586 and q4 = 0.9495, we can observe the results in Figure 4a,b obtained
by numerical simulations using the algorithm described in Appendix A and Equations (8) and (10),
where it can be seen that there is a maximum of Pavg with maximum values close to a0 = 0.5 and
values above b0 = 0.5 (Figure 3a). For the case of q4= 0.9495, we will have a minimum region for the
values of a a0 = 1.0 and b0 = 1.0, as seen in Figure 3b.
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Figure 4. Pavg behavior. (a) a0 ∈ [0, 1]× b0 ∈ [0, 1] with q4 = 0.8586 and (b) a0 ∈ [0, 1]× b0 ∈ [0, 1]
with q4 = 0.9495.

However, as we observed a significant change in the Pavg behavior, as shown in the Figure 4a,b,
we analyzed the behavior of the a0 × b0 parameter space for q4 = 0.8586 and q4 = 0.9495 and
Figure 4a,b show the q4 = 0.9999 and q4 = 1.0.

However, for values of q4→1.0 there is a larger region for Pavg values, as we can see in Figure 5a,b.
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We observed a significant change in the power of the system with the change in the exponent
of the fractional derivative, because, for the application of the fractional operator in the system of
Equation (7) the non-linearity of hysteresis depends on the rate and asymmetry of the piezoelectric
actuators. According to [52,53], it states that the model with the classic Bouc–Wen damping is only
efficient for the description of symmetric and rate independent hysteresis, and the model containing
the fractional operator is dedicated to characterizing the asymmetric and rate-dependent behavior
hysteresis. Therefore, we analyzed the dynamic behavior on the fractional parameter of the operator
applied in this damping.

For the fractional dynamical analysis, we used the parameters described in Table 1, with the
values of a0 = 0.2 and b0 = 0.5. Figures 5a and 6a represent the bifurcation diagram for the system
described by the Equation (6), however, with the scanning of the parameters q4 of the fractional
RL operator. However, the periodic ranges in the structure are observed, that is, for the values of
q4 in approximately in the intervals [0.85, 0.8911], [0.9272, 0.9439], [0.945, 0.9459], [0.9538,0.9548],
[0.9606,0.9619], and [0.9801, 0.9833] has periodic behavior for displacement (x1) and velocity (x2).
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Figure 6. (a) Bifurcation diagram for displacement x1 and (b) Kc of displacement (x1).

Thus, we used the 0–1 test, which consisted of statistically estimating the parameter Kc, consid-
ering the time series described by the integration of the system of fractional differential equations. For
a better description of the 0–1 test see Refs. [54–56]. Thus, if Kc is close to 0, the system has a periodic
behavior, however, if Kc is close to 1 the behavior will be chaotic. The parameter Kc confirms these
intervals obtained from the bifurcation diagrams. For the other intervals, the behavior was chaotic
according to the bifurcation diagrams and the Kc. In Figure 5a we show the bifurcation diagram
of displacement x1 and Figure 6b shows (Kc) referring to the x1 is displacement of cantiliver. This
diagram makes it possible to observe the dynamic behavior of the displacement of the bar containing
the piezoceramic patches, thus observing the intervals in which the system has a periodic and chaotic
regime when considering the parameter of the fractional derivative operator.

Figure 7a shows the bifurcation diagram of displacement x1 and Figure 6b shows (Kc), referring to
x2 being the velocity of cantiliver. Analogously, the bifurcation diagram considering the speed of the
beam containing the piezoceramic patches, in this way, observes the intervals in which the system has a
periodic and chaotic regime when considering the parameter of the fractional derivative operator.
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Figure 7. (a) Bifurcation diagram for velocity x2 and (b) Kc of velocity x2.

Figure 8a,b represent the phase portraits for values of q4 = 0.8586 and q4 = 0.9495, which
lie in the periodic and chaotic regions as detected in Figures 6 and 7. The black line describes the
phase portrait and the red dots the Poincaré map (which describes an estimate of the chaotic attractor
defined by the system of fractional dynamic equations).
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Figure 9a,b show the behavior of the phase portraits (black line) and Poincaré maps (red dots),
for the values from q4 = 0.9999 and q4 = 1.0, respectively.
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Figure 9. Representation of (x1 × x2) systems of the Equation (8), the black line is the portrait phase
and the red dot is the Poincaré Map. (a) q4 = 0.9999 and (b) q4 = 1.0.

Figure 10a–d represent the behavior of the hysteresis curves of Equation (8) considering
(a) q4 = 0.8586 and (b) q4 = 0.9495, (c) q4 = 0.9999, and (d) q4 = 1.0.
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Figure 10. Representation of (x1 × x4) is displacement x of the beam and x4 represents z for the
Bouc–Wen damping. The hysteresis curves of the Equation (8). (a) q4 = 0.8586 and (b) q4 = 0.9495 ,
(c) q4 = 0.9999 and (d) q4 = 1.0 .
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5. Conclusions
Our work analyzed the behavior of the fractional model with an external force described in

Equation (2) and the fractional BW damping. We established the dependance of the power generated
by the system based on the parameters of the external force a0 and b0 according to the order of the RL
derivative operator (q4). We show that in the limit q4 → 1.0, the system tends to the high-power region.

Furthermore, we also indicate the regions with low and medium power. Namely, we observe
the changes in the power of system with the fractional parameter, and this is because the trajectories
of the systems are influenced by the parameter. Therefore, we observed some values of q4 = 0.8486,
0.9495, 0.9999, and 1.0 with the parameters of the external force a0 and b0, and we observed that the
power goes through the significant changes in its regions. In the next step, we analyzed the behavior
of the fractional system dynamics based on q4 for the values of a0 = 0.2 and b0 = 0.5. Therefore, we
noted that values of q4 in the intervals q4 and in the intervals [0.85, 0.8911], [0.9272, 0.9439], [0.945,
0.9459], [0.9538,0.9548], [0.9606,0.9619], and [0.9801, 0.9833] have periodic behavior for displacement
(x1) and velocity (x2). Thus, we used Kc to confirm these intervals obtained from the bifurcation
diagrams. For other intervals, the behavior of the equations of motion was chaotic. The intervals
were confirmed with the 0–1 Test and with the phase maps and the Poincaré maps with values of q4
pertaining to those intervals.

We attributed the fractional Bouc–Wen hysterical damping and observed that it dissipates
mechanical energy in the oscillator that cannot be harvested. On the other hand, it flatters the
resonance of the oscillator (mechanical resonator) by amplifying the frequency bandwidth effect. It
can additionally influence the resonance curve, causing its frequency-dependent deformation which
can be useful for energy capture. However, to talk more about practical aspects, more systematic
studies should be done with frequency sweeps. The Bouc–Wen fractional hysterical damping enriches
the dynamics by changing the way it dissipates mechanical energy in the oscillator. On one hand, it
flatters the resonance of the oscillator (mechanical resonator) by amplifying the frequency bandwidth
effect. On the other hand, it can influence the resonance curve, causing its frequency-dependent
deformation, which is useful for energy capture. The fractional Bouc–Wen damping changed the beam
vibration and, therefore, the displacements in the piezoceramic material, allowing a higher average
power, which establishes that the changes observed in the fractional hysteresis can characterize the
piezoelectricity of the material.
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Appendix A

The numerical calculus for the fractional derivative operator the fractional derivative operator
assumes that the fact that for a wide class of functions the three definitions—Grunwald Letnikov,
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Riemman-Liouville, and Caputo—are equivalent if f(a) = 0. The relation for the explicit numerical
approximation of q-th derivative at the points kh, (k = 1, 2, . . . ) has the following form:

k− lm
h

Dq
tk

f (t) ≈ h−q
k

∑
j=0

(−1)j
(

q
j

)
f
(

tk−j

)
= h−q

k

∑
j=0

c(q)j f
(

tk−j

)

where lm is the memory length, tk = kh, h is the time step for the calculation and c(q)j (j = 0, 1, 2, . . . , k)

are binomial coefficients. For the calculation of c(q)j the following expressions are considered:

c(q)0 = 1

c(q)j =

(
1− 1 + q

j

)
c(q)j−1

The Binomial coefficients can be expressed using the gamma function. We will describe how
to express the previous equation in the form of gamma functions, however, in the discretization of
our work, there is no use. Therefore, if we consider f(t) ≤M, an estimate for the memory length lm,
providing the required accuracy ε, is easily established:

lm ≥
(

M
ε|Γ(1− q)|

)1/q

Some examples of algorithms are described in [57] to clarify the algorithms used.

References

1. Ribeiro, M.A.; Tusset, A.M.; Lenz, W.B.; Felix, J.L.P.; Litak, G.; Balthazar, J.M. On non-ideal and fractional dynamics of a magneto
piezo elastic oscillator with Bouc-Wen damping to harvesting energy. In DSTA-2021 Conference Books—Abstracts, Proceedings of
the 16th International Conference of Dynamical Systems—Theory and Applications, Łódź, Poland, 6–9 December 2021; Awrejcewicz, J.,
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