
����������
�������

Citation: Hussain, A.; Ali, D.;

Hussain, N. New Estimation Method

of an Error for J Iteration. Axioms

2022, 11, 677. https://doi.org/

10.3390/axioms11120677

Academic Editors: Hans J. Haubold,

Martin Bohner, Roberto B. Corcino,

Sunil Dutt Purohit and Serkan Araci

Received: 10 November 2021

Accepted: 23 December 2021

Published: 28 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

New Estimation Method of an Error for J Iteration
Aftab Hussain 1,* , Danish Ali 2 and Nawab Hussain 1

1 Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, Facutly of Natural Science, Khawaja Fareed University of Engineering and

Technology, Rahim Yar Khan 64100, Pakistan
* Correspondence: aniassuirathka@kau.edu.sa
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1. Introduction

Fixed point theory combines analysis, topology, and geometry in a unique way. Fixed
point technology in particular applies to biology, chemistry, economics, gaming, and
physics. Once the existence of a fixed point of a mapping has been established, determining
the value of that fixed point is a difficult task, which is why we employ iteration procedures
to do so. Iterative algorithms are utilized for the computation of approximate solutions
of stationary and evolutionary problems associated with differential equations. A lot of
iterative processes have been established, and it is difficult to cover each one. A famous
Banach’s contraction theorem uses Picard’s iterative procedure to approach a fixed point.
Other notable iterative methods can be found in references [1–14]. Fastest convergent
methodes can be seen in references [15–25]. Also for errors, stability and Data dependency
of different iteration proess can be seen in references [26–28].

In an iteration process, “rate of convergence”, “stability”, and “error” all play im-
portant roles. According to Rhoades [4], the Mann iterative model converges faster than
the Ishikawa iterative procedure for decreasing functions, whereas the Ishikawa iteration
method is preferable for increasing functions. In addition, it appears that the Mann iteration
process is unaffected by the starting prediction. Liu [2] first proposed the Mann iteration
procedure with errors in 1995. One of the authors, Xu [6], recently pointed out that Liu’s
definition, which is based on the convergence of error terms, is incompatible with random-
ness because error terms occur at random. As a result, Xu created new types of random
error Mann and Ishikawa iterative processes. Agarwal [3] demonstrated results for con-
traction mappings, where the Agarwal iteration process converges at the same rate as the
Picard iteration process and quicker than the Mann iteration process. For quasi-contractive
operators in Banach spaces, Chugh [7] defined that the CR iteration process is equivalent
to and faster than the Picard, Mann, Ishikawa, Agarwal, Noor, and SP iterative processes.
The authors in [5] demonstrated that for the class of contraction mappings, the CR iterative
process converges faster than the S∗ iterative process. The authors showed in [18] that
for the class of Suzuki generalized nonexpansive mappings, the Thakur iteration process
converges quicker than the Picard, Mann, Ishikawa, Agarwal, Noor, and Abbas iteration
processes. Abbas [1] offers numerical examples to illustrate that their iterative process
is more quickly convergent than existing iterative processes for non-expansive mapping.
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In [19], the study shows that the M∗ iterative method has superior convergence than the
iterative procedures in [1]. In [20], another iteration technique, M, is proposed, and its
convergence approach was better than to those of Agarwal and [1]. In [11], a new iterative
algorithm, known as the K iterative algorithm, was introduced, demonstrating that it is
faster than the previous iterative techniques in achieving convergence. The study also
demonstrated that their method is T-stable. In [17], the authors devised a novel iterative
process termed “K∗” and demonstrated the convergence rate and stability of their iterative
method. Recently, in [12], a new iterative scheme, namely, the “J” iterative algorithm, was
developed. They have proved the convergence rate and stability for their iteration process.

The following question arises: Is the direct error estimate of the iterative process in [12]
bounded and controllable?

The error of the “J” iteration algorithm is estimated in this article, and it is shown that
this estimation for the iteration process in [12] is also bounded and controlled. Furthermore,
as shown in [4], certain iterative processes converge to increase function while others
converge to decrease function. The initial value selection affects the convergence of these
iterative processes. For any initial value, we present a numerical example to support the
analytical finding and to demonstrate that the J iteration process has a higher convergence
rate than the other iteration methods mentioned above.

2. Preliminaries

Definition 1 ([15]). If for each ε ∈ (0,2] ∃δ > 0 s.t for r,s ∈ X having ‖r‖ ≤ 1 and ‖s‖ ≤
1, ‖r− s‖ > ε⇒ ‖ r+s

2 ‖ ≤ δ, then X is called uniformly convex.

Definition 2 ([17]). Let {un}∞
n=0 be a random sequence in M. The iteration technique rn+1 =

f (F, rn) is said to be F-stable if it converges to a fixed point p. Consider for εn = ‖tn + 1− f (F :
un)‖, n ∈ N,⇒ limn→∞ε = 0 if limn→∞un = p.

Definition 3 ([10]). Consider F and F̃ : X → X are contraction map. If for some ε > 0, then F̃ is
an approximate contraction for F. We have ‖Fx− F̃x‖ ≤ ε for all x ∈ X.

Definition 4 ([10]). Let {rn}∞
n=0 and {sn}∞

n=0 be two different fixed point I.M that approach to
unique fixed point p and ‖rn − p‖ ≤ jn and ‖sn − p‖ ≤ kn, for all n ≥ 0. If the sequence {jn}∞

n=0

and {kn}∞
n=0 approaches to j and k, respectively, and limn→∞

‖jn−j‖
‖kn−k‖ = 0, then {rn}∞

n=0 approaches
faster than {sn}∞

n=0 to p.

3. Estimation of an Error for J Scheme

We will suppose all through this section that (X, |. |) is a real-valued Banach space
that can be selected randomly. S is a subspace of X, which is closed as well as convex,
also let a mapping F: S→ S, which is nonexpensive, and {αn}∞

n=0 and {βn}∞
n=0 ∈ [0 1] are

parameter sequences that satisfy specific control constraints.
We primarily wish to assess the J iterative method’s error estimates in X, defined

in [12]. 
x0 ∈ C

zn = F((1− βn)xn + βnFxn)
yn = F((1− αn)zn + αnFzn)

xn+1 = F(yn)

(1)

Many researchers have come close to achieving this goal in a roundabout way. A few
publications in the literature have recently surfaced in terms of their direct computations
(estimation). As direct error estimation in [15,16,28]. In reference [9], the authors have cal-
culated direct error estimation for the iteration process defined in [28]. We have established
an approach for the direct estimate of the J iteration error in terms of accumulation in this
article. It should be emphasized that this method’s direct error calculations are significantly
more complex than the iteration process as in [26,27].
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Define the errors of Fxn, Fyn, and Fzn by:

pn = Fxn − Fxn, qn = Fyn − Fyn, rn = Fzn − Fzn (2)

for all n ∈ N, where Fxn, Fyn, and Fzn are the exact values of Fxn, Fyn, and Fzn, respectively,
that is, Fxn, Fyn, and Fzn are approximate values of Fxn, Fyn, and Fzn, respectively. The
theory of errors implies that {pn}∞

n=0, {qn}∞
n=0, and {rn}∞

n=0 are bounded. Set:

M = max{Mp, Mq, Mr} (3)

where Mp = supn∈N ‖pn‖, Mq = supn∈N ‖qn‖ and Mr = supn∈N ‖rn‖ are the absolute
error boundaries of {Fxn}∞

n=0, {Fyn}∞
n=0, and {Fzn}∞

n=0, respectively, and (1) has accumu-
lated errors as a result of pn, qn, and rn, hence we can set:

x0 ∈ C,
zn = F((1− βn)xn + βnFxn),
yn = F((1− αn)zn + αnFzn),

xn+1 = Fyn.

(4)

where xn, yn, and zn are exact values of xn, yn, and zn, respectively. Obviously, each iteration
error will affect the next (n+1) steps. Now, for the initial step in x, y, z, we have:

‖x0‖ = ‖x0‖. (5)

Now for the z term we have:

‖z0 − z0‖ = ‖F((1− β0)x0 + β0Fx0)− F((1− β0)x0 + β0Fx0)‖
= ‖F((1− β0)x0 + β0Fx0)− F((1− β0)x0 + β0Fx0) + F((1− β0)x0

+β0Fx0)− F((1− β0)x0 + β0Fx0)‖
≤ ‖F((1− β0)x0 + β0Fx0)− F((1− β0)x0 + β0Fx0)‖+ ‖F((1− β0)x0

+β0Fx0)− F((1− β0)x0 + β0Fx0)‖
≤ ‖F((1− β0)x0 + β0Fx0)− F((1− β0)x0 + β0Fx0)‖+ ε.

As F is nonexpansive, we have:

‖z0 − z0‖ = ‖((1− β0)x0 + β0Fx0)− ((1− β0)x0 + β0Fx0)‖+ ε

= ‖((1− β0)(x0 − x0) + β0(Fx0 − Fx0)‖+ ε,

from (2) and (5) we have:

‖z0 − z0‖ = β0‖p0‖+ ε. (6)

Now, for the y term, we have:

‖y0 − y0‖ = ‖F((1− α0)z0 + α0Fz0)− F((1− α0)z0 + α0Fz0)‖
= ‖F((1− α0)z0 + α0Fz0)− F((1− α0)z0 + α0Fz0) + F((1− α0)z0

+α0Fz0)− F((1− α0)z0 + α0Fz0)‖
≤ ‖F((1− α0)z0 + α0Fz0)− F((1− α0)z0 + α0Fz0)‖+ ‖F((1− α0)z0

+α0Fz0)− F((1− α0)z0 + α0Fz0)‖
≤ ‖F((1− α0)z0 + α0Fz0)− F((1− α0)z0 + α0Fz0)‖+ ε.

As F is nonexpansive, we have:

‖y0 − y0‖ = ‖((1− α0)z0 + α0Fz0)− ((1− α0)z0 + α0Fz0)‖+ ε

= ‖(1− α0)(z0 − z0) + α0(Fz0 − Fz0)‖+ ε,
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from (2) and (6), we have:

‖y0 − y0‖ = (1− α0)(β0‖p0‖+ ε) + α0‖r0‖+ ε
= (1− α0)β0‖p0‖+ α0‖r0‖+ (1− α0)ε + ε

= (1− α0)β0‖p0‖+ α0‖r0‖+ ε
′
,

hence:
‖y0 − y0‖ = (1− α0)β0‖p0‖+ α0‖r0‖+ ε. (7)

Now, for an error in the first step of x, y, z, we have the following:
Firstly, for x, we have:

‖x1 − x1‖ = ‖Fy0 − Fy0‖
= ‖Fy0 − Fy0 + Fy0 − Fy0‖
≤ ‖Fy0 − Fy0‖+ |Fy0 − Fy0‖
≤ ‖Fy0 − Fy0‖+ ε.

As F is nonexpansive, we have:

‖x1 − x1‖ = ‖y0 − y0‖+ ε,

from (2) and (7), we have:

‖x1 − x1‖ = (1− α0)β0‖p0‖+ α0‖r0‖+ ε + ε

= (1− α0)β0‖p0‖+ α0‖r0‖+ ε
′
,

hence:
‖x1 − x1‖ = (1− α0)β0‖p0‖+ α0‖r0‖+ ε. (8)

Now, for y, we have:

‖y1 − y1‖ = ‖F((1− α1)z1 + α1Fz1)− F((1− α1)z1 + α1Fz1)‖
= ‖F((1− α1)z1 + α1Fz1)− F((1− α1)z1 + α1Fz1) + F((1− α1)z1+

α1Fz1)− F((1− α1)z1 + α1Fz1)‖
≤ ‖F((1− α1)z1 + α1Fz1)− F((1− α1)z1 + α1Fz1)‖+ ‖F((1− α1)z1

+α1Fz1)− F((1− α1)z1 + α1Fz1)‖
≤ ‖F((1− α1)z1 + α1Fz1)− F((1− α1)z1 + α1Fz1)‖+ ε.

As F is nonexpansive, we have:

‖y1 − y1‖ = ‖((1− α1)z1 + α1Fz1)− ((1− α1)z1 + α1Fz1)‖+ ε

= (1− α1)‖z1 − z1‖+ α1‖Fz1 − Fz1‖+ ε,

from (2) and (8), we have:

‖y1 − y1‖ = (1− α1)((1− α1)(1− α0)β0‖p0‖+ (1− β1)α0‖r0‖+ β1‖p1‖+ ε)
+α1‖r1‖+ ε

= α1‖r1‖+ (1− α1)β1‖p1‖+ (1− α1)(1− α1)[(1− α0)β0‖p0‖+ α0‖r0‖]
+(1− α1)ε + ε

= α1‖r1‖+ (1− α1)β1‖p1‖+ (1− α1)(1− α1)[(1− α0)β0‖p0‖+ α0‖r0‖] + ε
′
,

hence:

‖y1 − y1‖ = α1‖r1‖+ (1− α1)β1‖p1‖+ (1− α1)(1− β1)[(1− α0)β0‖p0‖
+α0‖r0‖] + ε.

(9)
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Now, for z we have,

‖z1 − z1‖ = ‖F((1− β1)x1 + β1Fx1)− F((1− β1)x1 + β1Fx1)‖
= ‖F((1− β1)x1 + β1Fx1)− F((1− β1)x1 + β1Fx1) + F((1− β1)x1

+β1Fx1)− F((1− β1)x1 + β1Fx1)‖
≤ ‖F((1− β1)x1 + β1Fx1)− F((1− β1)x1 + β1Fx1)‖+ ‖F((1− β1)x1

+β1Fx1)− F((1− β1)x1 + β1Fx1)
≤ ‖F((1− β1)x1 + β1Fx1)− F((1− β1)x1 + β1Fx1)‖+ ε.

As F is nonexpansive, we have:

‖z1 − z1‖ = ‖((1− β1)x1 + β1Fx1)− ((1− β1)x1 + β1Fx1)‖+ ε

= ‖((1− β1)(x1 − x1) + β1(Fx1 − Fx1)‖+ ε,

from (2) and (9), we have:

‖z1 − z1‖ = (1− β1)((1− α0)β0‖p0‖+ α0‖r0‖+ ε) + β1‖p1‖+ ε
= (1− β1)(1− α0)β0‖p0‖+ (1− β1)α0‖r0‖+ β1‖p1‖+ (1− β1)ε + ε

= (1− β1)(1− α0)β0‖p0‖+ (1− β1)α0‖r0‖+ β1‖p1‖+ ε
′
,

hence:

‖z1 − z1‖ = (1− β1)(1− α0)β0‖p0‖+ (1− β1)α0‖r0‖+ β1‖p1‖+ ε. (10)

Now, for an error in the second step of x, y, z, we have the following:

‖x2 − x2‖ = ‖Fy1 − Fy1‖
= ‖Fy1 − Fy1 + Fy1 − Fy1‖
≤ ‖Fy1 − Fy1‖+ |Fy1 − Fy1‖
≤ ‖Fy1 − Fy1‖+ ε.

As F is nonexpansive, we have:

‖x2 − x2‖ = ‖y1 − y1‖+ ε,

from (2) and (10), we have:

‖x2 − x2‖ = α1‖r1‖+ (1− α1)β1‖p1‖+ (1− α1)(1− β1)[(1− α0)β0‖p0‖
+α0‖r0‖] + ε + ε

= α1‖r1lo‖+ (1− α1)β1‖p1‖+ (1− α1)(1− β1)[(1− α0)β0‖p0‖
+α0‖r0‖] + ε

′
,

hence:

‖x2 − x2‖ = α1‖r1‖+ (1− α1)β1‖p1‖+ (1− α1)(1− β1)[(1− α0)β0‖p0‖
+α0‖r0‖] + ε.

(11)

‖z2 − z2‖ = ‖F((1− β2)x2 + β2Fx2)− F((1− β2)x2 + β2Fx2)‖
= ‖F((1− β2)x2 + β2Fx2)− F((1− β2)x2 + β2Fx2) + F((1− β2)x2

+β2Fx2)− F((1− β2)x2 + β2Fx2)‖
≤ ‖F((1− β2)x2 + β2Fx2)− F((1− β2)x2 + β2Fx2)‖+ ‖F((1− β2)x2
+β2Fx2)− F((1− β2)x2 + β2Fx2)‖
≤ ‖F((1− β2)x2 + β2Fx2)− F((1− β2)x2 + β2Fx2)‖+ ε.

As F is nonexpansive, we have:

‖z2 − z2‖ = ‖((1− β2)x2 + β2Fx2)− ((1− β2)x2 + β2Fx2)‖+ ε

= ‖((1− β2)(x2 − x2) + β2(Fx2 − Fx2)‖+ ε,
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from (2) and (11) we have:

‖z2 − z2‖ = (1− β2)(α1‖r1‖+ (1− α1)β1‖p1‖+ (1− α1)(1− β1)[(1− α0)β0‖p0‖
+α0‖r0‖] + ε) + β2‖p2‖+ ε

= β2‖p2‖+ (1− β2)α1‖r1‖+ (1− β2)(1− α1)β1‖p1‖
+(1− β2)(1− α1)(1− β1)[(1− α0)β0‖p0‖+ α0‖r0‖] + (1− β2)ε + ε

= β2‖p2‖+ (1− β2)α1‖r1‖+ (1− β2)(1− α1)β1‖p1‖
+(1− β2)(1− α1)(1− β1)[(1− α0)β0‖p0‖+ α0‖r0‖] + ε

′
,

hence:
‖z2 − z2‖ = β2‖p2‖+ (1− β2)α1‖r1‖+ (1− β2)(1− α1)β1‖p1‖

+(1− β2)(1− α1)(1− β1)[(1− α0)β0‖p0‖+ α0‖r0‖] + ε.
(12)

‖y2 − y2‖ = ‖F((1− α2)z2 + α2Fz2)− F((1− α2)z2 + α2Fz2)‖
= ‖F((1− α2)z2 + α2Fz2)− F((1− α2)z2 + α2Fz2) + F((1− α2)z2 + α2Fz2)
−F((1− α2)z2 + α2Fz2)‖

≤ ‖F((1− α2)z2 + α2Fz2)− F((1− α2)z2 + α2Fz2)‖+ ‖F((1− α2)z2 + α2Fz2)
−F((1− α2)z2 + α2Fz2)‖

≤ ‖F((1− α2)z2 + α2Fz2)
−F((1− α2)z2 + α2Fz2)‖+ ε.

As F is nonexpansive, we have:

‖y2 − y2‖ = ‖((1− α2)z2 + α2Fz2)− ((1− α2)z2 + α2Fz2)‖+ ε

= ‖(1− α2)(z2 − z2) + α2(Fz2 − Fz2)‖+ ε,

from (2) and (12), we have:

‖y2 − y2‖ = (1− α2)(β2‖p2‖+ (1− β2)α1‖r1‖+ (1− β2)(1− α1)β1‖p1‖
+(1− β2)(1− α1)(1− β1)[(1− α0)β0‖p0‖+ α0‖r0‖] + ε) + α2‖r2‖+ ε

= α2‖r2‖+ (1− α2)β2‖p2‖+ (1− α2)(1− β2)α1‖r1‖
+(1− α2)(1− β2)(1− α1)β1‖p1‖+ (1− α2)(1− β2)(1− α1)(1− β1)
[(1− α0)β0‖p0‖+ α0‖r0‖] + (1− α2)ε + ε

= α2‖r2‖+ (1− α2)β2‖p2‖
+(1− α2)(1− β2)α1‖r1‖+ (1− α2)(1− β2)(1− α1)β1‖p1‖
+(1− α2)(1− β2)(1− α1)(1− β1)[(1− α0)β0‖p0‖+ α0‖r0‖] + ε

′
,

hence:

‖y2 − y2‖ = α2‖r2‖+ (1− α2)β2‖p2‖+ (1− α2)(1− β2)α1‖r1‖
+(1− α2)(1− β2)(1− α1)β1‖p1‖+ (1− α2)(1− β2)(1− α1)(1− β1)
[(1− α0)β0‖p0‖+ α0‖r0‖] + ε.

(13)

Now, we calculate an error in third step of x, y, z as follows:

‖x3 − x3‖ = ‖Fy2 − Fy2‖
= ‖Fy2 − Fy2 + Fy2 − Fy2‖
≤ ‖Fy2 − Fy2‖+ |Fy2 − Fy2‖
≤ ‖Fy2 − Fy2‖+ ε.

As F is nonexpansive, we have:

‖x3 − x3‖ = ‖y2 − y2‖+ ε,
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from (2) and (13), we have:

‖x3 − x3‖ = α2‖r2‖+ (1− α2)β2‖p2‖+ (1− α2)(1− β2)α1‖r1‖+ (1− α2)(1− β2)
(1− α1)β1‖p1‖

+(1− α2)(1− β2)(1− α1)(1− β1)[(1− α0)β0‖p0‖+ α0‖r0‖] + ε + ε
= α2‖r2‖+ (1− α2)β2‖p2‖+ (1− α2)(1− β2)α1‖r1‖+ (1− α2)(1− β2)

(1− α1)β1‖p1‖
+(1− α2)(1− β2)(1− α1)(1− β1)[(1− α0)β0‖p0‖+ α0‖r0‖] + ε

′
,

hence:

‖x3 − x3‖ = α2‖r2‖+ (1− α2)β2‖p2‖+ (1− α2)(1− β2)α1‖r1‖+ (1− α2)
(1− β2)(1− α1)β1‖p1‖+ (1− α2)(1− β2)(1− α1)(1− β1)
[(1− α0)β0‖p0‖+ α0‖r0‖] + ε.

(14)

‖z3 − z3‖ = ‖F((1− β3)x3 + β3Fx3)− F((1− β3)x3 + β3Fx3)‖
= ‖F((1− β3)x3 + β3Fx3)− F((1− β3)x3 + β3Fx3) + F((1− β3)x3 + β3Fx3)
−F((1− β3)x3 + β3Fx3)‖

≤ ‖F((1− β3)x3 + β3Fx3)− F((1− β3)x3 + β3Fx3)‖+ ‖F((1− β3)x3
+β3Fx3)− F((1− β3)x3 + β3Fx3)‖

≤ ‖F((1− β3)x3 + β3Fx3)− F((1− β3)x3 + β3Fx3)‖+ ε.

As F is nonexpansive, we have:

‖z3 − z3‖ = ‖((1− β3)x3 + β3Fx3)− ((1− β3)x3 + β3Fx3)‖+ ε

= ‖((1− β3)(x3 − x3) + β3(Fx3 − Fx3)‖+ ε.

Now, by using (2) and (14), we have:

‖z3 − z3‖ = (1− β3)(α2‖r2‖+ (1− α2)β2‖p2‖+ (1− α2)(1− β2)α1‖r1‖+ (1− α2)
(1− β2)(1− α1)β1‖p1‖+ (1− α2)(1− β2)(1− α1)(1− β1)[(1− α0)β0‖p0‖
+α0‖r0‖] + ε) + β3‖p3‖+ ε

= β3‖p3‖+ (1− β3)α2‖r2‖+ (1− β3)(1− α2)β2‖p2‖+ (1− β3)(1− α2)
(1− β2)α1‖r1‖+ (1− β3)(1− α2)(1− β2)(1− α1)β1‖p1‖
+(1− β3)(1− α2)(1− β2)(1− α1)(1− β1)[(1− α0)β0‖p0‖+ α0‖r0‖]
+(1− β3)ε + ε

= β3‖p3‖+ (1− β3)α2‖r2‖+ (1− β3)(1− α2)β2‖p2‖+ (1− β3)(1− α2)
(1− β2)α1‖r1‖+ (1− β3)(1− α2)(1− β2)(1− α1)β1‖p1‖
+(1− β3)(1− α2)(1− β2)(1− α1)(1− β1)[(1− α0)β0‖p0‖+ α0‖r0‖] + ε

′
,

hence:

‖z3 − z3‖ = β3‖p3‖+ (1− β3)α2‖r2‖+ (1− β3)(1− α2)β2‖p2‖+ (1− β3)
(1− α2)(1− β2)α1‖r1‖+ (1− β3)(1− α2)(1− β2)(1− α1)β1‖p1‖
+(1− β3)(1− α2)(1− β2)(1− α1)(1− β1)[(1− α0)β0‖p0‖
+α0‖r0‖] + ε.

(15)

‖y3 − y3‖ = ‖F((1− α3)z3 + α3Fz3)− F((1− α3)z3 + α3Fz3)‖
= ‖F((1− α3)z3 + α3Fz3)− F((1− α3)z3 + α3Fz3) + F((1− α3)z3 + α3Fz3)
−F((1− α3)z3 + α3Fz3)‖

≤ ‖F((1− α3)z3 + α3Fz3)− F((1− α3)z3 + α3Fz3)‖+ ‖F((1− α3)z3 + α3Fz3)
−F((1− α3)z3 + α3Fz3)‖

≤ ‖F((1− α3)z3 + α3Fz3)− F((1− α3)z3 + α3Fz3)‖+ ε.

As F is nonexpansive, we have:

‖y3 − y3‖ = ‖((1− α3)z3 + α3Fz3)− ((1− α3)z3 + α3Fz3)‖+ ε

= ‖(1− α3)(z3 − z3) + α3(Fz3 − Fz3)‖+ ε,
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from (2) and (15), we have:

‖y3 − y3‖ = (1− α3)(β3‖p3‖+ (1− β3)α2‖r2‖+ (1− β3)(1− α2)β2‖p2‖
+(1− β3)(1− α2)(1− β2)α1‖r1‖+ (1− β3)(1− α2)(1− β2)(1− α1)β1‖p1‖
+(1− β3)(1− α2)(1− β2)(1− α1)(1− β1)[(1− α0)β0‖p0‖+ α0‖r0‖] + ε)
+α3‖r3‖+ ε

= α3‖r3‖+ (1− α3)β3‖p3‖+ (1− α3)(1− β3)α2‖r2‖+ (1− α3)(1− β3)
(1− α2)β2‖p2‖+ (1− α3)(1− β3)(1− α2)(1− β2)α1‖r1‖+ (1− α3)(1− β3)
(1− α2)(1− β2)(1− α1)β1‖p1‖+ (1− α3)(1− β3)(1− α2)(1− β2)(1− α1)
(1− β1)[(1− α0)β0‖p0‖+ α0‖r0‖] + (1− α3)ε + ε

= α3‖r3‖+ (1− α3)β3‖p3‖+ (1− α3)(1− β3)α2‖r2‖+ (1− α3)(1− β3)
(1− α2)β2‖p2‖+ (1− α3)(1− β3)(1− α2)(1− β2)α1‖r1‖+ (1− α3)(1− β3)
(1− α2)(1− β2)(1− α1)β1‖p1‖+ (1− α3)(1− β3)(1− α2)(1− β2)(1− α1)

(1− β1)[(1− α0)β0‖p0‖+ α0‖r0‖] + ε
′
,

hence:

‖y3 − y3‖ = α3‖r3‖+ (1− α3)β3‖p3‖+ (1− α3)(1− β3)α2‖r2‖+ (1− α3)
(1− β3)(1− α2)β2‖p2‖+ (1− α3)(1− β3)(1− α2)(1− β2)α1‖r1‖
+(1− α3)(1− β3)(1− α2)(1− β2)(1− α1)β1‖p1‖+ (1− α3)(1− β3)
(1− α2)(1− β2)(1− α1)(1− β1)[(1− α0)β0‖p0‖+ α0‖r0‖] + ε.

(16)

Repeating the above process, we have:

‖xn+1 − xn + 1‖ = ∑n
k=0[(1− αk)βk‖pk‖+ αk‖rk‖][∏n

i=k+1(1− αi)(1− βi)] + ε. (17)

‖yn − yn‖ = αn‖rn‖+ (1− αn)βn‖pn‖+ (1− αn)(1− βn)×∑n
k=0[(1− αk)

βk‖pk‖+ αk‖rk‖][∏n
i=k+1(1− αi)(1− βi)] + ε

= αn‖rn‖+ (1− αn)βn‖pn‖+ (1− αn)(1− βn)‖xn − xn‖+ ε.
(18)

‖zn − zn‖ = βn‖pn‖+ (1− βn)×∑n
k=0[(1− αk)βk‖pk‖+ αk‖rk‖][∏n

i=k+1(1− αi)
(1− βi)] + ε

= βn‖pn‖+ (1− βn)‖xn − xn‖+ ε.
(19)

Define:

E(1)
n := ‖xn+1 − xn + 1‖ = ∑n

k=0[(1− αk)βk‖pk‖+ αk‖rk‖][∏n
i=k+1(1− αi)

(1− βi)] + ε.
(20)

E(2)
n := ‖yn − yn‖ = αn‖rn‖+ (1− αn)βn‖pn‖+ (1− αn)(1− βn)E(1)

n−1 + ε. (21)

E(3)
n := ‖zn − zn‖ = βn‖pn‖+ (1− βn)E(1)

n−1 + ε. (22)

We discovered that in the J iterative scheme, the error grew to (n + 1) iterations, defined
as E(1)

n , E(2)
n and E(3)

n .
Next we present the following outcomes.

Theorem 1. Let S, F, M, E(1)
n , E(2)

n , and E(3)
n be as defined above and ε be a positive fixed real

number:

(i) If ∑∞
i=0 αi = +∞ or ∑∞

i=0 βi = +∞, then the errors estimation of (1) is bounded and cannot
exceed the number N;

(ii) If ∑∞
i=0[(1− αi)βi + αi] < +∞, limn→∞ αn = 0 and limn→∞ βn = 0, then random errors

of (1) are controllable.
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Proof. (i) It is well known that ∑∞
i=0 βi = +∞ implies ∏∞

i=0(1− βi) = 0, by (Remark 2.1
of [18]). By using this fact and the above inequalities, we have:

‖E(1)
n ‖ = ‖[(1− α0)β0 p0 + α0r0]∏n

i=1(1− αi)(1− βi) + [(1− α1)β1 p1
+α1r1]∏n

i=2(1− αi)(1− βi) + ... + (1− αn)βn pn + αnrn + ε‖,
≤ ‖[(1− α0)β0 p0 + α0r0]∏n

i=1(1− αi)(1− βi)‖+ ‖[(1− α1)β1 p1 + α1r1]

∏n
i=2(1− αi)(1− βi)‖+ ... + ‖(1− αn)βn pn + αnrn‖+ ε,

≤ [(1− α0)β0‖p0‖+ α0‖r0‖]∏n
i=1(1− αi)(1− βi) + [(1− α1)β1‖p1‖

+α1‖r1‖]∏n
i=2(1− αi)(1− βi) + ... + (1− αn)βn‖pn‖+ αn‖rn‖+ ε,

which implies:

‖E(1)
n ‖ ≤ M{∏n

i=0(1− αi)(1− βi)
[(1− α0)β0 + α0]∏n

i=1(1− αi)(1− βi)
[(1− α1)β1 + α1]∏n

i=2(1− αi)(1− βi)
+... + (1− αn)βn + αn
−∏n

i=0(1− αi)(1− βi)}+ ε,
= M[1−∏n

i=0(1− αi)(1− βi)] + ε,
= M[1−∏n

i=0(1− αi)∏n
i=0(1− βi)] + ε,

≤ M[1−∏∞
i=0(1− αi)∏∞

i=0(1− βi)] + ε = M + ε = N.

(23)

‖E(2)
n ‖ = ‖αnrn + (1− αn)βn pn + (1− αn)(1− βn)E(1)

n−1 + ε‖,
≤ αn‖rn‖+ (1− αn)βn‖pn‖+ (1− αn)(1− βn)‖E(1)

n−1‖+ ε,
≤ M[αn + (1− αn)βn + (1− αn)(1− βn)] + ε = M + ε = N.

(24)

‖E(3)
n ‖ = ‖βn pn + (1− βn)E(1)

n−1 + ε‖,
≤ βn‖pn‖+ (1− βn)‖E(1)

n−1‖+ ε,
≤ M[βn + (1− βn)] + ε = M + ε = N.

(25)

Hence, we have maxn∈N [‖E
(1)
n ‖, ‖E

(2)
n ‖, ‖E

(3)
n ‖] ≤ N.

Indeed, ∑∞
i=0[(1− αi)βi + αi] < +∞ implies the following:

∏∞
i=0([(1− αi)βi + αi]),

= ∏∞
i=0(1− αi)(1− βi) ∈ (0, 1).

Let 1-∏∞
i=0(1− αi)(1− βi) = l ∈ (0, 1).

We have:

‖E(1)
n ‖ ≤ M[1−

n

∏
i=0

(1− αi)(1− βi)] + ε.

On the other hand, the conditions limn→∞ αn = 0 and limn→∞ βn = 0⇒ limn→∞(αn +
βn − αnβn) = 0⇒ ∃ and n0 ∈ N s.t ∀ n ≥ n0, we have αn + βn − αnβn ≤ l

1−l . Using this
fact, we obtain:

‖E(2)
n ‖ ≤ M[αn + (1− αn)βn + (1− αn)(1− βn)l] + ε,

= M[l + (αn + βn − αnβn)(1− l)] + ε,
≤ M[l + l

1−l (1− l)] + ε,
= 2lM + ε.

Similarly, the condition limn→∞ βn = 0⇒ ∃ and n0 ∈N s.t ∀ n≥ n0, we have βn ≤ l
1−l .

Now, we have:
‖E(3)

n ‖ ≤ βn‖pn‖+ (1− βn)‖E(1)
n−1‖+ ε,

≤ βn M(1− l) + Ml,
≤ l

1−l M(1− l) + Ml,
= 2lM + ε for all n ≥ n0.
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Thus, we conclude that ‖E(1)
n ‖ , ‖E(2)

n ‖ and ‖E(3)
n ‖ can be controlled for suitable choice

of the parameter sequences {αn}∞
n=0 and {βn}∞

n=0 for all n ≥ n0.

Remark 1. Theorem 1 indicates that the direct error estimation for an iterative algorithm defined
in [12] is controllable and bounded, which is the actual aim of our research. The following example
illustrates that not only is the direct error in the iterative algorithm defined in [12] controlled and
bounded, but it is also independent of the initial value selection. The efficiency of the J iteration
approach is represented in both tables and graphs.

Example 1. Let us start by defining a function Q : R → R by Q(x) = (4x + 2)/5. Then, Q is
definitely a contraction mapping. Let αn = 2n/(3n + 1) and βn = 3n/(4n + 1). The iterative
values for x0 = 3.5 are given in Table 1. The convergence graph can be seen in Figure 1. The
effectiveness of the J iteration method is undeniable.

In Table 1, it is shown that the J iterative process is more efficient than other itera-
tive algorithm in terms of approaching a fixed point quickly. Following that, we show
some graphs demonstrating that the J iteration strategy is effective for any initial value.
Figures 1–4, J, Picard-S, and S Iteration process approach 2, which is fixed point of Q, by
utilizing different initial guesses for mapping Q in Example 1.

Table 1. Sequence formed by J, Picard-S, and S Iteration methods, having initial value x0 = 3.5 for
contraction mapping Q of Example 1.

S Picard-S J

x0 3.5 3.5 3.5
x1 3.2 2.96 2.31142
x2 2.9024 2.57754 2.12239
x3 2.66692 2.34146 2.04751
x4 2.48921 2.20038 2.05893
x5 2.35737 2.1171 2.01832
x6 2.26037 2.06825 2.00703
x7 2.18935 2.03971 2.00269
x8 2.13752 2.02307 2.00102
x9 2.09977 2.01339 2.00039
x10 2.07233 2.00777 2.00014
x11 2.05248 2.00456 2.00005
x12 2.03794 2.00261 2.00002
x13 2.02746 2.00151 2
x14 2.01987 2.00087 2
x15 2.01437 2.00051 2
x16 2.01039 2.00029 2
x17 2.00751 2.00017 2
x18 2.00543 2.0001 2
x19 2.00392 2.00006 2
x20 2.00283 2.00003 2
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Figure 1. J iteration process convergence when the initial value is 3.5.

In this graph, we have compared the rate of convergence of the J iteration process, the
S iteration process, and the Picard-S iteration process, letting 3.5 be the initial value. From
the graph, the efficiency of the J iteration method is clear. Next, we consider 40 to be an
initial value.

Figure 2. J iteration process convergence when the initial value is 40.

We compared the rate of converge of the J iteration process, S iteration process, and
Picard-S iteration process in this graph, using 40 as the beginning value. The efficiency of
the J iteration method is shown in the graph. Next, we will use 0 as a starting point.
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Figure 3. J iteration process convergence when the initial value is 0.

In this graph, we used 0 as the starting value to compare the rate of convergence of
the J iteration process, S iteration process, and Picard-S iteration process. The graph depicts
the efficiency of the J iteration approach. Now, as a starting point, we will choose −1.

Figure 4. J iteration process convergence when the initial value is −1.

To compare the rate of convergence of the J iteration process, S iteration process, and
Picard-S iteration process, we utilized −1 as the starting value in this graph. The efficiency
of the J iteration strategy is depicted in the graph.

All of the graphs above, as well as Table 1, show that the J iteration approach has a
fast convergence rate and is not affected by the initial value selection.
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4. Conclusions

Applying specific criteria on parametric sequences is a typical practice for the iteration
method described in the articles “Data dependence for Ishikawa iteration when dealing
with contractive like operators”, “On estimation and control of errors of the Mann iteration
process”, and “On the rate of convergence of Mann, Ishikawa, Noor and SP iterations
for continuous functions on an arbitrary interval” such as {αn}∞

n=0 and {βn}∞
n=0 and

∑∞
i=0{αn}∞

n=0 = ∞ and ∑∞
i=0{βn}∞

n=0 = ∞ for all n∈ N for broad I.M to acquire the rate
of convergence, stability, and dependency on initial guesses in findings and also estimate
their error directly. In our corresponding results, none of these conditions were employed.
Generalizing this, we proved that the direct error estimation of (1) is controllable as well
as bounded. Consequently, our analysis more precise in terms of all of the preceding
comparisons. Moreover, the graphical analyses of the rate of convergence of the J iteration
for different initial values chosen were above or below the fixed point.
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