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Abstract: Representative points (rep-points) are a set of points that are optimally chosen for repre-
senting a big original data set or a target distribution in terms of a statistical criterion, such as mean
square error and discrepancy. Most of the existing criteria can only assure the representing properties
in the whole variable space. In this paper, a new kernel discrepancy, named power exponential kernel
discrepancy (PEKD), is proposed to measure the representativeness of the point set with respect to
the general multivariate distribution. Different from the commonly used criteria, PEKD can improve
the projection properties of the point set, which is important in high-dimensional circumstances.
Some theoretical results are presented for understanding the new discrepancy better and guiding the
hyperparameter setting. An efficient algorithm for searching rep-points under the PEKD criterion is
presented and its convergence has also been proven. Examples are given to illustrate its potential
applications in the numerical integration, uncertainty propagation, and reduction of Markov Chain
Monte Carlo chains.

Keywords: representative points; kernel discrepancy; parallel successive convex approximation;
projection; uncertainty propagation
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1. Introduction

Rep-points, also called principal points [1] or support points [2], can be viewed as a
data reduction method or statistical simulation technique, and it has been widely applied
in many areas. In the very beginning, many authors studied how to find the optimal
rep-points for representing the univariate or bivariate normal distribution [3,4]. Then
Refs. [1,5] extended the rep-points for the elliptical distributions. [6,7] used the rep-points
as the refined Monte Carlo technique for approximating the integration or expectation.
More applications of rep-points can be found in the uncertainty quantification [2,8,9] and
Bayesian analysis [10–12].

A lot of statistical criteria, such as the mean square error [1,6,13–15], discrepancy [16],
divergence [17], and statistical potential [18,19], are proposed to measure the representative-
ness of the point set with respect to the target distribution. In this paper, we mainly discuss
the kernel discrepancy, which is also known as the maximum mean discrepancy in deep learn-
ing [20] and transfer learning [21]. The property of kernel discrepancy is determined by the
corresponding kernel function. Analytic expressions of kernel discrepancy are available
for particular distributions and particular kernel functions; see [16,22,23]. For obtaining
rep-points from more general distributions, Ref. [24] proposed the kernel herding method
based on some common kernel functions, such as Gaussian and Laplacian kernels, and
they generated rep-points one by one with the greedy stochastic optimization algorithm.
The support points (SP) method proposed by [2] is another kind of rep-points based on the
negative Euclidean distance kernel discrepancy.
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Note that the kernels in kernel herding and support points methods are isotropic,
which means all the variables are considered active and the effects of all orders are equally
important. However, when the dimension of the problem is relatively high, the active
variables are usually sparse in practice. More attention should be paid to the represen-
tativeness of the projection distribution of rep-points. Some generalized L2 discrepancies
proposed by [25,26] can assure the low-dimensional space-filling properties by directly
summing all local projection discrepancies. These discrepancies have concise expressions
by using separable kernels and binomial theorem, but they are limited to the uniform
distribution on the hypercube. Ref. [27] presented the projected support points (PSP) method
by constructing a sparsity-inducing kernel, which assumes a prior on the hyperparameters
of Gaussian kernel. However, compared with the SP method, the algorithm for generating
PSP is computationally expensive since it is based on the block Majorization-Minimization
algorithm framework [28] and includes sampling steps for hyperparameters.

There is an urgent need for an effective kernel discrepancy that encourages the
preservation of low-dimensional representativeness and can be efficiently constructed.
In this paper, the new discrepancy is developed from the power exponential kernel
function [16,29,30], so we call it PEKD. Different from the average kernels in general-
ized L2 discrepancies and the PSP method, we make use of the Lα norm in the power
exponential kernel to regulate the representativeness of rep-points in subspaces of different
projection dimensions. The contribution of this work is threefold. First, some theoretical
analyses about the effect of the hyperparameter α on the low-dimensional structure of
rep-points are presented. In particular, we demonstrate that the rep-points under PEKD just
form a Latin hypercube design for uniform distribution on the hypercube, given a suitable
choice of hyperparameters. Second, we introduce the successive convex approximation
algorithm framework [28] to construct an efficiently parallelized algorithm for generating
rep-points under PEKD, and its convergence has also been proven. Third, we illustrate
the effectiveness of the new method with simulation studies for numerical integration,
uncertainty propagation problems, and a real-world problem for MCMC reduction.

This paper is organized as follows. Section 2 recalls kernel discrepancies in the existing
reference related with rep-points and introduces the proposed PEKD. Section 3 constructs
an algorithm to generate rep-points under PEKD. Section 4 demonstrates the effectiveness
of the new method with several examples. Section 5 concludes with thoughts on further
work. For brevity, all proofs are postponed to the Appendix A.

2. Power Exponential Kernel Discrepancy

In this section, we first briefly introduce the kernel discrepancy [25] and the existing
kernel functions used to generate rep-points. Then, we propose PEKD and analyze its
theoretical properties.

2.1. Kernel Discrepancy

Let X ⊆ Rp, the binary function γ : X × X → R is called a symmetric positive
kernel [16] if it satisfies two properties: (i) symmetric, γ(x, y) = γ(y, x), ∀x, y ∈ X , and
(ii) nonnegative definite, ∀ c1, . . . , cn ∈ R, x1, . . . , xn ∈ X , ∑n

i=1 ∑n
j=1 ciγ(xi, xj)cj ≥ 0.

Definition 1. Let F be a distribution function on X ⊆ Rp, and let FP be the empirical distribution
function of a point set P = {xi}n

i=1 ⊆ X . For a symmetric positive definite kernel γ, the kernel
discrepancy between F and FP is defined as:

D2
γ(F, FP ) : =

∫
X

∫
X

γ(x, y) d[F− FP ](x) d[F− FP ](y)

=
∫
X

∫
X

γ(x, y) dF(x)dF(y)− 2
n

n

∑
i=1

∫
X

γ(xi, y) dF(y) +
1

n2

n

∑
i,j=1

γ(xi, xj).
(1)
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Further, P∗ = {x∗i }n
i=1 is called the rep-points [22] of distribution F, if

D2
γ(F, FP∗) = min

P⊆X
D2

γ(F, FP ). (2)

Lemma 1 (Koksma-Hlawka inequality; [25]). Let γ be a symmetric positive definite kernel on
X , and Hγ be the reproducing kernel Hilbert space for the kernel γ. F and FP are as defined in
Definition 1. The integration error of g ∈ Hγ, defined as:

I(g; F, FP ) :=

∣∣∣∣∣
∫
X

g(x)dF(x)− 1
n

n

∑
i=1

g(xi)

∣∣∣∣∣, (3)

can be uniformly bounded as:

I(g; F, FP ) ≤ ‖g‖Hγ
Dγ(F, FP ). (4)

2.2. Kernels in Existing Rep-Points Methods
2.2.1. Isotropic Kernel

Definition 2. A kernel function γ is isotropic kernel, if it can be expressed as a function of the
Euclidean distance between points, i.e., γ(x, y) = h(‖x− y‖2), where ‖ · ‖2 is the Euclidean norm.

Gaussian kernel and Laplacian kernel, γG(x, y) = exp{−θ‖x− y‖2
2} and γL(x, y) =

exp{−θ‖x− y‖2}, are two well-known isotropic kernels, which are widely used in non-
linear classification and regression problems. Based on these kernels, Ref. [24] generate
rep-points with a point-by-point greedy optimization form. Another popular class of ker-
nels is the distance-induced kernel γs(x, y) = −‖x− y‖s

2 [17,31]. It is conditionally strictly

positive definite if s ∈ (0, 2). In particular, when s = 1 and Y, Y′ i.i.d.∼ F, the corresponding
kernel discrepancy,

D2
γED

(F, FP ) =
2
n

n

∑
i=1

E‖xi − Y‖2 −
1
n2

n

∑
i=1

n

∑
j=1
‖xi − xj‖2 −E‖Y− Y′‖2, (5)

is called the energy distance. Ref. [2] proposed the SP method by optimizing the Monte Carlo
approximation version of (5) based on the difference-of-convex programming technique.

Obviously, the isotropic kernel is invariant to translation and rotation transforma-
tions [29], which means that the distribution characteristics in all directions are
equally important.

2.2.2. Separable Kernel

Definition 3. A kernel function γ defined on X × X is separable kernel [32], if it can be
expressed as the following product form:

γ⊗(x, y) =
p

∏
k=1

γk(xk, yk), for any x, y ∈ X .

The separable kernel function γ⊗ is sensitive when x and y are close in some coordinate.
This attractive property is a useful feature for the generation rep-points having good
representativeness in the projection space [17].

There are two types of kernels including projection metrics, which are the average
form of separable kernels. The first type is the kernel of generalized L2 discrepancy in uni-
form design [16], which can be expressed as γUD(x, y) = ∑u⊆{1:p} γu(xu, yu) = ∏

p
k=1[1 +
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γk(xk, yk)]. There are closed forms of integrals in (1) for those kernels when F is a uniform
distribution in [0, 1]p, the optimization method is usually a discrete random optimization
algorithm based on the Latin hypercube design (or U-type design). The second type is
sparsity-inducing kernel, defined asγθ∼π(x, y) := Eθ∼π [γθ(x, y)], in PSP method [27].
The sparsity-inducing kernel gives a general form for constructing kernels containing sparse
structures. For example, γUD in the uniform design can be obtained by choosing a special
distribution π. Ref. [27] chose a separable kernel, the so-called general Gaussian kernel,
as γθ(x, y), then generated rep-points by sampling θ from π to approximate kernel γθ∼π and
optimizing the corresponding kernel discrepancy with the block Majorization-Minimization
algorithm [28,33].

2.3. Power Exponential Kernel
2.3.1. Definition

Definition 4. The function R(h|θ) = exp{−θ|h|α}, h ∈ R, is said to be a power exponential
correlation function provided θ > 0 and 0 < α ≤ 2. Then, p-dimensional separable power
exponential (PE) kernel has the form

γθ,α(x, y) = exp

{
−

p

∑
k=1

θ|xk − yk|α
}

. (6)

It is obvious that when α = 2, the PE kernel in (6) is the isotropic Gaussian kernel.

2.3.2. Visualization of Kernels

Following the analysis in [27], the contours of six kernels are given in Figure 1. Kernel
γ(x, y) can be regarded as a metric of similarity between points. The larger the value of
γ(x, y), the more similar x and y are.

AB

C

AB

C

AB

C

(a) SP (b) Gaussian or PE (α = 2) (c) PSP (θ ∼ Γ(0.1, 0.01))

AB

C

AB

C

AB

C

(d) PE (α = 0.5) (e) PE (α = 1) (f) PE (α = 1.5)

Figure 1. Contours of different kernels. (a) Negative Euclidean distance kernel in support points (SP)
method; (b) Gaussian kernel; (c) sparsity-inducing kernel in projected support points (PSP) method;
(d–f) power exponential (PE) kernel with α = 0.5, 1, 1.5, respectively. The point A and point B in all
figures have the same coordinates in the second dimension, and ‖xA − xB‖2 = ‖xA − xC‖2.

Consider the points A, B, C in Figure 1, whose positions are denoted by xA, xB, xC,
respectively. On the one hand, points B and C are on the circle centered on point A, i.e.,
‖xA − xB‖2 = ‖xA − xC‖2, which means two pairs of points, denoted by (A,B) and (A,C),
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have the same similarity in the 2-dimensional space. On the other hand, the coordinates
of (A,C) are totally different in all dimensions, while (A,B) has the same coordinates in
the second dimension. Hence, it is more reasonable to assign a larger value to (A,B) in the
kernel, if the similarity of point pairs in both the 1-and 2-dimensional space is considered.
From the contour plots, we can find that the isotropic kernels in Figure 1a,b cannot tell
the difference between the similarity of the two pairs of points, while the other kernels in
Figure 1c–f can do it.

2.3.3. The Influence of Hyperparameters in PE Kernel on Rep-Points

The kernel γ(x, y) determines what characteristics of the distribution F should be
imitated by the point set {xi}n

i=1. In order to capture the low-dimensional structure
of the target distribution, a larger weight should be assigned to the low-dimensional
similarity measure.

Proposition 1. Let B = {z ∈ Rd | ‖z‖2 = 1}, and γθ,α(x, x0) is defined in (6) with α ∈ (0, 2).
Then, {x0 +u/

√
d
∣∣ ui = ±1, i = 1, . . . , d} is the solution set of the following optimization problem

minimize
x∈Rd

γθ,α(x, x0)

subject to x− x0 ∈ B,

and the minimum value is exp{−θd1− α
2 }.

The main idea of this paper is that we use the Lα norm in (6) to control the decay
speed of the kernel function value in different projection dimensions. Without the loss of
generality, let x0 be the origin 0 in the Proposition 1. Denote the k-dimensional (1 ≤ k < d)
coordinate hyperplane by HS = {x ∈ Rd | xj = 0, ∀ j ∈ S}, where S is the subset of
{1, . . . , d} with d− k elements. The point set {u/

√
d
∣∣ ui = ±1, i = 1, . . . , d} contains those

points on the d-dimensional unit sphere that are farthest fromHS and PE kernel assigns the
minimum value at these points. Point C in Figure 1 is one such point when d = 2. According
to the minimum value exp{−θd1− α

2 }, it can be found that both parameters θ and α affect the
variation of the similarity between points and α is directly related to the low-dimensional
structure of the rep-points. When α ∈ (0, 2), the minimum value exp{−θd1− α

2 } decreases
with the increase in projection dimension d from 1 to p. In addition, the smaller the α,
the more attention is paid to low-dimensional distribution similarity measures.

2.3.4. PEKDs with α = 1 and α = 2

According to (1) and (6), the expression of PEKD, denoted by D2
γθ,α

(F, FP ), can be
derived. Here, we consider PEKDs with α = 1 and α = 2, and some interesting conclusions
are as follows.

Theorem 1. Let P = {xi}n
i=1 be the rep-points on the bounded region X = X1 × · · · × Xp under

D2
γθ,1

(F, FP ). Let Fk be the k-th dimension marginal distribution of F and
M = supx,y∈X∑

p
k=1|xk − yk|. If θ = o(1/M), then {xik}n

i=1 is the rep-points of Fk generated by
minimizing (5).

Theorem 1 shows that when α = 1 and θ is sufficiently small, PEKD focuses on the
one-dimensional structure of the rep-points. Restricting F in Theorem 1 to the uniform
distribution on the hypercube, a more intuitive conclusion can be obtained, which is related
to the Latin hypercube design.

Corollary 1. If the target distribution F in Theorem 1 is the uniform distribution on the hypercube
[0, 1]p and θ = o(1/p), then the rep-points {xi}n

i=1 is a central Latin hypercube design.
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A toy example for Corollary 1 is given below.

Example 1. Let F be a uniform distribution on [0, 1]2 and the number of points be n = 10. We
firstly generate rep-points PSP using the SP method. Under the assumption of Corollary 1, we take
PSP as the initial point set and γ10−4,1 as the kernel, and generate new rep-points PPEKD with the
algorithm proposed in Section 3. Figure 2 shows the scatter plot of these two rep-points sets.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2. Scatterplots of rep-points for uniform distribution on [0, 1]2 generated by SP method (s)

and PEKD method (l).

From Figure 2, rep-points (l) based on kernel γ10−4,1 is indeed a central Latin hyper-
cube design, which has great one-dimensional projection. Observing carefully, these cir-
cular points can be observed as the result of moving the triangular points to the center
of the grid while keeping the rank of the triangular points in each dimension unchanged.
This rank-preserving sampling technique is known as Latin hypercube sampling with depen-
dence in [34–36].

Theorem 2. Let F be a distribution function on the bounded region X = X1 × · · · × Xp with
finite means, and M = supx,y∈X∑

p
k=1(xk − yk)

2. If θ = o(1/M) and Y ∼ F, then D2
γθ,2

(F, FP )
can be minimized by point set {xi}n

i=1 whenever 1
n ∑n

i=1 xi = EY.

Theorem 2 means that θ should not be too small in kernel γθ,2, otherwise the resulting
point set would be similar to the target distribution only in the first moment. We found that
the hyperparameter setting θα = 10−4 works well for the numerical examples, given that
the big training data {ym}N

m=1 is scaled to zero mean and unit variance for each variable.
The small α is suitable for cases where important variables are sparse. The precise selection
of parameters requires a consideration of how to incorporate prior information based on
the Bayesian form or sequential identification of important variables. We defer this to
future work.

3. Optimization Algorithm

In this section, we introduce the successive convex approximation [28,37] framework
to construct a parallel optimization algorithm to generate rep-points based on PEKD.
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3.1. Successive Convex Approximation

Consider the following presumably difficult optimization problem: min
x∈X

G(x), where

the feasible set X is convex and G(x) is continuous. The basic idea of successive convex
approximation (SCA) is solving a difficult problem via the sequence of simpler problems

x̂(xt) = arg min
x∈X

G̃(x|xt),

xt+1 =xt + ηt(x̂(xt)− xt),
(7)

where G̃(x|xt) is a surrogate of the original function G(x) and {ηt} is the step size set.

Definition 5 (SCA surrogate function; [28]). A function G̃(x|y) is SCA surrogate function of
G(x) at x = y if it satisfies:

1. G̃(x|y) is continuous and strongly convex about x for all y ∈ X ;
2. G̃(x|y) is differentiable about x and ∇xG̃(x|y)

∣∣
x=y = ∇xG(x)

∣∣
x=y.

Similar to gradient methods, there are three possible choices for the step size: bounded
step size, backtracking line search and diminishing step size. Compared with the other two
methods, the diminishing step size is more convenient in practice, so it is used in this paper.
Two examples of diminishing step size rules are suggested in [28]:

1. ηt+1 = ηt(1− εηt), t = 0, 1, . . . , where η0 < 1/ε and ε ∈ (0, 1);
2. ηt+1 = (ηt + a)/(1 + b

√
t), t = 0, 1, . . . , where 0 < a ≤ b < 1.

3.2. Algorithm for Generating Rep-Points under PEKD
3.2.1. Algorithm Statement

Our optimization problem is to minimize the discrepancy D2
γθ,α

(F, FP ). Since the
closed-form of the objective function is usually not available for the general distribution F,
we optimized the Monte Carlo approximation version of it. Specifically, ignoring the
first term and approximating the second integral with a large sample {ym}N

m=1 from the
distribution F in the second equation of (1); then, the optimization problem becomes

argmin
P⊆X

− 2
nN

n

∑
i=1

N

∑
m=1

exp

{
−

p

∑
k=1

θ|xik − ymk|α
}
+

1
n2

n

∑
i,j=1

exp

{
−

p

∑
k=1

θ|xik − xjk|α
}

. (8)

The objective function in (8) is denoted by G({xi}n
i=1; {ym}N

m=1). We construct an
appropriate surrogate function for G in the following Theorem 3.

Theorem 3 (Closed-form iterations). Let {xi}n
i=1, {x(t)i }

n
i=1, {ym}N

m=1 ⊆ X . Assume

x(t)ik 6= x(t)jk , x(t)ik 6= ymk for all 1 ≤ i, j ≤ n, j 6= i, 1 ≤ m ≤ N and 1 ≤ k ≤ p. Define
the function h as:

G̃({xi}n
i=1; {x(t)i }

n
i=1, {ym}N

m=1)

=
1

nN

n

∑
i=1

N

∑
m=1

exp

{
−

p

∑
k=1

θ|x(t)ik − ymk|α
}(

p

∑
k=1

αθ|x(t)ik − ymk|α−2(xik − ymk)
2

)

− 2
n2

n

∑
i=1

n

∑
j=1
j 6=i

exp

{
−

p

∑
k=1

θ|x(t)ik − x(t)jk |
α

}(
p

∑
k=1

αθ|x(t)ik − x(t)jk |
α−2(x(t)ik − x(t)jk )(xik − x(t)ik )

)
.
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Then, G̃ is a SCA surrogate function of G({xi}n
i=1; {ym}N

m=1) in (8) at {x(t)i }
n
i=1. Moreover,

the global minimizer of h is given by:

xi =Mi

(
{x(t)i }

n
i=1; {ym}N

m=1

)
=

(
N

∑
m=1

γθ,α

(
x(t)i , ym

)
Ωθ

)−1( N

∑
m=1

γθ,α

(
x(t)i ,

ym)Ωθym +
N
n

n

∑
j=1
j 6=i

γθ,α

(
x(t)i , x(t)j

)
q
(

x(t)i , x(t)j

),

(9)

where γθ,α(x, y) = exp
{
−∑

p
k=1 θ|xk − yk|α

}
, Ωθ = diag

{(
|x(t)ik − ymk|α−2

)p

k=1

}
and

q
(

x(t)i , x(t)j

)
=
(
|x(t)ik − x(t)jk |

α−2(x(t)ik − x(t)jk )
)p

k=1
.
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In order to ensure that the assumptions in Theorem 3 are satisfied and the actual
calculations remain numerically stable, we add a small perturbation δ to the absolute value
items in Ωθ and q

(
x(t)i , x(t)j

)
in practice.

On the basic of the SCA algorithm framework, the construction process of rep-points
under PEKD is described in Algorithm 1. If the training sample size N is too large, we
can resample the mini-batch of it at each iteration, such as a mini-batch stochastic gradient
descent in machine learning.

Algorithm 1: Rep-points construction algorithm under PEKD

1 Set step size {ηt} ∈ (0, 1];

2 Initialize t = 0 and points set P (0) = {x(0)i }
n
i=1 with SP method;

3 repeat
4 for i = 1, . . . , n parallelly do
5 x̂i = Mi

(
P (t); {ym}N

m=1

)
with Mi defined in (9);

6 xt+1
i = xt

i + ηt(x̂i − xt
i).

7 end

8 Update P (t+1) = {x(t+1)
i }n

i=1, and t← t + 1;
9 until P (t) converges;

10 return the convergent point set P [∞].

3.2.2. Complexity and Convergence of the Algorithm

As we can observe in Theorem 3, the surrogate function in (9) has a closed-form
minimizer and optimization variables can be updated in parallel. The running time of
Algorithm 1 for one loop iteration is O(dn/PeNp) such as the SP method, where P is the
total number of computation cores available. As for the PSP method, assuming that a
sample {θr}R

r=1 is obtained from π to approximate the sparsity-inducing kernel γθ∼π(x, y),
the one-shot algorithm in [27] takes O(RnNp). When the dimension p rises, R should be
relatively large so that the sparsity-inducing kernel γθ∼π(x, y) can be approximated well.

The following theorem gives a convergence guarantee for Algorithm 1.

Theorem 4 (Convergence of Algorithm 1). Suppose X ⊆ Rp is convex and compact and
assumptions in Theorem 3 hold, then every limit point set of the sequence (P (t))∞

t=1 (at least one
such point set exists) from Algorithm 1 converges to a stationary solution of (8).

4. Applications
4.1. Numerical Simulations

In this section, we compare the performance of the PEKD (α = 1, 1.5, 2) method
with Monte Carlo (MC), inverse randomized quasi Monte Carlo (RQMC), SP and PSP
methods. According to the hyperparameter setting of the PSP method in [27], we generate

θl
i.i.d.∼ Gamma(0.1, 0.01) with small (R = 50, PSPs) and large (R = 1000, PSPl) sample size

and set Γ(θ)
|u| = exp{−|u|}. PEKD and PSP methods take the point set generated by SP

method as a warm start.

4.1.1. Visualization

Example 2. Let F be the 5-dimensional i.i.d. Beta(2, 4) distribution; we generate n = 25 points
with several sampling methods.

Figure 3 shows scattarplots and marginal histograms of the projection of the point sets
on the first two dimensions. It is obvious that the sample generated by PEKD (α = 1.5) has
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better representation in all 1-dimensional marginal distributions and are not clustered such
as in the samples obtained by SP and PSP methods on the 2-dimensional projection.
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Figure 3. Scattarplots and marginal histograms of n = 25 points for 5-dimensional i.i.d Beta(2,4) with
six samplers. Red lines represent the true marginal densities. (a) MC; (b) RQMC; (c) SP; (d) PSPs;
(e) PSPl; (f) PEKD1.5.

We calculate the Kolmogorov-Smirnov (K-S) test statistic between sample and Beta(2, 4)
distribution for each dimension, and average k-dimensional projected energy distance

APEDk =
1

(5
k)

∑
u⊆{1:5}
|u|=k

D2
γED

(Fu, Fu
P ), k = 1, 2, 3, 4, 5,

where u represents the projection dimensions and Fu
P denotes the e.d.f. of {xu

i }
n
i=1. Figure 4

shows the results of two measurements (the smaller the better). PEKD method performs
better on one and two dimensional projections than other methods, while the PSP method
is not stable. In addition, PSP and PEKD methods sometimes perform better than the
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SP method in the full dimensional space; one possible reason is that they start with the
rep-points generated by the SP method, which helps the SP method leave a local minimum.
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PSPl
PEKD1.5

0

Figure 4. Box plots of K-S test statistic and relative average projected energy distance
(setting SP method as a benchmark by calculating sign(APEDk

SP −APEDk
method) log10(|APEDk

SP −
APEDk

method|)).

4.1.2. Numerical Integration

Example 3. Consider the approximation of integral I =
∫
X g(x)dF(x) in [27]. Test three choices

of distribution F: the i.i.d. N (0, 1) and the i.i.d. Exp(1) with dimension p from 5 to 20 and two
well-known integrand functions:

(1) Gaussian peak function (GAPK) : gGAPK(x) = exp
{
−∑

p
l=1 a2

l (xl − ul)
2
}

,

(2) additive Gaussian function (ADD) : gADD(x) = exp
{
−∑

p
l=1 bl xl

}
,

where ul is the marginal mean of Fl . To incorporate low-dim. structure, a fraction q of the p variables
are set as active, with al = bl = 0.25/(qp) for active variables, and 0 otherwise. These functions
are denoted as GPAK[q] and ADD[q].

Some results of the integral estimation error (log | Î − I|) are shown in Figure 5. In
Figure 5a, there is just pq = 1, as an important variable. PSP method with large R obtains
the lower averaged error than the RQMC method at the expense of complicated calculations.
It is interesting that the PEKD method (α < 2) has better performance with almost the same
running time as the SP method. In Figure 5b,c, the number of important variables is small,
and PEKD(α = 1.5) performs best. In Figure 5d, the ratio q is large, and PEKD method with
large α is better. In addition, the errors of RQMC method are not always lower than that of
the SP method, one possible reason is that the inverse transformation method may result in
a loss of the representativeness of low discrepancy sequence.
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Figure 5. Box plots of Log-Error for GAPK and ADD under p dimensional i.i.d. N (0, 1) and Exp(1).
(a) Normal(GAPK[0.2], n = 50, p = 5); (b) Normal(GAPK[0.2], n = 50, p = 20); (c) Exp(ADD[0.1],
n = 100, p = 20); (d) Exp(ADD[0.4], n = 100, p = 20).

4.1.3. Uncertainty Propagation

A computer model is treated as a mathematical function g that takes varying values
of input parameters denoted by a vector x ∈ Rp, and returns output g(x). Uncertainty
propagation methods are used to estimate the distribution of model outputs resulting from
a set of uncertain model outputs. In other words, let X ∼ F denote input uncertainties;
the distribution of g(X) can then be observed as the resulting uncertainty on the
system output.

Example 4. Three test (modified) functions are taken from [38,39]:

(1) g1(x) = 5 + e−
x2

1
2 + e−

x2
2
2 + 2 cos(x1) + 2 sin(x2), where x1, x2

i.i.d.∼ U[−1, 1];

(2) g2(x) = sin(x1) + 7 sin2(x2) + 0.1x4
3 sin(x1), where x1, x2, x3

i.i.d.∼ U[−π, π];
(3) g3(x) = 5 + x1 + 0.5x2 + 0.05x3 + 2 cos(20x1) + 0.2 sin(20x2) + 2 sin(x3),

where xi
i.i.d.∼ U[−1, 1], i = 1, 2, . . . , 6.

We generate n = 60 points with different methods to estimate the output distributions
of three test functions. Figure 6 shows the K-S test statistic values (repeated 100 times)
between the estimated density and the true density for each test function. SP and PEKD2
perform better on g1(x) than other methods, while PSP, PEKD1 and PEKD1.5 are more
suitable for g2(x) and g3(x). Two possible reasons are: (1) the latter two test functions are
more wiggly for each dimension, which means the low-dimensional structure should be
given more attention; (2) g3(x) has many inactive variables, which makes SP and PEKD2
even worse than MC. In addition, the PSP method has a large variance on g3(x), since its
approximate sparsity-inducing kernel is unstable as the dimension increases.



Axioms 2022, 11, 711 13 of 19

 SP PEKD1   PEKD1.5   PEKD2     PSPlR MC RQMC

0.
00

0.
05

0.
10

0.
15

0.
20

K
−S

 te
st

 s
ta

tis
tic

SP PEKD1    PEKD1.5   PEKD2 PSPlR  MC RQMC

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

SP PEKD1    PEKD1.5   PEKD2 PSPlR MC RQMC

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(a) (b) (c)

Figure 6. Box plots of K-S test statistic for three test functions on uncertainty propagation of computer
experiments. The smaller, the better. (a) g1(x); (b) g2(x); (c) g3(x).

4.2. Reduction of MCMC Chain

Markov Chain Monte Carlo (MCMC) is a family of techniques for the sampling
probability distributions, which allows us to make statistical inferences about complex
Bayesian models. If necessary, many practitioners use the thinning method (discard all
but every k-th sample point after) to reduce high autocorrelation in the MCMC chain,
save computer storage space and reduce processing time for computing derived posterior
quantities. However, the thinning method is inefficient in most cases, since the valuable
posterior samples are carelessly thrown away. Greater precision is available by working
with unthinned chains. In practice, the models of interest are often high-dimensional but
the desired posterior quantities involve only a handful of parameters.

Consider the orange tree growth model in [2]. The Orange data records the trunk
circumference measurements {Yi(tj)}5

i=1
7
j=1 of five trees (i) at seven different times (tj),

which can be found in R datesets package. The following hierarchical (multilevel) model
is assumed in their paper:

Yi(tj)
indep.∼ N(ηi(tj), σ2

C), ηi(tj) = φi1/(1 + φi2 exp{φi3tj}); (likelihood)

log φi1
indep.∼ N(µ1, σ2

1 ), log(φi2 + 1)
indep.∼ N(µ2, σ2

2 ),

log(−φi3)
indep.∼ N(µ3, σ2

3 ), σ2
C ∼ Inv-Gamma(0.001, 0.001); (priors)

µk
i.i.d.∼ N(0, 100), σ2

k
i.i.d.∼ Inv-Gamma(0.01, 0.01); (hyperpriors)

i = 1, . . . , 5, j = 1, . . . , 7 and k = 1, 2, 3.

The parameter set of interest is Θ = (φ11, φ12, · · · , φ53, σ2). As suggested in [2],
we generate the chain with 150,000 iterations and the first half of the sample is discarded as
a burn-in based on the R package rstan. Then, the full chain (N = 75,000) is compressed to
a small sample (n = 375) with thinning, SP, PSPs and PEKD(α = 1.5, 2) methods. Compare
these methods on how well they estimate (a) the marginal posterior means and variances
of each parameter, (b) the averaged instantaneous growth rate r(t) = 1

5 ∑5
i=1

∂
∂s ηi(s)

∣∣∣
s=t

at
three future times (t = 1600, 1625, 1650). True posterior quantities are estimated by running
a longer MCMC chain with 600,000 iterations. Table 1 reports the error ratios of the thinning
method over SP, PSPs and PEKD methods in estimating the posterior quantities of interest.
The larger the ratio is, the more accurate the estimation is. From Table 1, compared with the
thinning method, other methods can estimate parameters more accurately. The PEKD1.5
method is stable and performs best for most parameter estimates, while PEKD2 method
performs well only in the estimation of the mean value.
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Table 1. The error ratios of thinning method over SP, PSP and PEKD methods in estimating the
posterior quantities. The larger, the better.

Parameter

Estimations of Quantities with Different Methods

Means Variances

SP PSPs PEKD1.5 PEKD2 SP PSPs PEKD1.5 PEKD2

φi1 21.00 21.43 21.49 21.60 2.72 2.61 4.33 3.21
φi2 8.78 8.74 10.18 9.17 3.79 3.43 4.03 3.30
φi3 7.00 7.33 8.71 7.17 4.27 4.12 5.31 3.63
σ2

C 24.17 27.48 42.25 44.40 5.04 5.68 11.64 5.82
r(1600) 14.00 15.79 26.72 30.27 - - - -
r(1625) 12.85 14.29 24.04 25.16 - - - -
r(1650) 11.90 13.09 21.90 21.61 - - - -

5. Conclusions and Discussion

In this work, a new rep-points criterion named PEKD is introduced. The most attrac-
tive property of PEKD is that the low-dimensional representativeness of rep-points can be
regulated by tuning the hyperparameter α . The smaller the α, the lower the dimensional
representative will be assured primarily. Actually, when α = 1, the rep-points under
the PEKD is an LHD for uniform distribution on [0, 1]p, which means the 1-dimensional
representativeness achieves the best performance. What is more, a parallelized optimiza-
tion algorithm is also constructed for generating the rep-points under the criterion PEKD.
Simulation studies and an example of real data demonstrate that PEKD with small α is
suitable for situations where important variables are sparse and the function fluctuates
greatly, and α = 1.5 is a robust choice in most cases.

As a general distribution similarity measure, PEKD can be used to test independence
and goodness-of-fit [31,40–42]. For the experimental design community, PEKD can be
used as a criterion to construct complex designs, such as space-filling design and sliced
design [16,43–45] in the irregular region. In addition, the algorithm proposed in this paper
would be helpful for data splitting [46] and model-free subsampling [47] problems in the
machine learning community.
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MC Monte Carlo
RQMC randomized quasi Monte Carlo
x scalar variable x
x vector variable x
{xi}n

i=1 point set {x1, . . . , xn}
EX∼F[X] expectation of the random variable X from the distribution F
γED kernel of energy distance
γθ,α power exponential kernel with hyperparameters θ and α

Appendix A

Proof of Proposition 1. Let y = x− x0, then the optimization problem can described as
the following optimization problem:

min
y∈Rd

exp

{
−

d

∑
i=1

θ|yi|α
}

subject to ‖y‖2
2 = 1.

The standard Lagrange multiplier method can be used to solve this problem, which takes
the minimum value exp{−θd1− α

2 } at y ∈ {u/
√

d
∣∣ ui = ±1, i = 1, . . . , d}. Since x = y + x0,

all conclusions can be obtained directly.

Proof of Theorem 1. According to Definition 4,

γθ,1(x, y) = exp

{
−

p

∑
k=1

θ|xk − yk|
}

, θ > 0.

Using the Taylor formula

ez = 1 +
z
1!

+
z2

2!
+ · · ·+ zn

n!
+ o(zn),

then,

exp

{
−

p

∑
k=1

θ|xk − yk|
}

=1− θ
p

∑
k=1
|xk − yk|+

θ2

2!

(
p

∑
k=1
|xk − yk|

)2

−

· · ·+ (−θ)n

n!

(
p

∑
k=1
|xk − yk|

)n

+ o

((
−θ

p

∑
k=1
|xk − yk|

)n)
.

(A1)

Since 0 ≤ θ ∑
p
k=1 |xk − yk| ≤ Mθ = o(1), (A1) can be written as

exp

{
−

p

∑
k=1

θ|xk − yk|
}

= 1− θ
p

∑
k=1
|xk − yk|+ o(θ

p

∑
k=1
|xk − yk|). (A2)
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Because the first term in (A2) is constant, then

Argmin
x1,...,xn∈X

{
D2

γθ,1
(F, FP )

}
⇐⇒ Argmin

x1,...,xn∈X

{
2
n

n

∑
i=1

∫
X

p

∑
k=1
|xik − yk|dF(y)−

1
n2

n

∑
i=1

n

∑
j=1

p

∑
k=1
|xik − xjk|

}
⇐⇒ Argmin

x1k ,...,xnk∈Xk

{
2
n

n

∑
i=1

∫
X
|xik − yk|dFk(yk)−

1
n2

n

∑
i=1

n

∑
j=1
|xik − xjk|

}
, k = 1, . . . , p,⇐⇒ Argmin

x1k ,...,xnk∈Xk

2
n

n

∑
i=1

EYk∼Fk |xik −Yk|−

1
n2

n

∑
i=1

n

∑
j=1
|xik − xjk| −EYk ,Y′k∼Fk

|Yk −Y′k|, k = 1, . . . , p.

(A3)

The last term in (A3) is the rep-points of Fk generated by minimizing (5).

To prove Corollary 1, we require a lemma:

Lemma A1. Let F be the uniform distribution on [0, 1] and let FP be the e.d.f of {xi}n
i=1 ⊆ [0, 1];

then, the energy distance in (5) can expressed as

D2
γED

(F, FP ) =
2
n

n

∑
i=1

(x2
i − xi +

1
2
)− 1

n2

n

∑
i=1

n

∑
j=1
|xi − xj| −

1
3

. (A4)

Proof of the Lemma A1. Let random variables Y, Y′ ∼ U[0, 1], the energy distance kernel
in 1-dimensional is γED(x, y) = −|x− y|. Then,

E|x−Y| =
∫ 1

0
|x− t|dt = x2 − x +

1
2

,

E|Y−Y′| =
∫ 1

0

(
t2 − t +

1
2

)
dt =

1
3

.

According to the Equation (5), the result in (A4) holds.

Proof of Corollary 1. In the light of Theorem 1, M = p and {xik}n
i=1 is the energy distance

rep-points of Fk = U[0, 1], k = 1, . . . , p. Without loss of generality, the subscript k is ignored
below. Take Lemma A1, {xi}n

i=1 minimizes the kernel discrepancy D2
γED

(F, FP ) in (A4).
Next, let x(t) denote the t-th order statistic of the sample {xi}n

i=1, then

D2
γED

(F, FP ) =
2
n

n

∑
i=1

(x2
i − xi +

1
2
)− 1

n2

n

∑
i=1

n

∑
j=1
|xi − xj| −

1
3

=
2
n

n

∑
i=1

x2
i +

2
3
− 1

n2

n

∑
i=1

n

∑
j=1
|xi − xj| −

2
n

n

∑
i=1

xi

=
2
n

n

∑
i=1

x2
(t) +

2
3
− 2

n2

n

∑
t=1

(2t− 1− n)x(t) −
2
n2

n

∑
t=1

nx(t)

=2

(
1
3
+

1
n

n

∑
t=1

x2
(t) −

1
n2

n

∑
t=1

(2t− 1)x(t)

)

=
2
n

n

∑
t=1

(
x(t) −

2t− 1
2n

)2
+

1
6n2

≥ 1
6n2 .
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Therefore, each dimension of rep-points {xi}n
i=1 is a permutation of the n levels, which

are
{

2t−1
2n , t = 1, . . . , n

}
. In other words, the rep-points {xi}n

i=1 is a central Latin hypercube
design.

To prove the Theorem 2, we require the following lemma:

Lemma A2. Let Y, Y′ i.i.d.∼ F and E‖Y‖2
2 < ∞. If kernel in (1) is γs=2(x, y) = −‖x − y‖2

2,
then the corresponding kernel discrepancy

D2
γs=2

(F, FP ) = 2
∥∥∥ 1

n

n

∑
i=1

xi −EY
∥∥∥2

2
.

Proof of Lemma A2. Similar to (5), when kernel γ(x, y) = −‖x− y‖2
2, we can obtain

D2
γs=2

(F, FP ) =
2
n

n

∑
i=1

E‖xi − Y‖2
2 −

1
n2

n

∑
i=1

n

∑
j=1
‖xi − xj‖2

2 −E‖Y− Y′‖2
2,

= − 4
n

n

∑
i=1

xT
i EY +

4
n

n

∑
i=1

n

∑
j=1

xT
i xj −

2
n2

n

∑
i=1
‖xi‖2

2 + 2‖EY‖2
2

= 2

(∥∥∥ 1
n

n

∑
i=1

xi

∥∥∥2

2
− 2

n

n

∑
i=1

xT
i EY + ‖EY‖2

2

)

= 2
∥∥∥ 1

n

n

∑
i=1

xi −EY
∥∥∥2

2
.

The proof of this lemma is finished.

Proof of Theorem 2. Since 0 ≤ θ ∑
p
k=1(xk − yk)

2 ≤ Mθ = o(1),

γθ,2(x, y) = exp

{
−

p

∑
k=1

θ(xk − yk)
2

}
= 1− θ‖xk − yk‖2

2 + o(θ‖xk − yk‖2
2).

Then, according to Lemma A2, we can obtain

Argmin
x1,...,xn∈X

{
D2

γθ,2
(F, FP )

}
⇐⇒ Argmin

x1,...,xn∈X

{
D2

γs=2
(F, FP )

}
⇐⇒ Argmin

x1,...,xn∈X

{∥∥∥ 1
n

n

∑
i=1

xi −EY
∥∥∥2

2

}
.

The last problem achieves the optimal value when 1
n ∑n

i=1 xi = EY.

Proof of Theorem 3. Obviously, G̃({xi}n
i=1; {x(t)i }

n
i=1, {ym}N

m=1) is a quadratic function
about variables and the coefficients of the quadratic term are all greater than 0; there,
G̃ is continuous and strongly convex. When x(t)ik 6= x(t)jk , x(t)ik 6= ymk for all 1 ≤ i < j ≤ n,

1 ≤ m ≤ N, 1 ≤ k ≤ p, G({xi}n
i=1; {ym}N

m=1) and G̃({xi}n
i=1; {x(t)i }

n
i=1, {ym}N

m=1) are differ-
entiable about {xi}n

i=1. Through tedious algebraic calculations,

∇{xi}n
i=1

G̃({xi}n
i=1; {x(t)i }

n
i=1, {ym}N

m=1)
∣∣
{xi=x(t)i }

n
i=1

=

∇{xi}n
i=1

G({xi}n
i=1; {ym}N

m=1)
∣∣
{xi=x(t)i }

n
i=1
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can be verified. Then, G̃ is a SCA surrogate function of G({xi}n
i=1; {ym}N

m=1) in (8) at

{x(t)i }
n
i=1 according to Definition 5. Moreover, the closed-form minimizer can be obtained by

setting the gradient of G̃({xi}n
i=1; {x(t)i }

n
i=1, {ym}N

m=1) to zero and solving for {xi}n
i=1.

Proof of Theorem 4. Based on Theorem 3 and the diminishing step size rule, this theorem
can be proven by Theorem 3 in [37] under some regularity conditions.
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