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Abstract: Based on the second derivative, this paper directly establishes the coincidence degree
theory of a nonlinear periodic Sturm–Liouville (SL) system. As applications, we study the existence
of periodic solutions to the S–L system with some special nonlinear functions by applying Mawhin’s
continuation theorem. Some examples and simulations are furnished to inspect the correctness and
availability of the chief findings.
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1. Introduction

The S–L equation is one of the most important second-order ODEs, which includes
famous physical equations such as the Helmholtz equation, Bessel equation and Legendre
equation. Meanwhile, any second-order linear ODE can be transformed into the S–L
equation by an appropriate transformation. Therefore, it is of great significance to reveal
the various dynamic properties of S–L equation. This manuscript mainly considers the
following nonlinear periodic S–L system:

−[α(t)S ′(t)]′ + β(t)S(t) = f (t,S(t)), (1)

where α ∈ C1(R, (0,+∞)), β ∈ C(R,R), f ∈ C(R2,R), and there is a constant v > 0 such
that α(t + v) = α(t), β(t + v) = β(t) and f (t + v, ·) = f (t, ·), for all t ∈ R.

The S–L equation is a famous mathematical and physical equation with a history of
more than 200 years. Many scholars have conducted extensive and in-depth research on
it from aspects of theory and application, and have achieved fruitful results. However,
we will not repeat the early research results of the S–L equation. We only review some
of the latest research achievements and progress of the S–L equation in recent years. The
latest research trends on the S–L equation mainly include the following aspects. The first
involves the theoretical and numerical methods and applications of inverse S–L problems
(see [1–16]). The second focuses on the investigation of some generalized S—L equations,
such as the fractional differential S–L equation (see [13–15,17–24]) and the S–L equation on
time scales (see [25–34]). The third deals with the S–L problems with certain singularity
(see [35–38]) or discontinuity (see [11,12]).

This manuscript focuses on the following novel works: (a) We have established the
coincidence degree theory for system (1) based on the second derivative. Since the zero-
index Fredholm operator L that we constructed involves the second derivative, it will be
complex and difficult to construct the inverse operator KP of L and projection operators
P , Q. (b) For some special forms of f (t,S(t),S ′(t)), we employ Mawhin’s continuation
theorem to prove that system (1) has a periodic positive solution. In addition, with the
exception that α(t) is required to be a positive periodic function, other conditions for the
existence of periodic solutions of (1) are not affected by α(t). As far as we know, our research
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topics and findings have not been seen in previous papers. Therefore, our work expands
the application scope of coincidence degree theory and tries a new research method for the
S–L equation.

The remaining composition of the manuscript as follows. Section 2 mainly establishes
the coincidence degree theory for the S–L system (1). In Section 3, we apply our coincidence
degree theory to study the existence of periodic positive solutions for two kinds of special
nonlinear S–L system. Section 4 provides some examples and simulations to examine the
correctness of our results. In the last Section 5, we briefly summarize the problem and
method of the paper, and offer a simple outlook for future research directions.

2. Preliminaries and Coincidence Theory of System (1)

In this section, we attempt to build the coincidence degree theory for system (1).
To this end, the following concepts and lemmas are essential.

Let X and Y be real Banach spaces, and define a linear operator L : Dom(L ) ⊂
X→ Y and a continuous operator N : X× [0, 1]→ Y. L is called a zero-index Fredholm
operator iff dim Ker(L ) = codim Im(L ) < ∞, and Im(L ) is closed in Y. Assuming
that L is a zero-index Fredholm operator, then there are continuous projectors P : X→
X and Q : Y → Y such that Ker(L ) = Im(P), Im(L ) = Im(I −Q) = Ker(Q),
and X = Ker(L ) ⊕ Ker(P), Y = Im(L ) ⊕ Im(Q), where I is an identity operator.
It infers that L |Dom(L )∩Ker(P) : (I −P)X → Im(L ) is invertible and its inverse is
denoted by KP. Let Ω ⊂ X be a bounded open set, if QN (Ω× [0, 1]) is bounded and
KP(I −Q)N : Ω× [0, 1] → X is compact, then N is called L -compact on Ω× [0, 1].
Since Ker(L ) and Im(Q) are isomorphic, there is an isomorphism J : Im(Q)→ Ker(L ).
Furthermore, the below Mawhin continuation theorem [39] is extremely important in the
subsequent discussion.

Lemma 1. [39] For the given real Banach spaces X,Y, and a bounded open subset X ⊃ Ω 6= φ,
let L : X → Y be a zero-index Fredholm operator, and an operator N : X× [0, 1] → Y be
L -compact on Ω× [0, 1]. Assuming that

(i) every solutionW of LW = µN (W , µ) possessesW /∈ ∂Ω ∩Dom(L ), ∀ µ ∈ (0, 1);
(ii) QN (W , 0)W 6= 0, ∀W ∈ ∂Ω ∩Ker(L );
(iii) deg(J QN (W , 0), Ω ∩Ker(L ), 0) 6= 0.

then LW = N (W , 1) has a solution in Ω ∩Dom(L ).

Let X = Y = {W ∈ C2(R,R) :W(t + v) =W(t), t ∈ R} be equipped with the norm
‖W‖ = max{|W(t)| : 0 ≤ t ≤ v}, then X and Y are Banach spaces.

Lemma 2. For a given α ∈ C1(R, (0,+∞)) with α(t + v) = α(t), define L : X→ Y by

(LW)(t) =
d
dt

[
α(t)

dW
dt

]
, (2)

then L is a zero-index Fredholm operator.

Proof. Obviously, L is linear. From (LW)(t) = 0 and (2), one has

W(t) = c + d
∫ t

0

ds
α(s)

, (3)

where c and d are arbitrary real constants. By α(t + v) = α(t) > 0 and (3), one obtains

W(t + v) =c + d
∫ t+v

0

ds
α(s)

= c + d
∫ t

0

ds
α(s)

+ d
∫ t+v

t

ds
α(s)

=W(t) + d
∫ v

0

ds
α(s)

. (4)
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It follows from W(t + v) = W(t) and (4) that d ≡ 0, which implies that Ker(L ) = R.
Thus, dim Ker(L ) = codim Im(L ) = 1. In addition, for any {zn} ⊂ Im(L ) such that
limn→∞ zn = z, there existsWn ∈ X such that LWn = zn. Therefore, one has

lim
n→∞

(LWn) = L ( lim
n→∞

Wn) = lim
n→∞

zn = z,

which implies that limn→∞Wn =W ∈ X. Thus, one concludes that LW = z ∈ Im(L ), i.e.,
Im(L ) is closed in Y. So L is a zero-index Fredholm operator. The proof is complete.

Lemma 3. Define the operators P : X→ X and Q : Y→ Y by

PW(t) = QW(t) =
1
v

∫ v

0
W(s)ds, ∀W ∈ X = Y. (5)

Then, P and Q are all continuous projectors such that

Ker(L ) = Im(P), Im(L ) = Ker(Q),

X = Ker(L )⊕Ker(P), Y = Im(L )⊕ Im(Q).

Proof. It is easy to verify that P and Q are all continuous. From (5), one has

P2W(t) = P(PW(t)) =
1
v

∫ v

0
PW(τ)dτ =

1
v

∫ v

0

[
1
v

∫ v

0
W(s)ds

]
dτ

=

[
1
v

∫ v

0
W(s)ds

]
× 1

v

∫ v

0
dτ =

1
v

∫ v

0
W(s)ds = PW(t), ∀W ∈ X,

which implies P2 = P . Similarly, Q2 = Q. Thus, one knows that P and Q are all
continuous projectors. For eachW ∈ X, it follows from (5) that PW(t) is a real constant,
which indicates Im(P) ⊂ R. For any constant c ∈ R, we have c ∈ X and Pc = c. This
leads to R ⊂ Im(P). So Ker(L ) = Im(P) = R, and X = Im(P)⊕Ker(P) = Ker(L )⊕
Ker(P). For any z ∈ Ker(Q), then z ∈ Y and

∫ v
0 z(s)ds = 0. Denote h(t) =

∫ t
0 z(s)ds, then

h(t + v) = h(t). Now, we solve LW(t) = z(t) to obtain

W(t) = c1

∫ t

0

dτ

α(τ)
+
∫ t

0

h(τ)
α(τ)

dτ + c0, (6)

where c0, c1 are any real constants. Similar to (4), we derive from (6) that

W(t + v) =W(t) + c1

∫ v

0

dτ

α(τ)
+
∫ v

0

h(τ)
α(τ)

dτ. (7)

Taking c∗1 = −
∫ v

0
h(τ)
α(τ)

dτ∫ v
0

dτ
α(τ)

, we know from (6) and (7) thatW∗(t) = c∗1
∫ t

0
dτ

α(τ)
+
∫ t

0
h(τ)
α(τ)

dτ+

c0 ∈ X such that LW∗(t) = z(t), which means that z(t) ∈ Im(L ), that is, Ker(Q) ⊂
Im(L ). Conversely, for each z ∈ Im(L ) ⊂ Y, there exists a W(t) ∈ X such that
LW(t) = z(t). ByW(t + v) =W(t), α(t + v) = α(t) > 0 and (6), we obtain

0 = c1

∫ t+v

t

dτ

α(τ)
+
∫ t+v

t

h(τ)
α(τ)

dτ = c1

∫ v

t

dτ

α(τ)
+
∫ t+v

t

h(τ)
α(τ)

dτ. (8)

Taking the derivative of two sides of (8) with respect to t, we apply α(t+v) = α(t) > 0
to obtain

h(t + v)

α(t + v)
− h(t)

α(t)
= 0⇒ h(t + v) = h(t)⇒ h(v) =

∫ v

0
z(s)ds = 0. (9)
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(9) means that z ∈ Ker(Q), namely Im(L ) ⊂ Ker(Q). Thus, Im(L ) = Ker(Q), and
Y = Ker(Q)⊕ Im(Q) = Im(L )⊕ Im(Q). The proof is complete.

From Lemmas 2 and 3, L |Dom(L )∩Ker(P) : (I −P)X → Im(L ) is invertible. Its
inverse KP is given as follows.

Lemma 4. For all u ∈ Im(L ), KP is defined by

KPu(t) =
∫ t

0

1
α(s)

[ ∫ s

0
u(τ)dτ

]
ds− Au

∫ t

0

ds
α(s)

− Bu, (10)

where Au =

∫ v
0

1
α(τ)

[
∫ τ

0 u(ξ)dξ]dτ∫ v
0

dτ
α(τ)

, and Bu = 1
v

∫ v
0

{∫ s
0

[
1

α(ξ)

∫ ξ
0 u(τ)dτ + Au

α(ξ)

]
dξ
}

ds.

Proof. It suffices to prove that L (KPu(t)) = u(t), ∀ u ∈ Im(L ), and KP(L w(t)) = w(t),
∀w ∈ Dom(L ) ∩Ker(P). In fact, from (2) and (10), we have

L (KPu(t)) =
d
dt

[
α(t)

d(KPu(t))
dt

]
=

d
dt

[
α(t)

(
1

α(t)

∫ t

0
u(τ)dτ − Au

α(t)

)]
=

d
dt

[∫ t

0
u(τ)dτ − Au

]
= u(t), ∀ u ∈ Im(L ).

Let L w(t) = d
dt

[
α(t) dw

dt

]
= z(t), then

∫ t
0 z(τ)dτ = α(t)w′(t)− α(0)w′(0), and

w(t) = w(0) + α(0)w′(0)
∫ t

0

1
α(s)

ds +
∫ t

0

1
α(s)

[∫ s

0
z(τ)

]
ds. (11)

From (11) and w(t) = w(t + v), we obtain

α(0)w′(0) = −

∫ v
0

1
α(s)

[∫ s
0 z(τ)

]
ds∫ v

0
1

α(s)ds
= −Az. (12)

Noticing that
∫ v

0 w(s)ds = 0, we derive from (10) and (12) that

KP(L w(t)) =
∫ t

0

1
α(s)

[ ∫ s

0
z(τ)dτ

]
ds− Az

∫ t

0

ds
α(s)

− Bz

=
∫ t

0

1
α(s)

[
α(s)w′(s)− α(0)w′(0)

]
ds−

∫ v
0

1
α(τ)

[α(τ)w′(τ)− α(0)w′(0)]dτ∫ v
0

dτ
α(τ)

∫ t

0

ds
α(s)

− 1
v

∫ v

0

{∫ s

0

[
1

α(ξ)
[α(ξ)w′(ξ)− α(0)w′(0)] +

Az

α(ξ)

]
dξ

}
ds

=w(t)− w(0)− Az

∫ t

0

ds
α(s)

−
w(v)− w(0)− Az

∫ v
0

ds
α(s)∫ v

0
ds

α(s)

∫ t

0

ds
α(s)

− 1
v

∫ v

0

{∫ s

0
w′(ξ)dξ

}
ds

=w(t)− w(0)− 1
v

∫ v

0
{w(s)− w(0)}ds

=w(t)− w(0)− 1
v

∫ v

0
w(s)ds + w(0) = w(t), ∀w ∈ Dom(L ) ∩Ker(P).

The proof is complete.

3. Existence of Periodic Solution

Section 2 has basically established the coincidence degree theory corresponding to
system (1). As applications, this section stresses the existence of periodic solutions for (1)
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with f (t,S) = S [r1(t)− c1(t)Sθ ]− h1(t) and f (t,S) = S [r2(t)− c2(t)S ]− h2(t), where
ri(t), ci(t), hi(t) > 0(i = 1, 2) and 0 < θ 6= 1. These two special forms of f (t,S) are derived
from the ecosystem model. The former comes from the Gilpin–Ayala ecosystem; the
latter comes from the Lotka–Volterra ecosystem. ri(t), ci(t) and hi(t) stand for the natural
growth rate, intraspecific competition rate and artificial harvest of species, respectively.
For convenience, we denote F = max0≤t≤v F(t) and F = min0≤t≤v F(t), where F(t) : R→
R is a continuous v-periodic function.

Theorem 1. In system (1), let f (t,S) = S [r1(t)− c1(t)Sθ ]− h1(t). If the following conditions
(B1) and (B2) hold, then system (1) contains at least one v-periodic positive solution in X.

(B1) Assume that α ∈ C1(R, (0,+∞)), β ∈ C(R,R), r1, c1, h1 ∈ C(R, (0,+∞)), and 0 < θ 6= 1
is a constant. Moreover, α, β, r1, c1 and h1 are v-periodic functions.

(B2) c1 > 0, r1 − β > 0, and θc1
− 1

θ

( r1−β

1+θ

) 1+θ
θ

> h1.

Proof. The proof of this assertion is mainly completed by applying Lemma 1. To do so,
the operators L , P , Q and KP are defined by (2), (5) and (10) based on Lemmas 2–4. In
addition, the operator N : X× [0, 1]→ Y is given by

N (S , µ) = β(t)S − S [r1(t)− c1(t)Sθ ] + h1(t). (13)

Clearly, QN and KP(I −Q)N are continuous. For any open-bounded subset Ω of
X, we easily apply the Arzela–Ascoli theorem to show that KP(I −Q)N (Ω) is compact,
and QN (Ω) is bounded. Thus, N is L -compact on Ω.

Consider an operator equation L S = µN (S , µ), i.e.,

d
dt

[
α(t)

dS
dt

]
= µ

[
β(t)S − S [r1(t)− c1(t)Sθ ] + h1(t)

]
. (14)

If Equation (14) contains an v-periodic solution S ∈ X, then there exist t1, t2 ∈ R such
that S(t1) = S , S(t2) = S , S ′(t1) = S ′(t2) = 0, S ′′(t1) < 0 and S ′′(t2) > 0. Noticing that
[α(t)S ′]′ = α′(t)S ′ + α(t)S ′′, it follows from (B1) that{

0 > α(t1)S ′′(t1) = µ
[
β(t1)S(t1)− S(t1)[r1(t1)− c1(t1)Sθ(t1)] + h1(t1)

]
,

0 < α(t2)S ′′(t2) = µ
[
β(t2)S(t2)− S(t2)[r1(t2)− c1(t2)Sθ(t2)] + h1(t2)

]
.

(15)

Let S(t1) = eU , S(t2) = eU , then inequalities (15) become{
c1(t1)e(1+θ)U − [r1(t1)− β(t1)]eU + h1(t1) < 0,
c1(t2)e(1+θ)U − [r1(t2)− β(t2)]eU + h1(t2) > 0,

which implies that {
c1e(1+θ)U − r1 − βeU + h1 < 0,
c1e(1+θ)U − r1 − βeU + h1 > 0.

(16)

Let φ(z) = c1e(1+θ)z − r1 − βez + h1, ψ(z) = c1e(1+θ)z − r1 − βez + h1. According to
(B2) and Lemma 2.2 in [40,41], we know that the unique minimum points of φ(z) and ψ(z)
are, respectively, given by

U0 =
1
θ

ln

[
r1 − β

c1(1 + θ)

]
, U0 =

1
θ

ln
[ r1 − β

c1(1 + θ)

]
. (17)
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The minimums are

φ(U0) = −θc1
− 1

θ

(
r1 − β

1 + θ

) 1+θ
θ

+ h1, ψ(U0) = −θc1
− 1

θ

( r1 − β

1 + θ

) 1+θ
θ

+ h1.

Since

θc1
− 1

θ

(
r1 − β

1 + θ

) 1+θ
θ

> θc1
− 1

θ

( r1 − β

1 + θ

) 1+θ
θ

> h1 ≥ h1,

we yield that φ(U0) < 0, ψ(U0) < 0 and there exist only four real constants U1, U2, U1 and
U2 such that

U1 < U0 < U2, U1 < U0 < U2, φ(U1) = φ(U2) = ψ(U1) = ψ(U2) = 0. (18)

Combined with the above arguments and (18), the solutions of inequalities (16) are

U1 < U < U2, U1 > U or U > U2. (19)

From the expressions of φ(z) and ψ(z), ∀ z ∈ R, we have φ(z) < ψ(z). Thus, we obtain
ψ(U2) > φ(U2) = 0 = ψ(U2). By (17) and (18), we obtain U0 < U0 < U2 and U0 < U2.
Noting that ψ(z) is strictly increasing in [U0,+∞), ψ(U2) > ψ(U2) leads to

U2 < U2. (20)

In light of (19), (20) and U ≤ U, choose

Ω =
{
S(t) ∈ X : eU2 < S(t) < eU2

}
.

Obviously, Ω ⊂ X is open-bounded such that Lemma 1(i) is true.
Noting that ∂Ω = {eU2 , eU2}, we derive from (16)–(20) that QN (eU2 , 0) 6= 0 and

QN (eU2 , 0) 6= 0. Thus, Lemma 1(ii) is true.
Choosing J = I as the identity operator, and noting that N (S∗, 0) = β(t)S∗ −

S∗[r1(t)− c1(t)S∗θ] + h1(t) = 0, a direct calculation gives

deg
{
J QN (S , 0), Ω ∩Ker(J ), 0

}
= sgn

(
∂

∂SN (S , 0)
∣∣∣∣
S=S∗

)
=sgn

(
− θc1(t)Sθ

∗ −
h1(t)
S∗

)
= −1.

Thus, Lemma 1 (iii) is also true. It follows from Lemma 1 that system (1) has at least an
v-periodic positive solution S̃(t) satisfying eU2 < S̃(t) < eU2 . The proof is complete.

Theorem 2. In system (1), let f (t,S) = S [r2(t)− c2(t)S ]− h2(t). If the following conditions
(B3) and (B4) hold, then system (1) contains at least one v-periodic positive solution in X.

(B3) Assume that α ∈ C1(R, (0,+∞)), β ∈ C(R,R), r2, c2, h2 ∈ C(R, (0,+∞)), and α, β, r2,
c2 and h2 are v-periodic functions.

(B4) c2 > 0, r2 − β > 2
√

c2 h2.

Proof. Similar to the proof of Theorem 1, the operators L , P , Q and KP are defined by (2),
(5) and (10) based on Lemmas 2–4. In addition, the operator N : X× [0, 1]→ Y is given by

N (S , µ) = β(t)S − S [r2(t)− c2(t)S ] + h2(t). (21)
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Clearly, QN and KP(I −Q)N are continuous. For any open-bounded subset Ω of
X, we easily apply the Arzela–Ascoli theorem to show that KP(I −Q)N (Ω) is compact,
and QN (Ω) is bounded. Thus, N is L -compact on Ω.

Consider an operator equation L S = µN (S , µ), i.e.,

d
dt

[
α(t)

dS
dt

]
= µ[β(t)S − S [r2(t)− c2(t)S ] + h2(t)]. (22)

Assuming that Equation (22) has an v-periodic solution S ∈ X, then there exist
τ1, τ2 ∈ R such that S(τ1) = S , S(τ2) = S , S ′(τ1) = S ′(τ2) = 0, S ′′(τ1) < 0 and
S ′′(τ2) > 0. Noticing that [α(t)S ′]′ = α′(t)S ′ + α(t)S ′′, we derive from (B3) that{

0 > α(τ1)S ′′(τ1) = µ[β(τ1)S(τ1)− S(τ1)[r2(τ1)− c2(τ1)S(τ1)] + h2(τ1)],
0 < α(τ2)S ′′(τ2) = µ[β(τ2)S(τ2)− S(τ2)[r2(τ2)− c2(τ2)S(τ2)] + h2(τ2)].

(23)

From Inequalities (23), one has{
c2(τ1)S

2 − [r2(τ1)− β(τ1)]S + h2(τ1) < 0,
c2(τ2)S2 − [r2(τ2)− β(τ2)]S + h2(τ2) > 0,

which implies that {
c2S

2 − r2 − β S + h2 < 0,
c2S2 − r2 − β S + h2 > 0.

(24)

According to (B4), one has r2 − β ≥ r2 − β > 2
√

c2 h2 ≥ 2
√

c2 h2. Thus, the inequali-
ties (24) are solved as

l̂− < S < l̂+, S > l+ or S < l−, (25)

where

l̂± =
r2 − β±

√
(r2 − β)2 − 4c2 h2

2c2
, l± =

r2 − β±
√
(r2 − β)2 − 4c2 h2

2c2
. (26)

From (26), one obtains

l+ =
r2 − β +

√
(r2 − β)2 − 4c2 h2

2c2
<

r2 − β +
√
(r2 − β)2 − 4c2 h2

2c2
= l̂+, (27)

and

l̂− =
r2 − β−

√
(r2 − β)2 − 4c2 h2

2c2
=

2h2

r2 − β +
√
(r2 − β)2 − 4c2 h2

<
2h2

r2 − β−
√
(r2 − β)2 − 4c2 h2

=
r2 − β−

√
(r2 − β)2 − 4c2 h2

2c2
= l−. (28)

Together with (25), (27), (28) and S ≤ S , we choose

Ω =
{
S(t) ∈ X : l+ < S(t) < l̂+

}
.
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Apparently, Ω ⊂ X is open-bounded such that Lemma 1 (i) holds. Additionally,
∂Ω = {l+, l̂+}; we know from (24) and (25) that QN (l+, 0) 6= 0 and QN (l̂+, 0) 6= 0.
Thus, Lemma 1(ii) holds.

Taking the identity operator J = I , and noticing that N (S∗, 0) = β(t)S∗ −
S∗[r2(t)− c2(t)S∗] + h2(t) = 0, we have

deg
{
J QN (S , 0), Ω ∩Ker(J ), 0

}
= sgn

(
∂

∂SN (S , 0)
∣∣∣∣
S=S∗

)
=sgn

(
− c2(t)S∗ −

h2(t)
S∗

)
= −1.

Thus, Lemma 1(iii) also holds. From Lemma 1, we conclude that system (1) has at least
an v-periodic positive solution S̃(t) satisfying l+ < S̃(t) < l̂+. The proof is complete.

4. Illustrative Examples and Simulations

Since Equation (1) is a second-order ODE, it is necessary to convert it into a system
of first-order ODEs for numerical simulation. Let u(t) = S(t) and v(t) = α(t)S ′(t), then,
Equation (1) becomes { du(t)

dt = 1
α(t)v(t),

dv(t)
dt = β(t)u(t)− f (t, u(t)).

(29)

Example 1. Consider the following ODE

−[α(t)S ′(t)]′ + β(t)S(t) = S(t)[r1(t)− c1(t)Sθ(t)]− h1(t), (30)

where θ = 1
2 , α(t) = 3 + sin(t), β(t) = − sin(2t), r1(t) = 5 + cos(2t), c1(t) = 2 + sin(3t),

h1(t) =
3+2 sin(t)

10 .

Obviously, v = 2π and the condition (B1) holds. By a simple calculation, we have

c1 = 3, c1 = 1, r1 − β = 5 +
√

2, r1 − β = 5 −
√

2, h1 = 0.1, and θc1
− 1

θ

( r1−β

1+θ

) 1+θ
θ ≈

0.5908 > h1 = 0.5. Therefore, the condition (B2) also holds. By solving the following
algebraic equation {

c1e(1+θ)U − r1 − βeU + h1 = 0,
c1e(1+θ)U − r1 − βeU + h1 = 0,

we obtain U1 ≈ −4.1412, U2 ≈ 3.7163, U1 ≈ −1.4509 and U2 ≈ 0.0816. Thus,

Ω = {S(t) ∈ X : eU2 < S(t) < eU2} = {S(t) ∈ X : 1.0850 < S(t) < 41.1120}.

Therefore, we conclude from Theorem 1 that (30) has at least a 2π-periodic positive solution
S̃(t) ∈ Ω.

Example 2. Consider the following ODE

−[α(t)S ′(t)]′ + β(t)S(t) = S(t)[r1(t)− c1(t)Sθ(t)]− h1(t), (31)

where θ =
√

3, α(t) = 1
3+cos(2t) , β(t) = cos(t), r1(t) = 8 + 2 cos(t), c1(t) = 4 + cos(3t),

h1(t) =
5+3| sin(2t)|

10 .
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Obviously, v = 2π and the condition (B1) holds. We simply compute that c1 = 5,

c1 = 3, r1 − β = 9, r1 − β = 7, h1 = 0.5, and θc1
− 1

θ

( r1−β

1+θ

) 1+θ
θ ≈ 3.0167 > h1 = 0.8.

Therefore, the condition (B2) also holds. By solving the following algebraic equation{
c1e(1+θ)U − r1 − βeU + h1 = 0,
c1e(1+θ)U − r1 − βeU + h1 = 0,

we obtain U1 ≈ −2.8881, U2 ≈ 0.6167, U1 ≈ −2.1517 and U2 ≈ 0.1334. Thus,

Ω = {S(t) ∈ X : eU2 < S(t) < eU2} = {S(t) ∈ X : 1.1427 < S(t) < 1.8528}.

Therefore, we conclude from Theorem 1 that (31) has at least a 2π-periodic positive solution
S̃(t) ∈ Ω.

Example 3. Consider the following ODE

−[α(t)S ′(t)]′ + β(t)S(t) = S(t)[r2(t)− c2(t)S(t)]− h2(t), (32)

where α(t) = 5+2 cos(t)
6 , β(t) = sin(t) − cos(t), r2(t) = 10 + 2 sin(t), c2(t) = 3 + sin(t),

h2(t) =
7+3| cos(t)|

10 .

Obviously, v = 2π and the condition (B3) holds. A simple computation gives c2 = 4,
c2 = 2, h2 = 1, h2 = 0.7, r2 − β = 10 +

√
2, r2 − β = 10−

√
2 ≈ 8.5858 > 2

√
c2 h2 = 4.

Therefore, the condition (B4) also holds. By solving the following two quadratic equations{
c2S

2 − r2 − β S + h2 = 0,
c2S2 − r2 − β S + h2 = 0.

we yield that l̂− ≈ 0.0620, l̂+ ≈ 5.6451, l− ≈ 0.1236 and l+ ≈ 2.0229. Thus,

Ω = {S(t) ∈ X : l+ < S(t) < l̂+} = {S(t) ∈ X : 2.0229 < S(t) < 5.6451}.

Therefore, we conclude from Theorem 2 that (32) has at least a 2π-periodic positive solution
S̃(t) ∈ Ω.

Now, we apply (29) and ode45 function of MATLAB to simulate the phase portrait
of (30), (31) and (32), respectively. It is easy to see from Figures 1–3 that there exist closed
trajectories, which shows that (30), (31) and (32) have periodic solutions.

-3 -2 -1 0 1 2 3 4
-8
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0

2
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Figure 1. Phase portrait of (30) with ((u(0), v(0))T = (2.856, 4.2840)T .
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Figure 2. Phase portrait of (31) with ((u(0), v(0))T = (0.66, 0.22)T .
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Figure 3. Phase portrait of (32) with ((u(0), v(0))T = (1, 1.1667)T .

5. Conclusions

The Sturm–Liouville equation is a very famous differential equation. Many scholars
have conducted extensive and in-depth research on its dynamics and have made many
excellent achievements. In this manuscript, it is novel and interesting for us to establish the
coincidence degree theory of Equation (1) and study the existence of its periodic solutions.
We obtain some new and easily verifiable sufficient criteria for the existence of periodic
solutions. Examples 1 and 2 and their simulations are applied to verify the correctness
of Theorem 1 under the conditions of 0 < θ < 1 and θ > 1, respectively. Using our
method, we can estimate the existence region of periodic solutions. Our results are a
useful supplement to the theory of periodic solutions of the Sturm–Liouville equation, and
expand the application scope of coincidence degree theory. Based on this paper, we will
further continue to study the dynamics of Equation (1) under pulse, delay and random
effects. In addition, inspired by the papers [13–20,22–24,42–52], we will also study the
Sturm–Liouville equation involving fractional differential as well as reaction–diffusion
terms in the future.
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