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Abstract: The study aims to provide a Bayesian statistical method with natural conjugate for facilities’
preventive maintenance scheduling related to the hybrid competing failure mode. An effective
preventive maintenance strategy not only can improve a system’s health condition but also can
increase a system’s efficiency, and therefore a firm needs to make an appropriate strategy for increas-
ing the utilization of a system with reasonable costs. In the last decades, preventive maintenance
issues of deteriorating systems have been studied in the related literature, and hundreds of mainte-
nance/replacement models have been created. However, few studies focused on the issue of hybrid
deteriorating systems which are composed of maintainable and non-maintainable failure modes.
Moreover, due to the situations of the scarcity of historical failure data, the related analyses of preven-
tive maintenance would be difficult to perform. Based on the above two reasons, this study proposed
a Bayesian statistical method to deal with such preventive maintenance problems. Non-homogeneous
Poisson processes (NHPP) with power law failure intensity functions are employed to describe the
system’s deterioration behavior. Accordingly, the study can provide useful ways to help managers to
make effective decisions for preventive maintenance. To apply the proposed models in actual cases,
the study provides solution algorithms and a computerized architecture design for decision-makers
to realize the computerization of decision-making.

Keywords: Bayesian statistics; non-homogeneous Poisson process; Monte Carlo integration; preven-
tive maintenance; hybrid failure modes

MSC: 62F15; 62N02; 62N05; 62C10; 65C20

1. Introduction

Preventive maintenance (PM) is in charge of maintaining equipment or facilities (re-
pairable systems) in good condition. However, they might cause catastrophic damage
and consequential losses when such equipment or facilities in production lines fail. As
a result, it is critical to proceed with adequately preventative maintenance to avoid any
damages and losses in order to keep these equipment or facilities in a healthy state. Pre-
ventive maintenance is capable of delaying system deterioration and returning systems
to better condition, lowering failure rates and extending system lifetime. In other words,
preventative maintenance has a significant influence on quality and cost, and therefore a
firm should be concerned with developing appropriate maintenance programs in order to
boost its competitiveness. There has been a lot of attention previous research works in the
field of preventive maintenance modeling and optimization during the last several years.

Usually, preventive maintenance policies are mostly based on time intervals. There are
two PM policies found in the literature: periodic and sequential (non-periodic). Periodic
preventive maintenance policy is the manufacturer provides its maintenance work with
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equal time intervals. A sequential preventive maintenance policy is characterized by the
search for the optimal number of maintenance actions at the optimal intervals. Therefore,
the sequential preventive policy may provide an unequal sequence of intervals for min-
imizing the related costs. Park et al. [1] calculated the ideal duration and amount of PM
activities based on a periodic PM program with minimum repair service after breakdowns.
Yeh and Lo [2] demonstrated that the ideal PM interval between two consecutive PM
activities is equal to the degree of PM and that providing an equivalent degree of PM is
the best approach to decrease predicted warranty costs. Jung and Park [3] proposed an
optimum post-warranty PM policy by reducing predicted long-run PM expenses. Seo and
Bai [4] illustrated a periodic PM strategy for two scenarios where the operating time of
PM might be disregarded or not. Yeh and Chang [5] determined the best failure rate and
maintenance strategy for the lifetime of the equipment. Das and Sarmah [6] provided an
overview of optimization models for preventative replacement with the related constraints
in heavy-process industries. Yeh et al. [7] evaluated the impact of various PM cost functions
on a leased product with a Weibull lifetime distribution’s periodic PM policy. Bouguerra
et al. [8] proposed a mathematical model for various PM plans when customers choose
to purchase an extended warranty. They discovered a viable compromise to establish a
win-win situation between producers and customers in terms of warranty costs. Chang and
Lin [9] developed an ideal PM policy for repairable items with extended warranties. They
considered that manufacturers could give a slight discount to consumers to incent their
intention to purchase extended warranty contracts. Under the context of reliability-based
optimization, Beaurepaire et al. [10] proposed the best model of mechanical component
maintenance scheduling. Their model is different from the traditional approaches based on
linear fracture mechanics. Schutz and Rezg [11] provided a methodology for determining
an optimal product maintenance program to guarantee that the minimal reliability meets
the consumers’ requirements. Kim and Ozturkoglu [12] reduced the classic preventive
maintenance issue to an integers programming problem. Khojandi et al. [13] investigated
the optimal lifetime reward maintenance strategies for perfect and imperfect maintenance
situations. They showed the tradeoff between the virtual age of the systems and the in-
centive rate for decision-makers. Yuan and Lu [14] suggested an effective way to solve a
reliability-based optimization issue that combines the weighted approach with sequential
approximation optimization. Lu et al. [15] proposed a joint model of sequential PM and
quality improvement for deteriorating systems in manufacturing industries. The study is
superior and more appropriate for maintaining machines in a production system. Wang
and Djurdjanovic [16] also proposed a joint model for PM scheduling with consideration of
stocks and logistics issues. They proposed an integrated policy to trigger PM for working
parts. Zhou et al. [17] proposed a sequential PM model with a reducing failure factor. The
model can be applied to urban bus systems’ maintenance works. García and Salgado [18]
presented a case study to analyze the selection of PM strategies in multistage industrial
facilities and equipment. Their study utilized some individual indicators to evaluate
which PM strategies are better. Diatte et al. [19] proposed a methodology for improving
brake systems in automobile industries, and the methodology can make the integration
of the machine’s reliability, availability, and maintainability into system engineering and
dependability analyses for reducing related costs and increasing system’s reliability.

Some related studies regarding the issues of competing failures or risks models have
been proposed or developed in the past. Generally, maintainable and non-maintainable
failure modes compete to cause the system to fail. Furthermore, the three maintenance
operations should be taken into account: imperfect preventative maintenance, minor
repairs, and replacements. Some competing risk models were also proposed to reflect the
complex systems’ deterioration [20–22]. Salinas-Torres et al. [23] proposed a competing-
risks model with a Bayesian statistical method to estimate a system component’s survival
time. They used Dirichlet multivariate processes to deduce the parameters’ estimator.
Yousef et al. [24] applied Bayesian and Non-Bayesian analyses to the reliability of the
stress-strength system. The proposed Bayesian estimators can be achieved by the Markov
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chain Monte Carlo method. Wang and Miao [25] applied a semi-Markov model to optimize
firms’ preventive maintenance policy. Their model would be useful to any two symmetric
components to avoid system unbalance. Alotaibi et al. [26] also utilized a Bayesian analysis
and Monte-Carlo simulations to estimate the parameters of a mixture bivariate exponential
model. They applied the proposed method to motor data analysis. Yousef et al. [27]
applied a Bayesian estimation method and Monte Carlo simulation to evaluate a system
reliability. They also compared the performance between maximum likelihood estimators
and Bayesian estimators. Liu et al. [28] applied a Bayesian estimation method to evaluate
products’ reliability. This method can achieve both point and confidence interval estimation
for the critical parameters. Zequeira and Berenguer [29] proposed a hybrid model in
which the two failure modes (maintainable and non-maintainable) were believed to be
dependent. It is intriguing to investigate the impact of the two failure models. El-Ferik and
Ben-Daya [30] also proposed a hybrid model that includes adjustment variables in both
the hazard rate and the effective age. In El-Ferik and Ben-Daya’s model, the effect of PM
is assumed to be imperfect. Kahrobaee and Asgarpoor [31] proposed a hybrid analytical-
simulation approach to solve deteriorating equipment’s PM works under some systems’
constraints. They apply their approach to the wind turbines industry, and expected rewards
and penalties are also taken into consideration. Rafiee et al. [32] proposed a condition-
based PM policy considering competing risks of internal deterioration and external shocks.
In their model, the external shocks arrive at random times and can be divided into two
categories based on their impacts on the system: (1) fatal shocks that can cause the system
to fail immediately (2) non-fatal shocks that can only damage the system by randomly.
Their model can apply in micro-electro-mechanical systems. Zhou et al. [33] proposed
a hybrid PM model to reflect the reliability status of leased equipment. Furthermore, it
also can clearly discriminate between the impacts from external shocks and from internal
deterioration. Yang et al. [34] modeled complex industrial systems involving a hybrid
failure mode, degradation-based failure and sudden failure. Their proposed condition-
based PM strategy can be applied in oil pipeline industries. Cao [35] also proposed a
condition-based PM strategy, but he took competing failure processes into consideration.
He successfully utilized the condition-based PM strategy and a genetic algorithm to make
periodic inspection and maintenance plans for wind-driven generators. Liu et al. [36]
proposed hybrid maintenance models to deal with the issue of competing failures. In
their model, all the maintenance actions are perfect, and all the actions are instant, it
implies that the time cost can be negligible. However, their model didn’t take imperfect
repair issues into consideration. Basílio et al. [37] proposed a review study regarding the
applications of multi-criteria decision aid methods. They provided a complete overview
of multi-criteria methods to comprehend the current and future development patterns of
multi-criteria decision-making studies. The study can give useful research directions for
applying multi-criteria techniques in industries.

Based on the above considerations, this work provided Bayesian decision models to
cope with preventative maintenance with the hybrid deteriorating system. The deteriorat-
ing behavior of the repairable system can be described by a non-homogeneous Poisson
process (NHPP) with a hybrid of power law failure intensity functions. Furthermore, the
study investigates how different levels of preventive maintenance influence the related
costs and the frequency of the system’s breakdowns. Accordingly, we consider the study
has the following advantages: (1) Few studies focused on the issue of hybrid deteriorat-
ing systems, which are composed of maintainable and non-maintainable failure modes.
Furthermore, due to some situations of the scarcity of historical failure data, the related
analyses of preventive maintenance will be difficult to perform. For the above two reasons,
this study proposed Bayesian decision models to deal with such a preventive maintenance
problem with the hybrid deteriorating system. (2) The study’s Bayesian decision process
can be divided into two phases. In the first phase, the decision maker can use the domain
experts’ knowledge and judgment to evaluate the deterioration using four prior distribution
statistical characteristics. In the second phase, the decision maker can collect failure data to
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re-estimate the deterioration by using the NHPP likelihood functions and the properties of
the natural conjugate. It can effectively extend the related applications of the study. (3) In
order to apply the proposed models in actual cases, the study provides solution algorithms
and a computerized architecture design for decision-makers to realize the computerization
of decision-making. Accordingly, the study can easily be applied to various manufacturing
industries that want to effectively manage their durable and high-priced equipment or
facilities in the factory.

The rest of this paper is organized as follows: Section 2 presents the proposed hybrid
competing mode, the estimation of a deteriorating system’s failures under periodic preven-
tive maintenance, and the estimation of the related costs. Section 3 provides a Bayesian
decision process by using domain experts’ knowledge with collected information. The
design of a computerized information system is also presented in the section. Section 4
present the numerical application and sensitivity analysis. Finally, Section 5 presents the
concluding remarks and the future study.

2. Preventive Maintenance for Deteriorating Systems with a Hybrid Deterioration

Both non-maintainable and maintainable failure modes may exist in a multi-component
system, and therefore they will compete to cause failures. In the maintainable failure mode,
a component can be replaced with a new one to restore the system to its original status.
However, in the non-maintainable failure mode, a component cannot be replaced to alle-
viate the system’s aging. From the whole system’s perspective, the effect of preventive
maintenance can only present imperfect recovery. Therefore, a hybrid model which is
related to competing failure processes would be more adequate for measuring such deterio-
ration model in practice. The following subsections will introduce the hybrid deterioration
model with mathematical analysis.

2.1. Hybrid Competing Failure Mode

In considering system reliability and operational stability, scheduled PM works can be
performed for reducing equipment or facilities’ breakdowns and also to avoid potential
disasters. Either periodic PM or non-periodic PM policy can be adopted for enhancing the
equipment or facilities’ reliability. However, a scheduled periodic PM policy is taken into
consideration in this study since it may be more practically manageable to the manager.
Suppose that a deteriorating system (equipment) will undergo N − 1 PM works during
its lifetime TL, where the intervals of periodic PM are equal and designated to be x by the
reliability engineering department, and the whole system is replaced at the timing of the
Nth PM work. Any breakdown which occurs within an interval two PM actions would
cause minimal repairs, and minimal repairs cannot reduce the system aging. Accordingly,
a NHPP with a power law intensity function λ(t|α, β) = αβtβ−1 is for describing the
process of system’s deterioration, where α and β denote the scale factor and the shape
factor, respectively. The domains of α and β are within the range [0, ∞) according to the
property of the power law intensity function. Therefore, the power law form would be
more flexibility and manageability than other intensity functions.

Since PM works can partially improve the system reliability and can also extend the
original system lifetime. However, it is still unable to stop the system’s aging process.
Ultimately, the whole system will need to be replaced after the Nth PM action (the system
lifetime would be TL = Nx) in the consideration of cost- effectiveness. In this study, C(N)
denotes the expected cost per unit time with respect to the PM number N. The expected
cost includes the minimal repair cost Cmr, the penalty cost Cpl , the ith PM cost Cpmi , and the
replacement cost Crp. In general, the cost of performing a PM action should be relatively
higher than the cost of performing repairs in the initial stage since the machine’s abrasion
status might not be serious when the machine is in its early age. However, when the
machine’ abrasion status becomes more serious over time, the repair cost will more than the
PM cost if the age reduction factor of PM δ is relatively low and cannot effectively reduce
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the exponential increase of a system’s breakdowns. Figure 1 illustrates of the preventive
maintenance model of an equipment or facility.
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Figure 1. Timeline of the preventive maintenance model of an equipment or facility. 
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Furthermore, a facility or equipment may include non-maintainable and maintain-
able components in a system, and therefore the two modes (non-maintainable mode and
maintainable mode) are needed to be integrated into one for presenting the phenomenon
of a system’s imperfect recovery. Therefore, the two intensity functions of the system
deterioration will be devised as λo(t|αo, βo) = αoβotβo−1 (non-maintainable mode) and
λp(t

∣∣αp, βp)= αpβptβp−1 (maintainable mode) respectively. Besides, please note that the
values of scale and the shape parameters may be unknown and they will be discussed as
uncertain states in the Bayesian analysis.

The assumptions of the proposed model are stated as follows:

(1) The system’s deterioration behaves as a non-homogeneous Poisson process (NHPP).
(2) The system’s deterioration is composed of maintainable and non-maintainable failure

modes.
(3) A PM cannot restore the whole system to a brand-new state; instead, it can restore the

whole system to some state as better-than-now.
(4) Any breakdowns occurring within the interval between two PM actions cause a

minimal repair.

The following notations are used in the analysis throughout this study (Table 1):

Table 1. The notations.

TL: the lifetime of a equipment or facility.
t: the age of a equipment or facility.
x: the time interval between two PMs.
t−k : the effective age of a equipment or facility before the time point of the kth PM.
t+k : the effective age of a equipment or facility after the time point of the kth PM.
αo: the scale factor of the intensity function of non-maintainable failure mode.
βo: the shape factor of the intensity function of non-maintainable failure mode.
αp: the scale factor of the intensity function of maintainable failure mode
βp: the shape factor of the intensity function of maintainable failure mode.
f (α, β): the prior probability distribution of the power-law intensity function.
g(α, β): the posterior probability distribution of the power-law intensity function.
δ: the age reduction factor, where δ ∈ [0, 1].
λo(t|αo, βo) : the intensity function of non-maintainable failure mode of the system deterioration.
λp(t

∣∣αp, βp) : the intensity function of maintainable failure mode of the system deterioration.
λh
(
t
∣∣αo, βo, αp, βp

)
: the intensity function of the hybrid mode of the system deterioration.
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Table 1. Cont.

N: the number of PM action during the whole system lifetime.
Nmr(·): the expected number of performing minimal repairs of the system.
Cmr: the average cost to perform a minimal repair.
Cpmk : the cost to perform the kth PM.
Crp: the cost of the overall replacement of a equipment or facility.
Φ(tr): the probability density function of the time for performing a minimal repair.
Cpl : the penalty cost if the actual repair time over the time threshold ϕ

ϕ: the time threshold for performing a minimal repair.
CF: the base cost for a PM action, which is influenced by the degree of PM.
τ: the increasing rate of PM base cost

2.2. Estimation of a System’s Failures under Preventive Maintenances

Since the interval time of PM is x which was set by maintenance engineers, and t+1
denotes the effective age of a system after the time point of the first PM. It can be deduced
by t+1 = x− δx = (1− δ)x because t+1 is influenced by the age reduction factor δ under the
maintainable mode. Therefore, the effective age of a system before and after the time point
of the kth PM can be presented as

t−k = kx− (k− 1)δx = (k− 1)(1− δ)x + x = ((k− 1)(1− δ) + 1)x, (1)

and
t+k = t−k − δx = kx− (k− 1)δx− δx = k(1− δ)x (2)

respectively.
Due to the system’s deterioration which includes non-maintainable and maintainable

modes, the hybrid intensity function can be written as follows:

λh
(
TL
∣∣αo, βo, αp, βp

)
= λo(kx) + λp(((k− 1)(1− δ) + 1)x)

= αoβo(kx)βo−1 + αpβp(((k− 1)(1− δ) + 1)x)βp−1, (3)

Moreover, it means that the system belongs to perfect maintenance if the age reduction
factor δ is equal to one. Thus, the expected number of failures of the equipment or facility
is given by

Nmr
(

N, x, δ
∣∣αo, βo, αp, βp

)
=

N
∑

k=1

∫ kx
(k−1)x λh

(
t, δ
∣∣αo, βo, αp, βp

)
dt

=
N
∑

k=1

∫ kx
(k−1)x λo(t|αo, βo)dt +

N
∑

k=1

∫ t−k
t+k−1

λp
(
t
∣∣αp, βp

)
dt

=
N
∑

k=1

∫ kx
(k−1)x λo(t)dt +

N
∑

k=1

∫ ((k−1)(1−δ)+1)x
(k−1)(1−δ)x λp(t)dt

= αo(Nx)βo +
N
∑

k=1
αp

(
(((k− 1)(1− δ) + 1)x)βp − ((k− 1)(1− δ)x)βp

)
.

(4)

However, if the age reduction factor δ is equal to one, the expected number of the
failures of the equipment or facility can be rewritten as follows:

Nmr
(

N, x
∣∣αo, βo, αp, βp

)
= αo(Nx)βo + Nαpxβp (∵ δ = 1). (5)
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Since the breakdown process of a deterioration system can be modeled as a Non-
Homogenous Poisson Process, the probability of the number of breakdowns N0 in the
interval (Nx, (N + 1)x) is thus given by

Pr
{

Nmr
(

N + 1, x, δ
∣∣αo, βo, αp, βp

)
− Nmr

(
N, x, δ

∣∣αo, βo, αp, βp
)
= N0

}

=

(
Nmr

(
N + 1, x, δ

∣∣αo, βo, αp, βp
)
− Nmr

(
N, x, δ

∣∣αo, βo, αp, βp
))N0

×e−(Nmr(N+1,x,δ|αo ,βo ,αp ,βp)−Nmr(N,x,δ|αo ,βo ,αp ,βp))

N0! .
(6)

The reliability of a product R(TL = Nx) will decline with time, and therefore it can
denote as

R(TL = Nx) = Pr
{

Nmr
(

N, x, δ
∣∣αo, βo, αp, βp

)
= 0

}
= e−Nmr(N,x,δ|αo ,βo ,αp ,βp). (7)

Figure 2 illustrates preventive maintenance between perfect recovery and imperfect
recovery under a hybrid deterioration. The difference between perfect and imperfect
recoveries is that the critical component of a perfect recovery system can be maintainable
or can be replaced with a new one to restore the system to its original status. As can be
seen in the middle-left side of Figure 2, the maintainable component can be fully restored
to its original status after preventive maintenance.
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2.3. Evaluation of Repair and Maintenance Costs of a Facility

Some expenditures will be incurred as long as equipment or facility operates during
the system lifetime. The incurred expenditures are mainly from repair, penalty, replacement,
and PM costs. The repair cost (Cmr) means the expected cost to perform a minimal repair.
The penalty cost (Cpl) means that the cost was incurred from the loss of a production line
shutdown if the actual repair time exceed the time limit (ϕ). Since any breakdown of the
facility will be rectified by minimal repairs, the time of a minimal repair (tr) will need to
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be measured. Therefore, the repair time can be regarded as a random variable, and it is
assumed to follow a Gamma probability distribution. The expected repair time over the
tolerable waiting time limit ϕ can be expressed as

E[tr|ω, η] =
∫ ∞

ϕ
tr

(
ηωtω−1

r
Γ(ω)eηtr

)
dtr =

Γ(1 + ω)−ωΓ(ω) + Γ(1 + ω, ηϕ)

ηΓ(ω)
(8)

The parameters ω and η can be estimated by ω =
(

E(tr)
σ(tr)

)2
and η = E(tr)

σ(tr)
2 under

engineers’ judgment or historical data of repairs. If the repair time is over the time limit ϕ,
the penalty cost will be incurred by the owner of the equipment or facility. Γ(z0) denotes a
Gamma function with the parameter z0 and Γ(z1, z2) denotes an upper incomplete Gamma
function with the parameters z1 and z2.

The estimation of the equipment or facility’s deterioration is critical to the owner,
and therefore the manager needs to accurately evaluate the expected failure number of
the equipment or facility during its lifetime. Supposed that the failure process follows
an NHPP with a power-law intensity function λ(t). Therefore, the expected number of
failures during the lifetime [0, TL] under the age reduction factor in effective age δ

q
pm and

the interval of PM x is Nmr

(
N, x, δ

q
pm

∣∣∣αoαo, βo, αp, βp

)
. Accordingly, the total expected

repair cost during the lifetime can be given as(
Cmr + CplE[tr|ω, η]

)
Nmr

(
N, x, δ

q
pm

∣∣∣αoαo, βo, αp, βp

)
. (9)

Moreover, the PM cost will get higher and higher for sequential PM activities during
the lifetime due to mechanical aging of a deteriorating system. Therefore, the PM cost
should be related to the ith number of PM actions with the age reduction factor. Based on
this, the PM cost is defined as

Cpmk = CF(1 + τ(k− 1)x) (10)

where τ denotes the periodically increasing rate of the PM cost, and CF is the base cost of
performing a PM work. Furthermore, different PM alternatives bring a different degree of
the system’s recovery but it also influences different PM costs to the firm. Suppose that
a series of PM alternatives MP =

{
M1

P, M2
P, . . . Mq

P, . . . , MQ
P

}
can be selected, and the

corresponding PM cost and the expected failure numbers can be redefined as follows:

Cq
pm

(
Cq

F, τq, x, TL

)
=

TL/x−1

∑
k=1

Cq
pmk =

TL/x−1

∑
k=1

Cq
F
(
1 + τq(k− 1

)
x). (11)

It is important to realize the process of deterioration of the product in order to evaluate
the costs of repair during the system’s lifetime. Based on an assumption that the failure
times can be drawn from an NHPP with a specific intensity function λh(·), an estimate of
the number of expected failures Nmr

(
N, x, δ

q
pm

∣∣∣·) under the time interval of PM x as well

as the age reduction factor δ
q
pm in the effective age of the system, the total repair cost during

the system’s lifetime [0, TL] can be calculated as follows:

Cmr Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
= Cmr

(
αo(Nx)β1 + ∑N−1

k=0 αp

((
1 + k

(
1− δ

q
pm

))
x)β2 −

(
k
(

1− δ
q
pm

)
x
)β2
)) (12)

If the age reduction factor δ
q
pm is equal to one, the total repair cost can be rewritten as

follows:
Cmr Nmr

(
N, x, αo, βo, αp, βp

)
= Cmr

(
αo(Nx)βo + Nαpxβp

)
. (13)
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2.4. Optimal Preventive Maintenance Schedule with Consideration of Multiple PM Alternatives

Generally, managers need to consider how to determine the optimal maintenance
schedule to minimize the total expected costs associated with the project requirements.
Therefore, in consideration of all the candidate PM alternatives, the total expected cost per
unit time under the system lifetime TL can be given as follows:

C(N|Mq
P) =

∑N−1
k=1 Cpmk+(Cmr+Cpl E[tr |ω,η])Nmr(N,x,δq

pm|αo ,βo ,αp ,βp)+Crp
TL

=
Cq

pm(Cq
F ,τp ,x,TL)+(Cmr+Cpl E[tr |ω,η])Nmr(N,x,δq

pm|αo ,βo ,αp ,βp)+Crp
Nx .

(14)

The convexity of the cost function with respect to N under a specific PM alternative Mq
P can

be justified if the two inequalities C(N + 1
∣∣∣Mq

P) ≥ C(N
∣∣∣Mq

P) and C(N
∣∣∣Mq

P) < C(N − 1
∣∣∣Mq

P)

are both held, and the optimal N∗ can therefore be obtained. Proposition 1 give the proof of the
convexity of C(N

∣∣∣Mq
P) .

Proposition 1. Given the intensity functionNmr(N, x, α1, β1, α2, β2, δ) is strictly increasing. As
long as the two inequalities C(N + 1

∣∣∣Mq
P) ≥ C(N

∣∣∣Mq
P) and C(N

∣∣∣Mq
P) < C(N − 1

∣∣∣Mq
P) can

be both held under a specific number N, the convexity of the cost function C(N
∣∣∣Mq

P) with respect
to N can be assured.

Proof.
For C(N + 1

∣∣∣Mq
P) ≥ C(N

∣∣∣Mq
P) , we have C(N + 1

∣∣∣Mq
P)− C(N

∣∣∣Mq
P) ≥ 0

⇒ ∑N
k=1 Cpmk+(Cmr+Cpl E[tr |ω,η])Nmr(N+1,x,δq

pm|αo ,βo ,αp ,βp)+Crp

(N+1)x

−∑N−1
k=1 Cpmk+(Cmr+Cpl E[tr |ω,η])Nmr(N,x,δq

pm|αo ,βo ,αp ,βp)+Crp
Nx ≥ 0

⇒ ∑N
k=1 Cpmk+(Cmr+Cpl E[tr |ω,η])Nmr(N+1,x,δq

pm|αo ,βo ,αp ,βp)+Crp

(N+1)x

− ( N+1
N )(∑N−1

k=1 Cpmk+(Cmr+Cpl E[tr |ω,η])(N,x,δq
pm|αo ,βo ,αp ,βp)+Crp)

(N+1)x ≥ 0

⇒

(
Cmr + CplE[tr|ω, η]

)
×{

Nmr

(
N + 1, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
−
(

1 + 1
N

)
Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)}
(N+1)x

≥ ( 1
N )Crp−CpmN+( 1

N )∑N−1
k=1 Cpmk

(N+1)x

⇒
(

Cmr + CplE[tr|ω, η]
){

Nmr

(
N + 1, x, δ

q
pm, αo, βo, αp, βp

)
−
(

1 + 1
N

)
Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
} ≥

(
1
N

)
Crp − CpmN +

(
1
N

) N−1
∑

k=1
Cpmk

⇒
(

Cmr + CplE[tr|ω, η]
){

(N)Nmr

(
N + 1, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
−(N + 1)Nmr

(
N, x, δ

q
pm, αo, βo, αp, βp

)
} ≥

N−1
∑

k=1
Cpmk − NCpmN + Crp

⇒ (N)Nmr

(
N + 1, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
− (N + 1)Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
≥ ∑N−1

k=1 Cpmk−NCpmN+Crp

Cmr+Cpl E[tr |ω,η] .
(15)
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For C(N
∣∣∣Mq

P) < C(N − 1
∣∣∣Mq

P) , we have C(N
∣∣∣Mq

P)− C(N − 1
∣∣∣Mq

P) < 0

⇒ ∑N−1
k=1 Cpmk+(Cmr+Cpl E[tr |ω,η])Nmr(N,x,δq

pm|αo ,βo ,αp ,βp)+Crp
Nx

−∑N−2
k=1 Cpmk+(Cmr+Cpl E[tr |ω,η])Nmr(N−1,x,δq

pm|αo ,βo ,αp ,βp)+Crp

(N−1)x < 0

⇒
(

1− 1
N

) N−1
∑

k=1
Cpmk +

(
1− 1

N

)(
Cmr + CplE[tr|ω, η]

)
Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
+
(

1− 1
N

)
Crp

−
(

N−2
∑

k=1
Cpmk +

(
Cmr + CplE[tr|ω, η]

)
Nmr

(
N − 1, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
+ Crp

)
< 0

⇒
(

Cmr + CplE[tr|ω, η]
){(

N−1
N

)
Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
−Nmr

(
N + 1, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)}
+
(

N−1
N

)
CpmN−1 − 1

N

N−2
∑

k=1
Cpmk −

(
1
N

)
Crp

< 0
⇒
(

Cmr + CplE[tr|ω, η]
){

(N − 1)Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
−(N)Nmr

(
N − 1, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)}
+ (N − 1)CpmN−1 −

N−2
∑

k=1
Cpmk − Crp < 0

⇒
(

Cmr + CplE[tr|ω, η]
){

(N − 1)Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
−(N)Nmr

(
N − 1, x, δ

q
pm, αo, βo, αp, βp

)}
<

N−2
∑

k=1
Cpmk − (N − 1)CpmN−1 + Crp

⇒ (N − 1)Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
− (N)Nmr

(
N − 1, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
<

∑N−2
k=1 Cpmk−(N−1)CpmN−1+Crp

Cmr+Cpl E[tr|ω,η]
.

(16)

Let L(N) = (N)Nmr(N + 1, x, δ
q
pm

∣∣∣αo, βo, αp, βp)− (N + 1)Nmr(N, x, δ
q
pm

∣∣∣αo, βo, αp, βp)

for N=1, 2, . . . , and L(N) = 0 for N = 0. The condition that L(N) is strictly increasing
with N is supported and the two inequalities (15) and (16) can hold simultaneously, and
there would exist the PM number N can minimize the total expected cost per unit time
under the system lifetime. Due to the fact that the failure intensity function is increas-
ing with time for deteriorating systems, i.e., λh((N + 1)x) > λh(Nx) > . . . > λh(0) for
x, 2x, . . . , Nx, (N + 1)x, . . ., we then have as follows:

L(N)− L(N − 1)
=
{
(N)Nmr

(
N + 1, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
− (N

+1)Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)}
−
{
(N − 1)Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
−(N)Nmr

(
N − 1, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)}
> 0

= (N)
{

Nmr

(
N + 1, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
+ Nmr

(
N − 1, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)}
−(2N)Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
> 0

=
{

Nmr

(
N + 1, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
+ Nmr

(
N − 1, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)}
−2Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)
> 0
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Therefore, the convexity of the cost function C(N
∣∣∣Mq

P) with respect to N is thus
assured according to Jensen’s inequality. �

The heuristic solution algorithm for obtaining the minimal cost by setting N∗ and Mq∗
P

can be described in Figure 3.
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3. Bayesian Decision Process by Using Domain Experts’ Judgment and Collected
Information
3.1. Analysis by the Natural Conjugate Probability Distribution

It might be not easy to perform Bayesian decision analysis due to the fact that nu-
merical integration is needed to derive the prior and posterior distributions. As the state
space in our case contains multiple random variables, the previous analysis would have
been much more complicated. Huang and Bier [38] proposed a natural conjugate prior
distribution for the power law deteriorating model for repairable systems, and the form is
as follows:

f (α, β) = Kακ−1βκ−1(e−vυκ
)β−1e−αψυβ

. (17)

In order to make sure the distribution sums up to one, K is used to be a normalizing
factor. The main advantage is to using the natural conjugate prior distribution to proceed
with a straightforward analysis instead of the complicated traditional calculations. In
Equation (17), the joint probability distribution with the desired prior marginal moments
are composed of the four parameters (ψ, v, κ, and υ). By applying Equation (17) to the prior
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probability distribution of α and β, it will be easy to deduce the expected failure number
based on the prior distribution, and its form is given by

E
Pri
[Nmr(TL|α, β)] =

∫ ∞
0

∫ ∞
0

∫ TL
0 αβtβ−1 f (α, β)dtdβdα

∼= κvκ

ψ (v + ln[υ]− ln[TL])
−κ .

(18)

Here, TL denotes the actual age of the equipment or facility. The prior analysis of the ex-
pected failure number can be performed by straightforwardly calculating E

Pri
[Nmr(TL|α, β)]

in Equation (18) with the four parameters (ψ, v, κ, and υ) which are specified by the
reliability or domain experts with their prior knowledge and judgment about the deterio-
rating system (µα, σα, µβ, and σβ). µα, σα, µβ, and σβ denote the mean values and standard
deviations of α and β, respectively. Furthermore, in order to calculate E

Pri
[Nmr(TL|α, β)], the

values of the four parameters need to be obtained first. Equations (19)–(22) can be used to
obtain the four parameters values as follows:

v =
µβ

σ2
β

(19)

κ =

(
µβ

σβ

)2

(20)

υ = ev(ξ1/κ−1+
√

ξ1/κ(ξ1/κ−1)) (where ξ =
µ−2

α σ2
α + 1

µ−2
β σ2

β + 1
), (21)

and

ψ =

(
κ

µα

)(
v

v + ln[υ]

)κ

(22)

However, if the decision maker may not be convinced by the result of the prior
analysis, he/she may collect failure datasets in practice to adjust the prior analysis. It
is called the posterior analysis in a Bayesian decision process. Once the decision maker
wants to proceed with the posterior analysis, he/she needs to prepare the extra budget for
accelerated deterioration experiments to increase the accuracy of the prediction. If a further
investigation is undertaken, the sample size should be carefully examined in consideration
of the budget of the experiments. If the n breakdown times are collected from accelerated
deterioration experiments (x1, x2, · · · , xn), the property of natural conjugate families can
be used to obtain the posterior distribution of α and β without further computation. Its
form is as follows:

g
(

α, β, D(n)
)

∝ L(D(n)
∣∣∣α, β) f (α, β)

= K′ακ+n−1βκ+n−1
(

e−vυκ
n
∏
i=1

xi

)β−1
e−α(ψυβ+xβ

n).
(23)

L(D(n)|α, β) = αnβn(∏n
i=1 xi)

β−1e−αxβ
n is the likelihood function of NHPP with the

power-law intensity function, and K′ denotes a normalizing factor to ensure the distribution
sums up to one. However, due to the math complexity of the expected failure number of the
posterior analysis, the closed form expression cannot be obtained. Fortunately, numerical
integration methods (e.g., Monte Carlo numerical integration) can be applied to calculate
the prediction of the expected failure number based on the posterior distribution, and it
can be given by

E
Pos

[
Nmr

(
TL

∣∣∣α, β, D(n)
)]

=
∫ ∞

0

∫ ∞
0

∫ TL
0 αβtβ−1g

(
α, β, D(n)

)
dtdβdα

∼=
∫ ∞

0

∫ ∞
0 αTβ

L g
(

α, β, D(n)
)

dβdα.
(24)
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Therefore, both experts’ knowledge and sampling information can be considered
in the posterior analysis. Moreover, in consideration of the hybrid deterioration and
the number of PM with the age reduction factor, the state space can be presented as
Θ :

{
αo, βo, αp, βp

∣∣αo ∈ (0, ∞), βo ∈ (0, ∞), αp ∈ (0, ∞), βp ∈ (0, ∞)
}

, and the expected
failure numbers of the prior analysis and the posterior analysis can be given as follows:

E
Pri

[
Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)]
= κovo

κo

ψo
(vo + ln[υo]− ln[Nx])−κo

+
(

κpvp
κp

ψp

) N−1
∑

k=0

{(
vp + ln

[
υp
]
− ln

[(
1 + k

(
1− δ

q
pm

))
x
])−κp

−
(

vp + ln
[
υp
]
− ln

[
k
(

1− δ
q
pm

)
x
])−κp

}
,

(25)

and
E

Pos

[
Nmr

(
N, x, δ

q
pm

∣∣∣αo, βo, αp, βp

)]
=
∫ ∞

0

∫ ∞
0 αoTβo

L g(αo, βo)dβodαo

+
N−1
∑

k=0

{∫ ∞
0

∫ ∞
0 αp

((
1 + k

(
1− δ

q
pm

))
x
)βp

g
(
αp, βp

)
dβpdαp

−
∫ ∞

0

∫ ∞
0 αp

(
k
(

1− δ
q
pm

)
x
)βp

g
(
αp, βp

)
dβpdαp

}
.

(26)

It should be noted that the parameters of the hybrid deteriorating function (vo, κo,
υo, ψo, vp, κp, υp, and ψp) can be calculated by applying Equations (19)–(22). After getting
the parameters’ value, the expected failure numbers, E

Pri
[Nmr(·)] and E

Pos
[Nmr(·)]), can be

obtained to calculate the expected costs per unit time E
Pri

[
C(N

∣∣∣Mq
P)
]

and E
Pos

[
C(N

∣∣∣Mq
P)
]

from Equations (27) and (28), and their form are as follows:

E
Pri

[
C(N

∣∣∣Mq
P)
]

=
Cq

pm(Cq
F ,τq ,x,TL)+(Cmr+Cpl E[tr |ω,η]) E

Pri
[Nmr(N,x,δq

pm|αo ,βo ,αp ,βp)]+Crp

Nx

(27)

and
E

Pos

[
C(N

∣∣∣Mq
P)
]

=
Cq

pm(Cq
F ,τq ,x,TL)+(Cmr+Cpl E[tr |ω,η]) E

Pos
[Nmr(N,x,δq

pm|αo ,βo ,αp ,βp)]+Crp

Nx .

(28)

By applying the solution algorithm shown in Figure 3, the minimal expected cost
of the prior analysis or the posterior analysis can be determined with the settings of the
Bayesian parameters.

3.2. The Bayesian Decision Process

The decision maker should confirm whether the relevant assumptions are satisfied
or not in the case before deciding to proceed with the Bayesian analysis. The reliability
or domain experts can provide the judgment of the parameters’ value (µαo , σαo , µβo , σβo ,
µαp , σαp , µβp , and σβp ) according to their prior knowledge and experience. After this step,
the decision makers can proceed with the prior analysis to minimize the expected cost.
Suppose the decision makers consider that the prior analysis is reliable. In that case, it is
not necessary to collect extra experimental data to adjust their prior judgment and just
proceed with the choice of the candidate PM alternatives.

However, if the decision makers feel that the prior analysis might not be reliable or
convinced, they would request more information to justify or amend the prior analysis.
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However, how many experimental data will be enough? It depends on the firm’s budget
and possible benefit for amending the original PM alternative. Once the decision makers
decide to proceed with the posterior analysis, the cost of collecting this additional informa-
tion should also be considered in the decision process. The posterior analysis can utilize
additional information from accelerated deterioration experiments along with domain
experts’ judgment to make the final decision. Nevertheless, the calculation of the posterior
analysis is not easy to performance since numerical methods, Monte Carlo integration
and computation engines would be needed to get the non-closed form solution. Figure 4
illustrates the analysis of the Bayesian decision process.

Axioms 2022, 11, x FOR PEER REVIEW 14 of 23 
 

Evaluating all the PM alternative  
parameters' mean and std. dev. of 

αo, βo,  αp and βp of the prior 
distributions by experts opinions

Start

Convince?

Prior
Analysis

Posterior
Analysis

Investigating all the parameters 
of the related PM, repair, penalty, 
and replacement costs for every 

PM alternative 

Devise multiple PM alternatives 

Calculating the expected cost by the 
prior analysis for all the PM 

alternatives to obtain the optimal 
number of PM action N

Choose the best PM 
alternative of the prior 

analysis to proceed  

Fail intensity function

Prior distribution
f(α,β)

Cost model

End

Collecting experimental data 
D(n)={x1,x2,…, xn} from the 

best test alternative

Calculating the expected cost by the 
posterior analysis for the former PM 

alternative to obtain the optimal 
number of PM action N

Adjusting the PM decision 
of the prior analysis

No

Yes

Fail intensity function

Posterior distribution
g(α,β,D(n))

Cost model

Numerical Analyses
Computation Engine

 | , , ,h o o p pt    

 | , , ,h o o p pt    

1 2{ , , .., ,.., }q Q
P P P P PM M M M M

( | )q
P

Pri
E C N M  

( | )q
PPos

E C N M  

 
Figure 4. Flowchart for Bayesian decision process. 

3.3. Computerized Information System Design 
In general, the optimal decision would not be easily obtained without a computer-

ized information system when dealing with such complicated mathematical models. The 
entire system can be split into two subsystems to improve manageability. Engineers and 
domain experts can use the model management system to update the model base and 
database. A decision support system is also implemented to give decision makers the 
knowledge they need to make informed choices. The engineers should inspect the ex-
penses, failure intensity functions, likelihood of repair time, penalty cost, replacement 
cost, and related probabilities, etc. characteristics before operating the model management 
system. When the engineers have these data, they can use the model management system 
to store them in the database. Additionally, the lack of the deterioration information 
would make it difficult to assess how the new system is deteriorating and what the fre-
quency of failures is within a time interval. Therefore, based on their expertise, the statis-
tical characteristics and associated factors can be assessed by the reliability engineering 
domain experts. In addition, the engineers must gather failure data for the facilities from 
various engineering experiments if a posterior analysis is desired by the decision maker. 
Moreover, we can store or access data more effectively through the use of a data formal-
izing mechanism. This mechanism converts inconsistent data to more consistent data for 

Figure 4. Flowchart for Bayesian decision process.

3.3. Computerized Information System Design

In general, the optimal decision would not be easily obtained without a computerized
information system when dealing with such complicated mathematical models. The entire
system can be split into two subsystems to improve manageability. Engineers and domain
experts can use the model management system to update the model base and database.
A decision support system is also implemented to give decision makers the knowledge
they need to make informed choices. The engineers should inspect the expenses, failure
intensity functions, likelihood of repair time, penalty cost, replacement cost, and related
probabilities, etc. characteristics before operating the model management system. When
the engineers have these data, they can use the model management system to store them



Axioms 2022, 11, 734 15 of 23

in the database. Additionally, the lack of the deterioration information would make it
difficult to assess how the new system is deteriorating and what the frequency of failures
is within a time interval. Therefore, based on their expertise, the statistical characteristics
and associated factors can be assessed by the reliability engineering domain experts. In
addition, the engineers must gather failure data for the facilities from various engineering
experiments if a posterior analysis is desired by the decision maker. Moreover, we can
store or access data more effectively through the use of a data formalizing mechanism. This
mechanism converts inconsistent data to more consistent data for storage and access to the
database and model base. Additionally, computing engines could be required to handle the
complexity of finding the best answer. By utilizing an application programming interface
(API), system developers can move forward with all of the mathematical analyses for the
decision support system. The design of the computerized information system is shown in
Figure 5.
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4. Application and Sensitivity Analyses
4.1. Application of Prior and Posterior Analyses

Suppose that a firm plans to purchase a batch of new industrial equipment for manu-
facturing its products. After the purchase and setting of the industrial equipment up in its
production lines, the firm has to make an effective preventive maintenance plan for factor
management. However, due to the lack of the equipment’s deterioration information, the
decision makers of the firm would be hard to make an effective preventive maintenance
plan to reduce unexpected equipment breakdowns for saving the related cost. Moreover,
the industrial equipment’s deterioration can be categorized into maintainable and non-
maintainable failure modes. It means that some components can be repaired or replaced
to restore the equipment to a younger status but some components cannot be restored to
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the system’s status by repair or replacement works. Therefore, the firm needs to estimate
the two modes’ deterioration to handle the equipment’s failures occurring. Since the new
equipment did not take any accelerating deterioration experiments for some reasons, the
equipment’s deterioration cannot be estimated by traditional statistical methods. Due to the
fact that to proceed with a complete accelerating deterioration experiment will need a lot of
time and expenditure, the firm may not proceed with such experiment in time. Accordingly,
in order to solve the issue of insufficient data, the decision makers would try to apply a
Bayesian decision process to estimate the deterioration. The Bayesian decision process can
be separated into two phases: the prior analysis, which is assessed by reliability domain
experts, and the posterior analysis, which requires failure data from engineering tests. In
the first phase, the decision makers will ask domain experts to evaluate the maintainable
and non-maintainable parameters’ statistical characteristics for the prior analysis. After
the experts’ evaluation, the eight prior parameters are set as µαo = 0.6, µβo = 0.15, σαo = 1.25,
σβo = 0.3125; µαp = 0.85, µβp = 0.2125, σαp = 1.75, and σβp = 0.4375. Besides, the firm’s
engineering department proposed five candidate PM alternatives for decision makers. This
information can be referred to Table 2. Besides, since different PM alternatives can bring
different degrees of system’s recovery, the corresponding PM costs are also different. PM al-
ternatives 4 & 5’s age reduction (δ4

pm = 0.95, δ5
pm = 1.0) are higher than the others (δ1

pm = 0.80,
δ2

pm = 0.85, δ3
pm = 0.90). The higher age reduction PM alternatives can effectively reduce

the increase of the possible repair cost and penalty cost but they also increases the related
PM cost. Therefore, it is hard to judge which PM alternative is best for the firm before the
evaluation of the all PM alternatives. Moreover, the experts also evaluate the repair time’s
statistical characteristics and consider the time is a random variable and follows a Gamma
probability distribution. The statistical characteristics of the repair time are estimated as
E(tr) = 5 h and σ(tr) = 3 h, respectively. However, the tolerable waiting time is only 4.5 h
in practice. If the repair time is over the tolerable waiting time, the production line will
be halted and bring the related loss. The loss can be evaluated as the penalty cost. The
parameters ω and η of the Gamma distribution can be calculated by the simultaneous
equations ω = E(tr)

2/σ(tr)
2 and η = E(tr)/σ(tr)

2. Based on the above mentioned, the
detailed information of the five candidate PM alternatives with the firm’s domain experts
evaluation and the cost parameters is given as Table 2.

Table 2. The detailed information of all candidate PM alternatives.

Parameters for the two categories deterioration, which were judged by
experts

µαo = 0.6, µβo = 0.15, σαo = 1.25, σβo = 0.3125; µαp = 0.85, µβp =
0.2125, σαp = 1.75, σβp = 0.4375

Interval between two PM actions x = 0.5 years
PM’s Base cost of the five candidate PM alternatives Cq

F = {$780, $790, $800, $880, $890}
Age reduction factors of the five candidate PM alternatives δ

q
pm = {0.8, 0.85, 0.9, 0.95, 1.0}

Periodically increasing rates of PM cost of the five candidate PM
alternatives τq = {0.19, 0.195, 0.2, 0.235, 0.24}

Replacement cost Crp = $20, 000
Expected cost of performinga minimal repair Cmr= $250

Penalty cost if the repair time
exceed the time limit ϕ

Cpl = $90

Expected value and standard deviation of performing
a minimal repair E(tr) = 5 h, σ(tr) = 3 h

The limit of tolerable waiting time
for performing a minimal repair ϕ = 6.5 h

After performing the prior analysis of the Bayesian decision process based on the
proposed solution algorithm, the trend of the average cost of PM alternatives 1–5 are
presented in Figure 6. Table 3 provides the related results of PM alternatives 2–4 in detail.
The best PM alternative is no.3, and the annual average cost, PM cost, and replacement cost
are estimated to be $6212, $2956, and $2105 at 9.5 years. According to the prior analysis
results in Figure 6, the optimal lifetime of equipment’s replacement of PM alternatives 1–5
should be set to 9, 9, 9.5, 8.5, and 9 years respectively, and the annual average cost will
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be $6329, $6268, $6212, $6634, and $6585. It can be observed that the highly intensive PM
alternative may not have a beneficial influence on decreasing the cost. In general, highly
intensive PM alternatives (4 & 5) can lower equipment failure times to save expenditure on
repairs but they need more the related PM costs. On the contrary, the lower intensive PM
alternatives (1 & 2) are able to decrease the related PM costs but increase expenditure on
repairs. However, although lower intensive PM alternatives may bring serious equipment’
failures at the post-phase, the firm may adopt the strategy of shortening equipment’s
lifetime to prevent this disadvantage. According to the above mentioned, we understand
that the firm cannot judge and decide the best PM alternative by qualitative analysis or
without cost calculation. Moreover, it can be seen that the average cost of PM alternative 3
is lower than the other PM alternatives and the optimal equipment’s lifetime is 9.5 years
(marked with * in Tables 3 and 4). However, the average cost of the lower intensive PM
alternatives are very close to PM alternative 3 before 8 years. It indicates that the firm
may choose a medium to lower intensive PM alternative with a shorter lifetime if the firm
encounter a budget or financial issue. Accordingly, the firm may adjust the present PM
alternative to adapt different scenarios according to its financial health in practice.
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Table 3. The expected preventive cost, repair cost, penalty cost, replacement cost and overall cost per
unit and year for PM Alternatives 2, 3, 4 estimated by the prior analysis.
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0.5 0 0 0 261 261 261 219 219 219 40,000 40,480 40,480 40,480
1 867 880 983 295 291 287 247 244 240 20,000 21,409 21,415 21,510

1.5 1207 1227 1380 325 317 308 272 266 258 13,333 15,138 15,142 15,280
2 1416 1440 1630 353 340 328 296 285 275 10,000 12,064 12,066 12,233

2.5 1572 1600 1822 379 363 346 318 304 290 8000 10,269 10,267 10,458
3 1702 1733 1984 404 384 364 339 322 305 6667 9111 9106 9319

3.5 1816 1851 2129 429 405 380 359 339 319 5714 8318 8310 8543
4 1922 1960 2264 452 425 397 379 356 332 5000 7753 7741 7993

4.5 2021 2062 2392 476 444 412 399 372 346 4444 7340 7323 7594
5 2115 2160 2515 499 463 428 418 389 358 4000 7032 7012 7301

5.5 2207 2255 2634 522 482 443 437 404 371 3636 6802 6777 7084
6 2296 2347 2751 544 501 457 456 420 383 3333 6630 6601 6925

6.5 2383 2437 2865 567 519 472 475 435 395 3077 6502 6468 6809
7 2468 2526 2978 589 537 486 494 450 407 2857 6408 6371 6729

7.5 2553 2613 3090 611 555 500 512 466 419 2667 6343 6301 6676
8 2637 2700 3201 633 573 514 531 480 431 2500 6300 6254 6646
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Table 3. Cont.

TL

Cq
pm(Cq
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TL

Cmr E
Pri
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TL
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Pri
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P M3
P M4

P

8.5 2719 2786 3311 655 591 528 549 495 442 2353 6276 6225 6634
9 2802 2871 3420 677 608 541 567 512 454 2222 6268 6214 6637

9.5 * 2883 2956 3529 699 626 555 586 525 465 2105 6273 6212 * 6654
10 2964 3040 3637 720 643 568 604 539 476 2000 6289 6223 6681

10.5 3045 3124 3744 742 661 581 622 554 487 1905 6314 6243 6718
11 3126 3207 3851 764 678 595 640 568 499 1818 6348 6272 6763

11.5 3206 3290 3958 786 695 608 659 583 510 1739 6389 6308 6815
12 3286 3373 4065 807 712 621 677 597 520 1667 6436 6350 6873

12.5 3365 3456 4171 829 730 634 695 612 531 1600 6489 6397 6936
13 3445 3538 4277 851 747 647 713 626 542 1538 6547 6449 7005

13.5 3524 3621 4383 872 764 660 731 640 553 1481 6609 6506 7077
14 3603 3703 4489 894 781 672 750 655 564 1429 6676 6567 7154

14.5 3682 3785 4595 916 798 685 768 669 574 1379 6745 6631 7233
15 3761 3867 4700 938 815 698 786 683 585 1333 6818 6698 7316

Table 4. The expected preventive cost, repair cost, penalty cost, replacement cost and overall cost per
unit and year for PM Alternative for the prior and posterior analyses.

TL
Cq

pm(Cq
F,τq,x,TL)
TL

CmrE[Nmr(·)]
TL

CplE[tr|ω,η]E[Nmr(·)]
TL Crp

TL
E

Pri
[C(N|Mq

P)] E
Pos

[C(N|Mq
P)]

Prior Posterior Prior Posterior

0.5 0 261 252 219 212 40,000 40,480 40,464
1 880 291 287 244 240 20,000 21,415 21,407

1.5 1227 317 313 266 262 13,333 15,142 15,135
2 1440 340 334 285 280 10,000 12,066 12,055

2.5 1600 363 354 304 297 8000 10,267 10,251
3 1733 384 372 322 312 6667 9106 9083

3.5 1851 405 388 339 325 5714 8310 8279
4 1960 425 404 356 339 5000 7741 7702

4.5 2062 444 419 372 351 4444 7323 7276
5 2160 463 433 389 363 4000 7012 6956

5.5 2255 482 446 404 374 3636 6777 6712
6 2347 501 460 420 385 3333 6601 6525

6.5 2437 519 472 435 396 3077 6468 6382
7 2526 537 485 450 406 2857 6371 6274

7.5 2613 555 497 466 416 2667 6301 6193
8 2700 573 508 480 426 2500 6254 6134

8.5 2786 591 520 495 436 2353 6225 6094
9 2871 608 531 512 445 2222 6214 6069

9.5 * 2956 626 542 525 454 2105 6212 * 6057
10 ** 3040 643 553 539 463 2000 6223 6056 **
10.5 3124 661 563 554 472 1905 6243 6064
11 3207 678 574 568 481 1818 6272 6080

11.5 3290 695 584 583 489 1739 6308 6103
12 3373 712 594 597 498 1667 6350 6132

12.5 3456 730 604 612 506 1600 6397 6166
13 3538 747 614 626 514 1538 6449 6205

13.5 3621 764 623 640 522 1481 6506 6248
14 3703 781 633 655 530 1429 6567 6295

14.5 3785 798 642 669 538 1379 6631 6345
15 3867 815 651 683 546 1333 6698 6398

However, if the firm didn’t have enough confidence to believe the outcomes of the
prior analysis results, the decision makers will request more evidences to verify the sys-
tem’s deterioration. Therefore, in order to adjust the previous analysis, it is necessary to
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gather the extra failure data by proceeding with accelerated deterioration experiments. In
consideration of the limits budget and time, the firm can only gather few experimental data
to revise the previous analysis result. After getting the extra experimental data to proceed
with the posterior analysis, the data can integrate with the previous experts’ opinions of the
prior analysis, and the complete analysis results are reported in Table 4. Figure 7 shows that
the overall cost per unit and year of the posterior analysis is always smaller than that of
the prior analysis. The best lifetime of an equipment will be extended to 10 years (marked
with ** in Table 4) and the overall cost per unit and year will be $6056. After reviewing the
posterior analysis’s results, it is clear that the prior analysis’s conclusions may be overly
pessimistic since the re-estimating deterioration in the posterior analysis is less severe than
that in the prior study. In other words, the firm should moderately extend the planned
lifetime of equipment to save the related costs.
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4.2. Sensitivity Analyses

Misjudging the parameters values of the maintainable and non-maintainable modes
µαp , µβp , µαo , and µβo may have an influence on the predictions of the overall cost per unit
and year, thus the firm should be aware of potential changes in the projections. As a result,
sensitivity analysis may be undertaken to evaluate differences in the equipment’s lifetime
and the overall cost. It is logical to assume that if the firm underestimates these parameters’
value, the related cost are also underestimated, and it will lead to poor judgments such as
incorrectly extending equipment’s lifetime. According to Figure 8, the firm will prolong the
lifetime of equipment by taking advantage of the lower growing degradation if these pa-
rameters values are decreasing. Moreover, since the variation effect of the non-maintainable
parameters is greater than that of the maintainable parameters, the firm needs carefully
to evaluate the non-maintainable parameters to avoid inappropriate decisions especially
for shape factors. It can be seen in that the variation of µβo between the range (−30%,
+30%) causes the change of decision about lifetime from 7 years to 10 years. The variation
of the overall cost is also huge. However, the effect of misjudging the shape factor of
the maintainable parameter µβp will be smaller because the system’s deterioration can be
restored to a younger status after a PM action. It means that the growth of the effect age
can be slowed down with time by periodic PM actions. Besides, misjudging the parameters
of standard deviation σαp , σβp , σαo , and σβo will influence the range of confidence intervals
of the expected overall cost but it may not result in risky decisions because the optimal
decision of the equipment’s lifetime will be less changed with these parameters of standard
deviation.
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Besides, the related parameters regarding PM, repair, penalty would also influence
the estimation of the overall cost. The base cost Cq

F seems the most important influencing
factor in this case because the portion of this factor is almost 30–50% of the overall cost.
Increasing the base cost will cause the optimal decision of shortening equipment’s lifetime.
It can be seen that the variation of Cq

F between the range (−30%, +30%) leads to the change
of decision about lifetime from 10.5 years to 8.5 years, and the overall cost at the individual
optimal lifetime will go up from $5306 to $7061. Moreover, the increaing rate τq is an
important parameter for measuring the expected overall cost. Inflation, wage increases,
or the cost of supplying components may be contributing factors to the increasing rate
τq. As a result, if the company believes or predicts that the vital components for the
replacement of PM actives will rise in the future, the company should plan to reduce the
equipment’s lifetime since the average replacement cost of the total equipment cannot cover
the cumulative PM cost. It can be seen in Figure 9. The variation of τq between the range
(−30%, +30%) lead to the change of the optimal lifetime T∗L from 10.5 years to 8.5 years,
and the estimated overall cost will go up from $5763 to $6609. Besides, the variations of
repair cost Cmr and the penalty cost Cpl between the range (−30%, +30%) also lead to the
change of the optimal lifetime from 9.5 years to 9 years. However, the effects are less than
PM’s parameters in this case because the equipment can adopt some high intensive PM
strategies to lower the occurances of breakdowns. However, in some cases, the equipment
may cannot adopt high intensive PM strategies due to the equipment’s characteristics. In
such cases, the repair and penalty costs will be the major portion of the overall cost, and
the firm should try to develope effective repair techniques to improve the system’s stability
for raising the efficiency of operatons or production lines.
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5. Conclusions

The study aims to provide Bayesian decision analyses for preventive maintenance
related to the hybrid competing failure mode. The proposed model not only can proceed
with the prior analysis under a lack of historical failure data but also can consider sampling
information to proceed with the posterior analysis. It can help firms to make their best PM
alternatives to achieve the advantages of lower cost and operational stability. According
to the analysis results of Section 4, the managerial insights and contributions can be
summarized as follows: (1) The proposed Bayesian analysis will be a feasible solution in
evaluating the related repair and PM costs if the firm cannot proceed with accelerating
deterioration experiments to gather enough information to estimate the model’s parameters
by traditional statistical methods. (2) A highly intensive PM alternative may not have a
beneficial influence on reducing the related costs. It depends on whether the benefit of
reducing equipment breakdowns is greater than the increment of PM cost. Therefore, the
firm needs to evaluate the trade-off between the two influences before the decision-making.
(3) A lower intensive PM alternative may bring serious equipment’ breakdowns during
the post-phase. The firm may adopt the strategy of shortening the equipment’s lifetime
to prevent this disadvantage. (4) It is suggested that the firm may adopt a medium-to-
lower intensive PM alternative with a shorter lifetime if the firm encounters a budget or
financial issue in practice. In other words, a firm should not adopt a highly intensive PM
alternative with a longer lifetime in consideration of the payback period even if the return
of the PM’s investment is high. (5) Misjudging the parameter values of the maintainable
and non-maintainable modes will lead to inappropriate decisions. Therefore, the firm
should be aware of the potential changes in the related costs and the optimal lifetime to
react appropriately. (6) The influence of misjudging the maintainable parameters will be
minor because the system’s deterioration can be restored to a younger status after a PM
action. It means that the risk of misestimating maintainable parameters is less than that
of non-maintainable parameters. (7) Misjudging the standard deviation of the parameters
will influence the estimation of the confidence intervals of the overall cost. However, it
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may not result in more risky decisions since the optimal decision will be less affected by
the standard deviations.

In future works, the proposed model could be refined by taking into account the
deterioration of equipment or facilities on two-dimensional failure variables. Since most
equipment or facilities’ deterioration depends on time and usage, considering only one of
these factors could lead to inaccurate estimates. In such cases, a two-dimensional failure
model would be suitable for estimating equipment or facilities’ deterioration. Accordingly,
the two-factor joint probability distribution (time, usage) will be constructed by using a
bivariate-Weibull probability distribution. Besides, the approaches of condition-based PM
can be also applied in this scenario. Therefore, decision-makers can utilize the extended
approaches to improve their PM strategies.
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