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Abstract: The limiting current density is one of to the most important indicators in electroplating
for the maximal current density from which a metal can be deposited effectively from an electrolyte.
Hence, it is an indicator of the maximal deposition speed and the homogeneity of the thickness of the
deposited metal layer. For these reasons, a major interest in the limiting current density is given in
practical applications. Usually, the limiting current density is determined via measurements. In this
article, a simple model to compute the limiting current density is presented, basing on a system of
diffusion–reaction equations in one spatial dimension. Although the model formulations need many
assumptions, it is of special interest for screenings, as well as for comparative work, and could easily
be adjusted to measurements.

Keywords: modeling; electroplating; limiting current density; current density; diffusion boundary
layer; systems of diffusion reaction equations; three-component system; thermodynamic equilibrium
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1. Introduction

In electrochemisty and chemical engineering, the limiting current density indicates
the state at which the maximum metal deposition can take place in a galvanic deposition,
see [1,2]. For this reason in practical applications, the limiting current density is often
used as an indicator for the maximal deposition speed during electroplating. Additionally,
note that due to Faraday’s laws, see [1–4], the deposited mass of metal is proportional to
the applied current on the cathode surface, which differs on complex geometries, see [5].
With the limiting current density as an indicator of the upper bound for the localized metal
deposition speed, it is an indicator for the attainable homogeneity of the deposited metal
layer as well.

The limiting current density of an electrolyte is most commonly determined with
electrochemical measurements, such as current–potential curves, see, for example, [1,3].
With these means, electrolyte design via the limiting current density can be very time
consuming and expensive in terms of needed material, especially if screenings are taken
into account. For this reason, a model is needed, which can be used as an additional tool to
support the screening and hence needs to be relatively efficient to evaluate.

In the literature, both globalized models, see [1,3,5,6], considering the processes in a
galvanic bath with descriptions of static electric fields at their core, and localized models,
considering the processes directly at the electrodes concentrating on diffusion–reaction
formulations, see [2,3,7–11], exist and could give hints for the limiting current density. State-
of-the-art approaches to model the limiting current density, as discussed in [12], use the
assumption of thermodynamic equilibrium in the bath and use the corresponding species
distributions. However, those approaches omit the processes in the diffusion boundary
layer. Hence in the following work, a model to compute the limiting current density
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by combining the idea description of the species concentrations by diffusion reaction
equations with the idea from [12] and a model adaption from the model in [13], assuming
thermodynamic equilibrium in the bath.

In Section 2, the mathematical model for the limiting current density will be derived,
basing on a three-component system of diffusion–reaction equations describing the species
concentrations in the diffusion boundary layer and will be treated with the numerical
methodology described in [14]. A method to evaluate the thermodynamic equilibria is
stated in [15].

In Section 3, the model will be applied to a Cu–CO3 electrolyte and demonstrates the
applicability of the methodology, which is described in [14,15], to a real-life problem and
will be compared to a well-known model with no reactions in the diffusion boundary layer,
described in [13].

Lastly, in Section 4, the results of the article will be summarized and discussed. Addi-
tionally, an outlook for future works will be given.

2. Mathematical Modeling of the Limiting Current Density

This section is devoted to the mathematical modeling of the limiting current density.
This model strongly relies on the description of the localized species concentration distribu-
tions in the diffusion boundary layer at the cathode. The description starts with the general
setup of the physical experiments.

Assume that there are a cathode and an anode positioned in an aqueous electrolyte
consisting of a metal M, a ligand L and complexes Kκ , for 1 ≤ κ ≤ R ∈ N, produced from the
following reactions

lκ L +mκ M + hκH+ oκOH⇌ Llκ Mmκ Hhκ OHoκ =∶ Kκ , (1)

where lκ is the stoichiometric index of the ligand L, mκ is the stoichiometric index of the
metal M, hκ is the stoichiometric index of the protons H+ and oκ is the stoichiometric index
of the hydroxide-ions OH−. Additionally, assume that in the bath, except for the diffusion
boundary layers at the electrodes, the species-concentrations cS,eq, for S ∈ {M, L, K1, . . . , KR}
are in thermodynamic equilibrium. For further discussion, note that numbers and functions
are commonly indexed with corresponding species. To shorten the notation, where it is
useful, in this article species are replaced by the index S and a list of species that can be
inserted as S.

As discussed in [15,16], the concentrations in thermodynamic equilibrium fulfill the
following mass conservation laws

cL,eq +
R
∑
κ=1

lκcKκ ,eq = mL, (2a)

cM,eq +
R
∑
κ=1

lκcKκ ,eq = mM, (2b)

cH,eq +
R
∑
κ=1

lκcKκ ,eq = mH, (2c)

cOH,eq +
R
∑
κ=1

lκcKκ ,eq = mOH, (2d)

where mS, for S ∈ {L, M, OH, H}, denotes the total masses of the species S in the bath.
To complete the mathematical system describing the thermodynamic equilibrium, as in [15],
the definition of the complex-formation constant 0 < βκ of the κ-th reaction in (1), see [16],
is used:

cKκ ,eq = βκcmκ
M,eqclκ

L,eqchκ
H,eqcoκ

OH,eq (2e)
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As discussed in [15], the Equations (2a)–(2e) describe a model for the concentrations
in thermodynamic equilibrium in the bath and are uniquely solvable for non-doubling
definitions of complexes.

To describe the cathodic processes it is assumed, as in [7,8], that, locally, at the cathode
in the diffusion boundary layer of the width δX , the species distributions are not determined
by thermodynamic equilibrium but by diffusion and the following single reaction:

L +M
k1⇌
k2

K (3)

Additionally, assume that the only geometrical property due to which the concentra-
tion cS, with S ∈ {M, L, K}, changes is the distance to the cathode. Without loss of generality,
assume that the cathode surface is positioned at x = 0, hence the domain in which the
discussion takes place is Ω =]0, δX[. As defined in [1], the limiting current density is the
maximal current density at which the deposition of the metal M can take place. Hence when
applying the limiting current density, maximal consumption of the metal M takes place.
Thus, the metal-concentration at the cathode vanishes in the kinetic equilibrium. Hence, it
suffices to consider static diffusion–reaction laws to compute the limiting current density
and set cM(0) = 0 as boundary condition. Additionally, suppose that no species transport
of the species L or K takes place over the cathode surface, i.e., d

dx cS(0) = 0, for S ∈ {L, K}.
With the discussion and assumptions above the concentrations cL, cM and cK the species
M, L resp. K can be described by the following boundary-value problem, see [2]:

0 = DL
d2

dx2 cL + k2cK − k1cLcM, in Ω (4a)

0 = DM
d2

dx2 cM + k2cK − k1cLcM, in Ω (4b)

0 = DK
d2

dx2 cK − k2cK + k1cLcM, in Ω (4c)

0 = cM(0), cM,eq = cM(δX), cL,eq = cL(δX), cK,eq = cK(δX) (4d)

0 = d
dx

cL(0), 0 = d
dx

cK(0) (4e)

Note that the problem formulation (4a)–(4e) does not include the positivity of the
species concentration, which will lead to negative species distributions, as discussed in [14].
A common strategy to include the positivity of the concentrations into a model formulation
is the usage of restrained minimization problems, see [17]. A reformulation of (4a)–(4e)
was undertaken in [14] and relies on the introduction of new variables pS = d

dx uS, for all
S ∈ {M, L, K}. The introduction of the new variables yields the following mathemati-
cal problem.

Find (uS, pS)S∈{L,M,K} ∈ H1(Ω)×6 such that the following equations hold true:

0 = DL
d

dx
pL + k2cK − k1cLcM, in Ω (5a)

0 = DM
d

dx
pM + k2cK − k1cLcM, in Ω (5b)

0 = DK
d

dx
pK − k2cK + k1cLcM, in Ω (5c)

0 = pS − cS (5d)

0 = cM(0), cM,eq = cM(δX), cL,eq = cL(δX), cK,eq = cK(δX) (5e)

0 = d
dx

cL(0), 0 = d
dx

cK(0) (5f)
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Note that with H1(Ω) the vector space of once weakly differentiable L2 functions is
denoted, cf. [18,19], i.e., the functions for which partial integration is well defined.

Assuming the mathematical problem (5a)–(5f) is uniquely solvable it is equivalent to
the following least-squares problem:

Find x ∈ X = H1(Ω)×6 such that the following equation holds true:

x =argmin
y∈X

LS(y) (6)

where the nonlinear least-squares functional LS ∶ X → R for all y = (vS, qS)S∈{M,L,K} ∈ X is
given by

LS(y) ∶=∥DL
d

dx
qL + k2vK − k1vLvM∥

2

L2(Ω)
+ ∥DM

d
dx

qM + k2vK − k1vLvM∥
2

L2(Ω)

+ ∥DK
d

dx
qK − k2vK + k1vLvM∥

2

L2(Ω)
+ ∑

S∈{L,M,K}
∥qS −

d
dx

vS∥
2

L2(Ω)

+ ∣ d
dx

vL(0)∣
2
+ ∣ d

dx
vK(0)∣

2
+ ∣vM(0)∣2 + ∑

S∈{M,L,K}
∣vS(δX) − cS,eq∣

2

and is obtained by taking the squares of the L2(Ω) norm of the Equations (5a)–(5d) and
taking the absolute norms of the Equations (5e)–(5f). Summing the terms, one obtains
the corresponding least-squares functional and sees that a unique minimizer, (6), is also a
solution of (5a)–(5f).

The solution of (6) allows, in general, negative species concentrations 0 < cS. This
makes a model adaption necessary; the model adaption is the reformulation of (6) into an
obstacle problem as done in [17]. This is generally done by restraining the set of functions,
over which one wishes to minimize.

The resulting problem formulation reads as follows: Find x ∈ X = H1(Ω)×6 such that
the following equation holds true:

x = argmin
y∈X

LS(y)

s.t.: 0 ≤ cL, cM, cK

(7)

From Faraday’s law, see [1,2]; it follows that the limiting current density jlim is given by:

jlim = DM
d

dx
cM(0)zF, (8)

where F is the Faraday’s constant and z is the valence of the metal M and (cS, pS) ∈ X is the
solution to (7). With the representation (8) of the limiting current density jlim.

At the end of this section some remarks must be made.

Remark 1. Note the following remarks:

(i) First note that the systems of ordinary differential Equations (4c)–(4e) and (5c)–(5f) is due to
the theorem of Picard–Lindelölf—see [20]–which is uniquely solvable.

(ii) A robust and efficient methodology to compute approximations of (7) is described in [14], which
is based on a combination of augmented Lagrangian methods, conforming adaptive FEM, quasi-
Newtonian methods and homotopy methods. Although the methodology is quite expensive in
terms of CPU time, it is efficient in comparison to other state-of-the-art methodologies, cf. [14].

(iii) For known RHS mL, mM, mH, and mOH, the model Equations (2c)–(2e) are uniquely solvable
and a stable and robust methodology is described in [15].

(iv) The model equations for the species distribution in the diffusion boundary layer (4a)–(4e)
can easily be extended, in theory, to more reactions with analogous boundary conditions,
with concentrations in thermodynamic equilibrium at the bath-end of the boundary layer and
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no material transport over the cathode surface for the species except the free metal concentration.
Additionally the definition (8) stays basically the same. The theoretical work in this article
reduces to the one major reaction with the biggest effect, since, as known to the authors,
no effective algorithm for the numerical treatment of the positivity of the respective species
is given.

(v) Note that the thickness δX , which is an estimated value in many cases, has a strong influence
on the calculated value jlim, due to its influence on the solution of (7).

(vi) Assuming that no reaction takes place in the diffusion boundary layer and the only process
which takes place is diffusion of the metal species M. Assuming the same boundary conditions
for cM as in (4d) for the diffusion law

d2

dx2 cM = 0 (9)

directly implies, with the unique solvabillity of (9) and the assumed boundary conditions,
the following representation of cM ∶]0, δX[→ R:

cM(x) =
cM,eq

δX
x. (10)

In this case, the limiting current density reduces to

jlim = DM
cM,eq

δX
zF. (11)

This formula coincides with the formula given in [13].
(vii) The exact representation (11) yields a first formula for the calibration of δX , which is needed,

see (iv). Assuming that a measured limiting current density jlim,M is given, then δX can be
approximated via

δX = DM
cM,eq

jlim,M
zF. (12)

3. Application to the Cu Deposition from a Cu–CO3 Electrolyte

In this section, some practical examples to the computation of the limiting current
density will be discussed. The necessary parameters, i.e., reactions, diffusion coefficients,
rate coefficients and stability constants, for the Cu–CO3 electrolyte discussed in this section
can be found in [10]. Additionally, a discussion of the limiting current density over the pH
value is discussed.

In Table 1, the species, reactions and, complex formation constants to describe the
thermodynamic equilibrium in the bath, see Equations (2a)–(2e), are given. Additionally,
the diffusion coefficients and rate constants for the corresponding species and reactions in
aqueous media are given. In the following, assume that, in the diffusion boundary layer,
only the reaction

Cu+CO3
k1⇌
k2

CuCO3 (13)

takes place. In [10] the thickness of the diffusion boundary layer 0 < δX is considered to
have the length δX = 21 µm and a valence of z = 2 for the Cu ions is assumed.

The methodology used for the simulation of the corresponding diffusion–reaction
laws (see problem (7)) is described in [14]. The numerical methodology described in [14]
includes a combination of augmented Lagrangian methods, a conforming lowest order dis-
cretization, adaptive mesh refinement, homotopy methods and quasi-Newtonian methods.
The estimator is given by the evaluation of the corresponding least-squares functional in
the discrete approximation xh ∈ Xh.
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Table 1. System of parameters of the Cu–CO3 electrolyte, as found in [10].

Complex DS k1 k2 log10 βκ

dm2

s
dm3

mol s
1
s

mol
dm3

Cu 7.14× 10−8 - - -
OH 5.27× 10−8 - - -
CO3 9.2× 10−7 - - -

CuOH 7.14× 10−8 4.98× 109 1.98× 1014 4.6
Cu(OH)2 7.14× 10−8 4.15× 109 1.81× 1024 11.64

CuCO3 7.14× 10−8 2.31× 1010 4.11× 103
−6.75

Cu(CO3)2 7.14× 10−8 1.93× 1010 1.6 −13.1

In this section, four sets of numerical experiments will be discussed. The numerical
examples are defined by fixing mCu as mCu = 0.5 mol

l for all numerical experiments, and a
definition a simple variation of the total masses mCO3 = 0.5 mol

l , mCO3 = 0.75 mol
l and a

variation of the thickness of the diffusion boundary layer δX = 21 µm, δX = 31 µm.
Additionally, the total masses mH and mOH were chosen such that a pH interval [2, 12] is
covered for the discussion of the limiting current density.

In Figure 1, the limiting current density distributions over the pH value for δX = 21 µm
and mCO3 = 0.5 mol

l (a) and for δX = 21 µm and mCO3 = 0.75 mol
l (b) are shown. The lim-

iting current density for δX = 31 µm and mCO3 = 0.5 mol
l (c) and for δX = 31 µm and

mCO3 = 0.75 mol
l (d) are shown as well. As it can be seen in the figure, the current-density

distributions for mCO3 = 0.75 mol
l are lower than for mCO3 = 0.5 mol

l . This can be expected,
since the more CO3 is in the system the higher is the mass of metal ions bound to the CuCO3
complex and, hence, the free metal concentration cCu is lower. A second observation is that
the current–density distribution is strongly dependent on the assumed thickness δX of the
diffusion boundary layer. The last observation is that the limiting current density seems to
decrease as the pH value increases. This observation corresponds with the expectations
since the free metal concentration in thermodynamic equilibrium decreases as the pH
value increases.

Figure 1. Cont.
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Figure 1. Limiting current density jlim distributions over the pH value, for δX = 21 µm, mCO3 = 0.5 mol
l

(a), δX = 21 µm, mCO3 = 0.75 mol
l (b), δX = 31 µm, mCO3 = 0.5 mol

l (c) and δX = 31 µm,
mCO3 = 0.75 mol

l (d).
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In Figure 2, the species concentrations for the Cu species, CO3 species and the CuCO3
species for mCO3 = 0.5 mol

l and δX = 21 µm at a pH value of 2 are shown. As can be seen
in the figure, the Cu concentration decreases with the distance to the cathode. The same
behavior can be seen for the complex concentration cCuCO3 . This behavior can immedi-
ately be explained by the reaction kinetics, i.e., the mass of free Cu ions decreases by the
deposition at the cathode. This effects the mass of free Cu ions that can be bound in the
complex as well. As a consequence, the ligand concentration increases as the distance to
the cathode decreases.

Figure 2. Species concentrations for δx = 21 µm mCO3 = 0.5 mol
l for pH = 2.

In Figure 3, the Cu concentrations cCu are depicted at a pH value of 2. In subfigure (a),
the concentration profiles cCu of the Cu species for mCO3 = 0.5 mol

l , 0.75 mol
l and δX = 21 µm

are shown. In subfigure (b), the concentration profiles cCu of the Cu-specie for mCO3 =
0.5 mol

l , 0.75 mol
l and δX = 31 µm are shown. As seen in both subfigures, the concentrations

decrease as mCO3 increases. In this setting, this means that the more CO3 is in the system
the more Cu is bound in the complex CuCO3, which makes this result expected.

Figure 3. Cont.
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Figure 3. Metal-concentrations for δx = 21 µm (a) and δX = 31 µm (b) for pH = 2.

In Figure 4, the estimated error of the approximate solutions xh are shown. In this
context, the error was estimated by the evaluation of the least-squares functional LS(xh).
As it can be seen in Figure 4, the evaluation of the error estimator experimental setups and
pH values. As can be seen directly, the simulations used for the experimental evaluations are
in the convergent part of the graphs and have, in comparison to the initial errors, sufficient
low evaluations of the error estimator such that the simulations can be considered reliable.

Figure 4. Error estimators for the different problem formulations at a pH value of pH = 2.

In Table 2 a comparison of evaluations of the limiting current density (LCD) w.r.t. the
model described in [13] and derived in this paper is undertaken. The evaluations vary over
pH values, the discussed mass differences of CO3 mCO3 = 0.5 mol

l and mCO3 = 0.75 mol
l and

the thickness δX of the Nernst diffusion layer δX = 21 µm and δX = 31 µm. As seen in the
table the following observations can be made. Both models predict, in each case, a decrease
of the limiting current density as the pH value increases. Furthermore it can be seen that,
in both models, the limiting current densities for δX = 21 µm tend to be higher than for
δX = 31 µm. Additionally it can be seen that, as expected, the limiting current density is in
both models higher, when considering higher ligand masses.



Axioms 2022, 11, 53 10 of 13

Table 2. List of computed limiting current densities (LCD) on the basis of the model described in [13]
and the manuscript described in Section 2.

pH-Value mCO3 δX LCD from the Literature Model LCD from the New Model
mol

l µm A
dm2

A
dm2

2 21 0.5 655.1869 × 10−6 296.8710 × 10−3

2 31 0.5 443.8363 × 10−6 1.7425 × 10−3

2 21 0.75 62.9720 × 10−3 2.1565
2 31 0.75 42.6585 × 10−3 386.7841 × 10−6

4 21 0.5 648.7977 × 10−6 330.0978 × 10−3

4 31 0.5 439.5081 × 10−6 1.7261 × 10−3

4 21 0.75 62.3550 × 10−3 2.0931
4 31 0.75 42.2404 × 10−3 382.2545 × 10−6

10 21 0.5 648.6060 × 10−6 330.0053 × 10−3

10 21 0.5 439.3783 × 10−6 1.7257 × 10−3

10 21 0.75 62.3364 × 10−3 2.0979
10 31 0.75 42.2279 × 10−3 382.1442 × 10−6

12 21 0.5 637.8666 × 10−6 295.7975 × 10−3

12 31 0.5 432.1032 × 10−6 1.7447 × 10−3

12 21 0.75 61.2992 × 10−3 2.0636
12 31 0.75 41.5253 × 10−3 372.5681 × 10−6

Comparing the values for the new model and the model described in [13] in Table 2,
one sees that the computed values of the LCD from the new model are a factor of 103

higher than the LCD from the old model. Exceptions from this rule are the values for
δX = 31 µm and mCO3 = 0.75 mol

l , where the limiting current density from the old model is
at the factor 103 over the new model. To explain this asymmetric behavior, note that the
formula for the LCD in the old model (see [13] and (11)) is derived from an exact and linear
solution to the second Fickian law representing the species distribution cM, which implies
a linear dependency of the LCD of 1

δX
and cM,eq. In contrast to that the species distribution,

cM is highly nonlinear and, thus, the distribution of the limiting current density over the pH
value can be expected to be nonlinear. This can and will explain the asymmetry addressed.

While both models are dependent on the pH value, the total mass of the ligand mCO3

and the thickness of the boundary layer δX , the variance of the values with the new model
seems to be higher and to underly a more complex nonlinear law than described in [13].
Additionally, it can be seen that, in most cases, the predicted limiting current density from
the new model is higher than the respective value from the model described in [13].

In total, the new model behaves as expected. Although a strong dependency of the
limiting current density of the thickness δX of the diffusion boundary layer is shown,
the experiments also show that the model can be used to study the pH dependencies of the
limiting current density of an electrolyte and the recipe of the electrolyte can be studied
as well. Furthermore, the model can be applied to determine possible alternatives for
toxic ligands.

4. Discussion and Conclusions

In this paper, namely in Section 2, an abstract model for the limiting current density
was derived. The model described in Section 2 assumes thermodynamic equilibrium of a
broad system of reactions in the bath (1), described by the Equations (2a)–(2e). Additionally,
it is assumed that, in the diffusion boundary layer at the cathode, only one reaction,
namely (3), takes place. Additionally it is assumed that the species concentrations w.r.t.
the metal M, the ligand L and the complex K obey the diffusion in the boundary layer.
The corresponding physical behavior was described by a stationary system of diffusion and
reaction–diffusion equations. Through a convenient definition of the boundary conditions
and a reformulation of the arising problem into an obstacle problem to treat possible
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negative species concentrations, it was possible to compute the limiting current density jlim
from the metal concentration cM through (8).

In Section 3, an electrolyte was numerically studied. As a result of the numerical
experiments, it can be seen directly that the limiting current density is strongly dependent
on the mass input mL and mM as well as the assumed thickness δX of the corresponding
boundary layer.

Although the model formulation for the limiting current density is relatively simple,
especially only using the language of ODEs (ordinary differential equations), it is strongly
biased. For instance, the system of reactions in the bath, which is assumed to be in
thermodynamic equilibrium, may and will be much larger than the single reaction assumed
to take place in the diffusion boundary layer, but can be expected to be more precise than
the model described in [13], since first the thermodynamic equilibrium at the boundary of
the Nernst diffusion layer is introduced and a reaction is introduced in the layer domain;
hence, missing reactions are respected.

As discussed in Section 3, the computed value of the limiting current density strongly
depends on the assumed thickness of the diffusion boundary layer δX. Similar results,
concerning the dependency on δX, are presented in [8]. Besides the formula given in
Remark 1 there are approaches to computing the thickness, as in [10], relying on the currents
in the layer but having its own biases. A convenient way to determine the thickness of the
diffusion layer would be a direct measurement of the boundary layer. A method to measure
it is described in [21], which relies on the measurement of the changes in pH value under
the change in time. Further measurements for laminar and turbulent flows of electrolyte
are described in [22].

Another bias, which it is necessary to discuss, is the assumption of the thermodynamic
equilibrium in the bath. As discussed in [1,4,5,23], the transport processes in the bulk
electrolyte are dominated by diffusion, migration, convection and reactions. Assuming,
as in [7,8,11,12], that the concentration gradients are low, a concentration gradient will
normally exist and, hence, thermodynamic equilibrium will not be fulfilled. Additionally,
as it is commonly known, see [24–26], the transport processes are strongly geometry-
dependent and hence, gradients of the species distributions are also geometry-dependent.
In particular, it is typically assumed that the diffusion boundary layer lies within a laminar
boundary layer, the thickness of which will differ along the corresponding cathode surface,
which will bound the thickness of the diffusion boundary layer due to the geometry
dependence of the mechanical flow of the electrolyte (see [26]).

Beyond the biases discussed above, the model has various advantages. For instance
the model is relatively easy, and it can be evaluated with a relatively small numerical cost.
Even though deviations between the experiment and the model prediction are expected,
the model can be used for a more general, qualitative comparison. For example, as discussed
in Section 3, electrolytes can be studied within a variation of the pH value. Additionally,
the software can be used to compare electrolyte mixtures wherein the ratio of mL to mM
is varied. Additionally, the model can be used to determine possible substitutes for toxic
ligands. The last point is of considerable importance in designing, for example, REACH-
compliant electrolytes. In those cases, the model will be sufficient.

In summary, a model was introduced, which, on the one hand, is highly biased, and
has, on the other great value in the comparative development of electrolytes. For the
formulation of a quantitative, more precise model, more research is needed. The sim-
plest approach to defining such a model is to extend the model to a geometrically and
specifically known setup, such as the description of the complete cell, only considering the
distance from anode and cathode as the important geometrical feature. This geometrical
adjustment needs the inclusion of migration and further reactions assumed to be not in
thermodynamic equilibrium.
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