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Abstract: We study a variable end-points calculus of variations problem of Bolza containing inequality
and equality constraints. The proof of the principal theorem of the paper has a direct nature since it is
independent of some classical sufficiency approaches invoking the Hamiltonian-Jacobi theory, Riccati
equations, fields of extremals or the theory of conjugate points. In contrast, the algorithm employed
to prove the principal theorem of the article is based on elementary tools of the real analysis.
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1. Introduction

In this paper, we study a nonparametric calculus of variations problem of Bolza having
variable end-points, isoperimetric inequality and equality restrictions and mixed inequality
and equality pointwise restraints. The fundamental sufficiency theorem presented in this
article, assumes that a proposed optimal trajectory with an essentially bounded derivative is
given, that the set of active indices of the mixed inequality restrictions is piecewise constant
on the underlying interval of time, that the corresponding multipliers of the inequality
restrictions are nonnegative at each point of the basic time interval and they are zero
whenever the time-dependent index is inactive, that the matching Lagrange multipliers
of the inequality isoperimetric constraints are nonnegative and they vanish whenever the
corresponding index is inactive, that a sufficiency first order condition very related with
the Euler–Lagrange equations holds, that a generalized transversality condition is verified,
that an inequality hypothesis whose source comes from the proof of the main result of
the paper is satisfied, that a very similar hypothesis of the Legendre necessary condition
is satisfied, that the positivity of a quadratic integral over the cone of critical directions
is fulfilled and, that three conditions involving the Weierstrass functions delimiting the
calculus of variations problem are verified. Then the deviation between any admissible
cost and the proposed optimal cost, can be estimated by a quadratic functional whose role
is very similar with that of the square of the norm of the Banach space of the Lebesgue
integrable functions. In particular, the result shows that if the proposed optimal trajectory
satisfies the above sufficiency conditions, then it is a strict strong minimum of the problem
in hand.

It is worthwhile mentioning that the proof of the main sufficiency theorem of the
paper is self-contained in the sense that it is independent of some classical approaches
such as the ones that invoke to the theory of Mayer fields by using independent path
integrals, commonly called Hilbert integrals, Hamilton–Jacobi theory which frequently uses
a fundamental inequality, symmetric solutions of some Riccati equations, generalizations
of the conjugate point theory, local convexity processes or the insertion of the proposed
optimal trajectories in some fields of extremals, see for instance [1–16]. On the other hand,
it is important to point out that the calculus of variations has as its aim a generalization of
the structure of classical analysis that will make possible the solution of some extremum
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problems having numerous applications in the qualitative analysis of various classes of
differential equations and partial differential equations; see, e.g., the papers [17,18] for
more details. The technique used in this article to obtain the main theorem of the paper
corresponds to a generalization of a method originally introduced by Hestenes in [9]. This
algorithm have been generalized in [19–21] for the case of a parametric problem of the
calculus of variations, however, a direct sufficiency proof for the nonparametric problem of
Bolza had not been provided. A crucial property of this direct sufficiency proof not only
has the advantage that one does not need to invoke to a parametric problem as it is done
in [19–21], but also the sufficiency result for the parametric problem, provides sufficient
conditions to a strict strong minimum and not only for a strong minimum as it is the case
of [20,21].

Some of the novelties of the main theorem of the paper as well as the technique em-
ployed to prove it can be described as follows: the problem has a wide range of applicability
since the functions delimiting the problem only have to be continuous in their domain
and they need to have first and second partial derivatives with respect to the state and
the state-derivative independent variables. The smoothness of the first and second partial
derivatives with respect to the previously mentioned variables is no longer imposed. The
derivatives of the proposed optimal trajectories need not be continuous but only essentially
bounded. This feature is a celebrated component since the derivatives of the admissible
trajectories must only be essentially bounded. In fact, we have already provided concrete ex-
amples, in which our theory of sufficiency, indeed gives a response, meanwhile the classical
sufficiency theories for optimality are not able to detect it, since they need the smoothness
of the optimal trajectory in the basic time interval, see [21]. Finally, the technique used to
prove the main theorem of the paper, allows us to avoid imposing some type of preliminary
assumptions not appearing in the theorems, in contrast, with some classical necessary
and sufficiency theories. To mention a few, in [12,22] it is indispensable that the gradients
arising from the pointwise mixed constraints be linearly independent at each point of
the underlying interval of time or see [22–24], where some preliminary assumptions of
normality or regularity play a crucial role for obtaining the necessary optimality theory.

The paper is organized as follows. In Section 2, we pose the problem we are going to
study, introduce some basic definitions and state the main result of the article. In Section 3,
we illustrate the sufficient theorem of the paper by means of an example. In Section 4, we
enunciate two auxiliary lemmas whose statements and proofs can be found in [21]. Finally,
in Section 5, we develop the proof of Theorem 1.

2. The Problem and the Sufficiency Theorem

Suppose that an interval T := [t0, t1] in R is given, that we have functions l, lγ : Rn ×
Rn → R (γ = 1, . . . , K), Φi : Rn → Rn (i = 0, 1), L(t, x, ẋ) : T ×R2n → R, Lγ(t, x, ẋ) : T ×
R2n → R (γ = 1, . . . , K) and ϕ(t, x, ẋ) : T ×R2n → Rs. Let

A := {(t, x, ẋ) ∈ T ×R2n | ϕα(t, x, ẋ) ≤ 0 (α ∈ R), ϕβ(t, x, ẋ) = 0 (β ∈ S)}

where R := {1, . . . , r} and S := {r + 1, . . . , s} (r = 0, 1, . . . , s). If r = 0 then R = ∅ and
we disregard assertions concerning ϕα. Similarly, if r = s then S = ∅ and we disregard
assertions concerning ϕβ.

Throughout the article we assume that L, Lγ (γ = 1, . . . , K) and ϕ have first and
second derivatives with respect to x and ẋ. Furthermore, if we denote by g(t, x, ẋ) either
L(t, x, ẋ), Lγ(t, x, ẋ) (γ = 1, . . . , K), ϕ(t, x, ẋ) or any of their partial derivatives of order less
or equal than two with respect to x and ẋ, we are going to suppose that if G is any bounded
subset of T×R2n, then |g(G)| is a bounded subset of R. Additionally, we suppose that if
((Λq, Γq)) is any sequence in AC(T; Rn)× L1(T; Rn) such that for some Θ ⊂ T measurable
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and some (Λ, Γ) ∈ AC(T; Rn)× L∞(T; Rn), (Λq(·), Γq(·))
L∞
−→ (Λ(·), Γ(·)) on Θ, then for

all q ∈ N, g(·, Λq(·), Γq(·)) is measurable on Θ and

g(·, Λq(·), Γq(·))
L∞
−→ g(·, Λ(·), Γ(·)) on Θ.

Note that all conditions given above are satisfied if the functions L, Lγ (γ = 1, . . . , K)
and ϕ and their first and second derivatives with respect to x and ẋ are continuous on
T × R2n. We shall also assume that the functions l, lγ (γ = 1, . . . , K) are of class C2 on
Rn ×Rn and Φi (i = 0, 1) are of class C2 on Rn.

The calculus of variations problem we shall be concerned, labeled (P), is that of
finding a minimum value to the functional

I(x) := l(x(t0), x(t1)) +
∫ t1

t0

L(t, x(t), ẋ(t))dt

over all absolutely continuous x : T → Rn satisfying the constraints

g(·, x(·), ẋ(·)) is integrable on T.
x(t−i) = Φ−i(x(ti+1)) for i = −1, 0.
Ii(x) := li(x(t0), x(t1)) +

∫ t1
t0

Li(t, x(t), ẋ(t))dt ≤ 0 (i = 1, . . . , k).
Ij(x) := lj(x(t0), x(t1)) +

∫ t1
t0

Lj(t, x(t), ẋ(t))dt = 0 (j = k + 1, . . . , K).
(t, x(t), ẋ(t)) ∈ A (a.e. in T).

Designate by X the space of absolutely continuous functions mapping T to Rn and
by Us the Banach space L∞(T; Rs) (s ∈ N). Elements of X are named arcs or trajectories
and an arc x is admissible or feasible if it satisfies the restrictions. A trajectory x solves (P) if
it is feasible and I(x) ≤ I(y) for all feasible arcs y. An admissible arc x is called a strong
minimum of (P) if it is a minimum of I relative to the norm

‖x‖ := sup
t∈T
|x(t)|,

that is, if we have the existence of some ε > 0 such that I(x) ≤ I(y) for all feasible
trajectories y verifying ‖y− x‖ < ε. It is a strict strong minimum when I(x) = I(y) only if
x = y.

The following definitions are going to be useful in the content of the paper. The
notation ∗means transpose.

• Given K real numbers λγ (γ = 1, . . . , K), take into consideration the functional
Iλ : X → R defined by

Iλ(x) := I(x) +
K

∑
γ=1

λγ Iγ(x) = lλ(x(t0), x(t1)) +
∫ t1

t0

Lλ(t, x(t), ẋ(t))dt,

where lλ : Rn ×Rn → R is given by

lλ(a1, a2) := l(a1, a2) +
K

∑
γ=1

λγlγ(a1, a2),

and Lλ : T ×R2n → R is defined by

Lλ(t, x, ẋ) := L(t, x, ẋ) +
K

∑
γ=1

λγLγ(t, x, ẋ).
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• For all (t, x, ẋ, ρ, µ) ∈ T ×R3n ×Rs, set

H(t, x, ẋ, ρ, µ) := ρ∗ ẋ− Lλ(t, x, ẋ)− µ∗ϕ(t, x, ẋ).

If ρ ∈ X and µ ∈ Us are given, set for all (t, x, ẋ) ∈ T ×R2n,

Fλ(t, x, ẋ) := −H(t, x, ẋ, ρ(t), µ(t))− ρ̇∗(t)x,

and let

Jλ(x) := ρ∗(t1)x(t1)− ρ∗(t0)x(t0) + lλ(x(t0), x(t1)) +
∫ t1

t0

Fλ(t, x(t), ẋ(t))dt.

• The first variations of Jλ and Iγ (γ = 1, . . . , K) along x ∈ X with ẋ ∈ L∞(T; Rn) in the
direction y ∈ X are given, respectively, by

J′λ(x, y) := l′λ(x(t0), x(t1))

(
y(t0)
y(t1)

)
+
∫ t1

t0

{Fλx(t, x(t), ẋ(t))y(t) + Fλẋ(t, x(t), ẋ(t))ẏ(t)}dt,

I′γ(x, y) := l′γ(x(t0), x(t1))

(
y(t0)
y(t1)

)
+
∫ t1

t0

{Lγx(t, x(t), ẋ(t))y(t) + Lγẋ(t, x(t), ẋ(t))ẏ(t)}dt.

The second variation of Jλ along x ∈ X with ẋ ∈ L∞(T; Rn) in the direction y ∈ X
with ẏ ∈ L2(T; Rn) is given by

J′′λ (x, y) := (y∗(t0), y∗(t1))l′′λ(x(t0), x(t1))

(
y(t0)
y(t1)

)
+
∫ t1

t0

2ωλ(t, x(t), ẋ(t); t, y(t), ẏ(t))dt

where, for all (t, y, ẏ) ∈ T ×R2n,

2ωλ(t, x(t), ẋ(t); t, y, ẏ) := y∗Fλxx(t, x(t), ẋ(t))y + 2y∗Fλxẋ(t, x(t), ẋ(t))ẏ + ẏ∗Fλẋẋ(t, x(t), ẋ(t))ẏ.

• Set
Eλ(t, x, ẋ, u) := Fλ(t, x, u)− Fλ(t, x, ẋ)− Fλẋ(t, x, ẋ)(u− ẋ).

Similarly, for all γ = 1, . . . , K, set

Eγ(t, x, ẋ, u) := Lγ(t, x, u)− Lγ(t, x, ẋ)− Lγẋ(t, x, ẋ)(u− ẋ).

• For all x ∈ X , set

D(x) := V(x(t0)) +
∫ t1

t0

V(ẋ(t))dt

where for all e ∈ Rn,
V(e) := (1 + |e|2)1/2 − 1.

Finally, for all (t, x, ẋ) ∈ T ×R2n, designate by

Ia(t, x, ẋ) := {α ∈ R | ϕα(t, x, ẋ) = 0},

the set of active indices of (t, x, ẋ) corresponding to the mixed inequality constraints. Given
x ∈ X , designate by

ia(x) := {i = 1, . . . , k | Ii(x) = 0},

the set of active indices of x corresponding to the isoperimetric inequality restrictions. For
all x ∈ X , let Y(x) be the set of all y ∈ X with ẏ ∈ L2(T; Rn) verifying

y(t−i) = Φ′−i(x(ti+1))y(ti+1) for i = −1, 0.
I′i (x, y) ≤ 0 (i ∈ ia(x)), I′j(x, y) = 0 (j = k + 1, . . . , K).
ϕαx(t, x(t), ẋ(t))y(t) + ϕαẋ(t, x(t), ẋ(t))ẏ(t) ≤ 0 (a.e. in T, α ∈ Ia(t, x(t), ẋ(t))).
ϕβx(t, x(t), ẋ(t))y(t) + ϕβẋ(t, x(t), ẋ(t))ẏ(t) = 0 (a.e. in T, β ∈ S).
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The cone Y(x) is commonly called the cone of critical directions along x.

Theorem 1. Let x0 be a feasible arc with ẋ0 ∈ L∞(T; Rn). Assume that Ia(·, x0(·), ẋ0(·)) is piece-
wise constant on T, that there exist ρ ∈ X , µ ∈ Us satisfying µα(t) ≥ 0, µα(t)
ϕα(t, x0(t), ẋ0(t)) = 0 (α ∈ R, a.e. in T), δ, ε > 0, and multipliers λi (i = 1, . . . , K) satis-
fying λi ≥ 0, λi Ii(x0) = 0 (i = 1, . . . , k) such that

ρ̇(t) = −H∗x (t, x0(t), ẋ0(t), ρ(t), µ(t)) (a.e. in T),

H∗ẋ (t, x0(t), ẋ0(t), ρ(t), µ(t)) = 0 (a.e. in T),

and the following assumptions hold:

i. l′∗λ (x0(t0), x0(t1)) +

(
Φ′∗1 (x0(t0))

0n×n

)
ρ(t1)−

(
0n×n

Φ′∗0 (x0(t1))

)
ρ(t0) = 0.

ii. ∑0
i=−1(−1)i+1ρ∗(t−i)Φ′′−i(x0(ti+1); h) ≥ 0 for all h ∈ Rn.

iii. Hẋẋ(t, x0(t), ẋ0(t), ρ(t), µ(t)) ≤ 0 (a.e. in T).
iv. J′′λ (x0, y) > 0 for all y 6= 0, y ∈ Y(x0).
v. For all x feasible satisfying ‖x− x0‖ < ε,

(a) Eλ(t, x(t), ẋ0(t), ẋ(t)) ≥ 0 (a.e. in T);
(b)

∫ t1
t0

Eλ(t, x(t), ẋ0(t), ẋ(t))dt ≥ δ
∫ t1

t0
V(ẋ(t)− ẋ0(t))dt;

(c)
∫ t1

t0
Eλ(t, x(t), ẋ0(t), ẋ(t))dt ≥ δ

∣∣∫ t1
t0

Eγ(t, x(t), ẋ0(t), ẋ(t))dt
∣∣ (γ = 1, . . . , K).

Then, there exist ν1, ν2 > 0 such that, if x is feasible with ‖x− x0‖ < ν1, we have

I(x) ≥ I(x0) + ν2D(x− x0).

In particular, x0 is a strict strong minimum of (P).

3. Example

In this section, we give an illustration of Theorem 1 by means of an example.
Let (P) be the problem of finding a minimum value to the functional

I(x) := x2(−1)− 2x(−1) +
∫ 1

−1
2(x(t) + t)2dt

over all absolutely continuous x : [−1, 1]→ R verifying the constraints
g(·, x(·), ẋ(·)) is integrable on [−1, 1].
x(−1) = −x(1).
I1(x) :=

∫ 1
−1{(ẋ(t) + 1)2 + ẋ(t)(x(t) + t)2}dt ≤ 0.

(t, x(t), ẋ(t)) ∈ A (a.e. in [−1, 1]).

For this case, T = [−1, 1], n = 1, K = k = 1, r = s = 1, Φ0 = Φ1 = −Id where Id is
the identity function, l(a1, a2) = a2

1 − 2a1, l1(a1, a2) = 0, L(t, x, ẋ) = 2(x + t)2, L1(t, x, ẋ) =
(ẋ + 1)2 + ẋ(x + t)2, ϕ1(t, x, ẋ) = −ẋ− 1 and

A = {(t, x, ẋ) ∈ T ×R2 | ϕ1(t, x, ẋ) ≤ 0}.

For all (t, x, ẋ, ρ, µ) ∈ T ×R4, we have

H(t, x, ẋ, ρ, µ) = ρẋ− 2(x + t)2 − λ1(ẋ + 1)2 − λ1 ẋ(x + t)2 + µ1[ẋ + 1],

Hx(t, x, ẋ, ρ, µ) = −4(x + t)− 2λ1 ẋ(x + t),

Hẋ(t, x, ẋ, ρ, µ) = ρ− 2λ1(ẋ + 1)− λ1(x + t)2 + µ1.
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Let x0 ≡ −t on T and note that x0 ∈ X = AC(T; R), ẋ0 ∈ L∞(T; R) and x0 is admis-
sible. Furthermore, note that Ia(·, x0(·), ẋ0(·)) ≡ {1} on T, and hence it is constant on T.
Set ρ = µ1 ≡ 0 on T and note that ρ ∈ X and µ = µ1 ∈ U1 = L∞(T; R). Moreover, observe
that µ1(t) ≥ 0 and µ1(t)ϕ1(t, x0(t), ẋ0(t)) = 0 (α ∈ R = {1}, a.e. in T). Additionally, let
λ1 = 1 and note that λ1 ≥ 0 and λ1 I1(x0) = 0. With these concepts in mind, observe that

ρ̇(t) = −Hx(t, x0(t), ẋ0(t), ρ(t), µ(t)) (a.e. in T),

Hẋ(t, x0(t), ẋ0(t), ρ(t), µ(t)) = 0 (a.e. in T).

Now, note that lλ(a1, a2) = l(a1, a2) + λ1l1(a1, a2) = a2
1 − 2a1 and hence

l′λ(a1, a2) = (2a1 − 2, 0)

and l′λ(x0(−1), x0(1)) = (0, 0). As ρ ≡ 0 on T, then as one readily verifies, hypotheses (i)
and (ii) of Theorem 1 are verified. Furthermore, observe that Hẋẋ(t, x, ẋ, ρ, µ) = −2λ1 and
so Hẋẋ(t, x0(t), ẋ0(t), ρ(t), µ(t)) = −2 (a.e. in T) and then, hypothesis (iii) of Theorem 1 is
also verified. Now, note that since

Hxx(t, x, ẋ, ρ, µ) = −4− 2λ1 ẋ and Hxẋ(t, x, ẋ, ρ, µ) = −2λ1(x + t),

then Hxx(t, x0(t), ẋ0(t), ρ(t), µ(t)) = −2 and Hxẋ(t, x0(t), ẋ0(t), ρ(t), µ(t)) = 0 (a.e. in T).
Furthermore,

l′′λ(a1, a2) =

(
2 0
0 0

)
and so,

l′′λ(x0(−1), x0(1)) =
(

2 0
0 0

)
.

Then, the second variation J′′λ is given by

J′′λ (x0, y) = 2y2(−1) +
∫ 1

−1
2{y2(t) + ẏ2(t)}dt

which is greater than zero for all y 6= 0, y ∈ Y(x0) where Y(x0) is given by all y ∈ X with
ẏ ∈ L2(T; R) satisfying 

y(−1) = −y(1).
I′1(x0, y) ≤ 0 (i ∈ ia(x0) = {1}).
−ẏ(t) ≤ 0 (a.e. in T).

Thus, hypothesis (iv) of Theorem 1 is satisfied. We also have that

Fλ(t, x, ẋ) = 2(x + t)2 + (ẋ + 1)2 + ẋ(x + t)2.

Consequently, if x is admissible, then for almost all t ∈ T,

Eλ(t, x(t), ẋ0(t), ẋ(t)) = (ẋ(t) + 1)2 + ẋ(t)(x(t) + t)2 + (x(t) + t)2 ≥ (ẋ(t) + 1)2

and so, if x is admissible, then

(a) Eλ(t, x(t), ẋ0(t), ẋ(t)) ≥ 0 (a.e. in T);
(b)

∫ 1
−1 Eλ(t, x(t), ẋ0(t), ẋ(t))dt ≥

∫ 1
−1(ẋ(t) + 1)2dt ≥

∫ 1
−1 V(ẋ(t)− ẋ0(t))dt.

Moreover, as one readily verifies, if x is admissible, then for almost all t ∈ T,

E1(t, x(t), ẋ0(t), ẋ(t)) = (ẋ(t) + 1)2 + ẋ(t)(x(t) + t)2 + (x(t) + t)2,

and hence, if x is admissible, then
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(c)
∫ 1
−1 Eλ(t, x(t), ẋ0(t), ẋ(t))dt = |

∫ 1
−1 E1(t, x(t), ẋ0(t), ẋ(t))dt| implying that hypothesis

(v) of Theorem 1 is verified with any ε > 0 and δ = 1. Then, there exist ν1, ν2 > 0 such
that, if x is admissible with ‖x− x0‖ < ν1, we have

I(x) ≥ I(x0) + ν2D(x− x0).

In particular, x0 is a strict strong minimum of (P).

4. Auxiliary Lemmas

In this section, we are going to prove Theorem 1. First, we state two auxiliary lemmas
whose statements and proofs are given in Lemmas 4.1 and 4.2 of [21].

In the following we suppose that we are given x0 ∈ X and a subsequence (xq) in X
such that

lim
q→∞

D(xq − x0) = 0 and dq := [2D(xq − x0)]
1/2 > 0 (q ∈ N).

For all q ∈ N, define

yq :=
xq − x0

dq
.

We write ẋq
au−→ ẋ0 on T, if for any ε > 0, there exists Θε ⊂ T measurable with

m(Θε) < ε such that ẋq
u−→ ẋ0 on T \ Θε, that is, if (ẋq) converges uniformly to ẋ0 on

T \Θε.
We shall not relabel the subsequences of a given sequence since this fact will not

modify our results.

Lemma 1. For some subsequence of (xq), and some y0 ∈ X with ẏ0 ∈ L2(T; Rn), ẋq
au−→ ẋ0 on

T, yq
u−→ y0 on T and ẏq

L1
⇀ ẏ0 on T.

Lemma 2. Let Θ ⊂ T be measurable,Rλ ∈ L∞(Θ; Rn×n) and (Rq) a sequence in L∞(Θ; Rn×n).

If ẋq
u−→ ẋ0 on Θ,Rq

u−→ Rλ on Θ andRλ(t) ≥ 0 (t ∈ Θ), then

lim inf
q→∞

∫
Θ

ẏ∗q(t)Rq(t)ẏq(t)dt ≥
∫

Θ
ẏ∗0(t)Rλ(t)ẏ0(t)dt.

5. Proof of Theorem 1

Proof. The proof of Theorem 1 will be made by contradiction, that is, we are going to
assume that, for all ν1, ν2 > 0, there exists an admissible trajectory x such that

‖x− x0‖ < ν1 and I(x) < I(x0) + ν2D(x− x0). (1)

We recall also that Ia(·, x0(·), ẋ0(·)) is piecewise constant on T, (x0, ρ, µ) satisfies the
first order sufficiency conditions

ρ̇(t) = −H∗x (t, x0(t), ẋ0(t), ρ(t), µ(t)) (a.e. in T),

H∗ẋ (t, x0(t), ẋ0(t), ρ(t), µ(t)) = 0 (a.e. in T),

and hypotheses (i), (ii), (iii) and (v) of Theorem 1. We are going to obtain the negation of
hypothesis (iv) of Theorem 1.

First note that, as

µα(t) ≥ 0 (α ∈ R, a.e. in T) and λi ≥ 0 (i = 1, . . . , k),
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if x is feasible, then I(x) ≥ Jλ(x). Furthermore, as

µα(t)ϕα(t, x0(t), ẋ0(t)) = 0 (α ∈ R, a.e. in T) and λi Ii(x0) = 0 (i = 1, . . . , k),

then I(x0) = Jλ(x0). Consequently, (1) implies that, for all ν1, ν2 > 0, there exists x
admissible with

‖x− x0‖ < ν1 and Jλ(x) < Jλ(x0) + ν2D(x− x0). (2)

Observe that by setting

[θ] := (x0(t0) + θ[x(t0)− x0(t0)], x0(t1) + θ[x(t1)− x0(t1)]),

for all admissible trajectories x,

Jλ(x)−
∫ 1

0
(1− θ)(x∗(t0)− x∗0(t0), x∗(t1)− x∗0(t1))l′′λ [θ]

(
x(t0)− x0(t0)
x(t1)− x0(t1)

)
dθ

= ρ∗(t1)[x(t1)− x0(t1)]− ρ∗(t0)[x(t0)− x0(t0)] + Jλ(x0) + J′λ(x0, x− x0) +Kλ(x) + Eλ(x) (3)

where

Eλ(x) :=
∫ t1

t0

Eλ(t, x(t), ẋ0(t), ẋ(t))dt,

Kλ(x) :=
∫ t1

t0

{Mλ(t, x(t)) + [ẋ∗(t)− ẋ∗0(t)]Nλ(t, x(t))}dt,

and the functions Mλ and Nλ are given by

Mλ(t, x) := Fλ(t, x, ẋ0(t))− Fλ(t, x0(t), ẋ0(t))− Fλx(t, x0(t), ẋ0(t))(x− x0(t)),

Nλ(t, x) := F∗λẋ(t, x, ẋ0(t))− F∗λẋ(t, x0(t), ẋ0(t)).

Note that

Mλ(t, x) = 1
2 [x
∗ − x∗0(t)]Pλ(t, x)(x− x0(t)), Nλ(t, x) = Qλ(t, x)(x− x0(t)),

where

Pλ(t, x) := 2
∫ 1

0
(1− θ)Fλxx(t, x0(t) + θ[x− x0(t)], ẋ0(t))dθ,

Qλ(t, x) :=
∫ 1

0
Fλẋx(t, x0(t) + θ[x− x0(t)], ẋ0(t))dθ.

Now, we claim that there exists η > 0 such that, for all x admissible with ‖x− x0‖ < 1,

|Kλ(x)| ≤ η‖x− x0‖[1 + D(x− x0)]. (4)

Indeed, observe that if x is admissible with ‖x− x0‖ < 1, then for some αi (i = 1, 2) and
almost all t ∈ T, we have that
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|Mλ(t, x(t)) + [ẋ∗(t)− ẋ∗0(t)]Nλ(t, x(t))|
= | 12 [x

∗(t)− x∗0(t)]Pλ(t, x(t))(x(t)− x0(t)) + [ẋ∗(t)− ẋ∗0(t)]Qλ(t, x(t))(x(t)− x0(t))|
= |{ 1

2 [x
∗(t)− x∗0(t)]Pλ(t, x(t)) + [ẋ∗(t)− ẋ∗0(t)]Qλ(t, x(t))}(x(t)− x0(t))|

≤ | 12 [x
∗(t)− x∗0(t)]Pλ(t, x(t)) + [ẋ∗(t)− ẋ∗0(t)]Qλ(t, x(t))||x(t)− x0(t)|

≤ |x(t)− x0(t)|(| 12 [x
∗(t)− x∗0(t)]Pλ(t, x(t))|+ |[ẋ∗(t)− ẋ∗0(t)]Qλ(t, x(t))|)

≤ |x(t)− x0(t)|( 1
2 |x(t)− x0(t)||Pλ(t, x(t))|+ |ẋ(t)− ẋ0(t)||Qλ(t, x(t))|)

≤ α1|x(t)− x0(t)|(|x(t)− x0(t)|+ |ẋ(t)− ẋ0(t)|)
≤ α1|x(t)− x0(t)|(1 + |ẋ(t)− ẋ0(t)|)
≤ α2|x(t)− x0(t)|(1 + |ẋ(t)− ẋ0(t)|2)1/2.

Setting η := max{α2, (t1 − t0)α2}, x admissible with ‖x− x0‖ < 1 implies that

|Kλ(x)| ≤ α2‖x− x0‖
∫ t1

t0

(V(ẋ(t)− ẋ0(t)) + 1)dt

≤ α2‖x− x0‖(D(x− x0) + t1 − t0)

= α2‖x− x0‖D(x− x0) + α2‖x− x0‖(t1 − t0)

≤ η‖x− x0‖D(x− x0) + η‖x− x0‖
= η‖x− x0‖[1 + D(x− x0)]

and then (4) is proved.
Now, by (2), for all q ∈ N there exists xq admissible such that

‖xq − x0‖ < ε, ‖xq − x0‖ <
1
q

, Jλ(xq)− Jλ(x0) <
1
q

D(xq − x0). (5)

The last inequality of (5) implies that for all q ∈ N,

dq := [2D(xq − x0)]
1/2 > 0.

Since
ρ̇(t) = −H∗x (t, x0(t), ẋ0(t), ρ(t), µ(t)) (a.e. in T),

H∗ẋ (t, x0(t), ẋ0(t), ρ(t), µ(t)) = 0 (a.e. in T),

we have that

J′λ(x0, y) = l′λ(x0(t0), x0(t1))

(
y(t0)
y(t1)

)
for all y ∈ X . Having this in mind, by (3), (v)(b) of Theorem 1, (4) and (5),

Jλ(xq)− Jλ(x0) =
∫ 1

0
(1− θ)(x∗q (t0)− x∗0(t0), x∗q (t1)− x∗0(t1))l′′λ [θ]

(
xq(t0)− x0(t0)
xq(t1)− x0(t1)

)
dθ

+ρ∗(t1)[xq(t1)− x0(t1)]− ρ∗(t0)[xq(t0)− x0(t0)] + l′λ(x0(t0), x0(t1))

(
xq(t0)− x0(t0)
xq(t1)− x0(t1)

)
+Kλ(xq) + Eλ(xq)

≥
∫ 1

0
(1− θ)(x∗q (t0)− x∗0(t0), x∗q (t1)− x∗0(t1))l′′λ [θ]

(
xq(t0)− x0(t0)
xq(t1)− x0(t1)

)
dθ
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+ρ∗(t1)[xq(t1)− x0(t1)]− ρ∗(t0)[xq(t0)− x0(t0)]

+l′λ(x0(t0), x0(t1))

(
xq(t0)− x0(t0)
xq(t1)− x0(t1)

)
− η‖xq − x0‖ − η‖xq − x0‖D(xq − x0)

+δ
∫ t1

t0

V(ẋq(t)− ẋ0(t))dt

=
∫ 1

0
(1− θ)(x∗q (t0)− x∗0(t0), x∗q (t1)− x∗0(t1))l′′λ [θ]

(
xq(t0)− x0(t0)
xq(t1)− x0(t1)

)
dθ

+ρ∗(t1)[xq(t1)− x0(t1)]− ρ∗(t0)[xq(t0)− x0(t0)]

+l′λ(x0(t0), x0(t1))

(
xq(t0)− x0(t0)
xq(t1)− x0(t1)

)
−η‖xq − x0‖ − η‖xq − x0‖D(xq − x0) + δD(xq − x0)− δV(xq(t0)− x0(t0)).

By (5), for all q ∈ N,

D(xq − x0)

(
δ− η

q
− 1

q

)
<

η

q

+δV(xq(t0)− x0(t0))− l′λ(x0(t0), x0(t1))

(
xq(t0)− x0(t0)
xq(t1)− x0(t1)

)
−ρ∗(t1)[xq(t1)− x0(t1)] + ρ∗(t0)[xq(t0)− x0(t0)]

−
∫ 1

0
(1− θ)(x∗q (t0)− x∗0(t0), x∗q (t1)− x∗0(t1))l′′λ [θ]

(
xq(t0)− x0(t0)
xq(t1)− x0(t1)

)
dθ.

Consequently,
lim
q→∞

D(xq − x0) = 0.

For all q ∈ N, define

yq :=
xq − x0

dq
.

By Lemma 1, there exist y0 ∈ X with ẏ0 ∈ L2(T; Rn) and some subsequence of (xq)

such that ẏq
L1
⇀ ẏ0 on T. Once again, by Lemma 1, there exist some subsequence of (xq)

such that yq
u−→ y0 on T.

We claim that

i. J′′λ (x0, y0) ≤ 0, y0 6= 0.
ii. y0(t−i) = Φ′−i(x0(ti+1))y0(ti+1) for i = −1, 0.
iii.I′i (x0, y0) ≤ 0 (i ∈ ia(x0)), I′j(x0, y0) = 0 (j = k + 1, . . . , K).
iv.ϕαx(t, x0(t), ẋ0(t))y0(t) + ϕαẋ(t, x0(t), ẋ0(t))ẏ0(t) ≤ 0 (a.e. in T, α ∈ Ia(t, x0(t), ẋ0(t))).
v. ϕβx(t, x0(t), ẋ0(t))y0(t) + ϕβẋ(t, x0(t), ẋ0(t))ẏ0(t) = 0 (a.e. in T, β ∈ S).

For all q ∈ N,

Kλ(xq)

d2
q

=
∫ t1

t0

{
Mλ(t, xq(t))

d2
q

+ ẏ∗q(t)
Nλ(t, xq(t))

dq

}
dt.

By Lemma 1,

Mλ(·, xq(·))
d2

q

L∞
−→ 1

2 y∗0(·)Fλxx(·, x0(·), ẋ0(·))y0(·),

Nλ(·, xq(·))
dq

L∞
−→ Fλẋx(·, x0(·), ẋ0(·))y0(·),
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both on T and, as ẏq
L1
⇀ ẏ0 on T,

1
2 J′′λ (x0, y0) = 1

2 (y
∗
0(t0), y∗0(t1))l′′λ(x0(t0), x0(t1))

(
y0(t0)
y0(t1)

)
+ lim

q→∞

Kλ(xq)

d2
q

+
1
2

∫ t1

t0

ẏ∗0(t)Fλẋẋ(t, x0(t), ẋ0(t))ẏ0(t)dt. (6)

We have,

lim inf
q→∞

Eλ(xq)

d2
q
≥ 1

2

∫ t1

t0

ẏ∗0(t)Fλẋẋ(t, x0(t), ẋ0(t))ẏ0(t)dt. (7)

Indeed, by Lemma 1, we can choose Θ ⊂ T measurable such that ẋq
u−→ ẋ0 on Θ.

Additionally, for all t ∈ Θ and q ∈ N,

1
d2

q
Eλ(t, xq(t), ẋ0(t), ẋq(t)) = 1

2 ẏ∗q(t)Rq(t)ẏq(t)

where

Rq(t) := 2
∫ 1

0
(1− θ)Fλẋẋ(t, xq(t), ẋ0(t) + θ[ẋq(t)− ẋ0(t)])dθ.

Clearly,

Rq(·)
u−→ Rλ(·) := Fλẋẋ(·, x0(·), ẋ0(·)) on Θ.

By hypothesis (iii) of Theorem 1,Rλ(t) ≥ 0 (t ∈ Θ). Moreover, by hypothesis (v)(a) of
Theorem 1, and by Lemma 2,

lim inf
q→∞

Eλ(xq)

d2
q

= lim inf
q→∞

1
d2

q

∫ t1

t0

Eλ(t, xq(t), ẋ0(t), ẋq(t))dt ≥ lim inf
q→∞

1
d2

q

∫
Θ

Eλ(t, xq(t), ẋ0(t), ẋq(t))dt

=
1
2

lim inf
q→∞

∫
Θ

ẏ∗q(t)Rq(t)ẏq(t)dt ≥ 1
2

∫
Θ

ẏ∗0(t)Rλ(t)ẏ0(t)dt.

As Θ can be selected to be different from T by a set of an arbitrarily small measure
and the function ẏ∗0(·)Rλ(·)ẏ0(·) is integrable on T, this inequality is verified when Θ = T
and hence (7) is satisfied.

By, (3), (5), (6), (7) and hypotheses (i) and (ii) of Theorem 1, we have

1
2 J′′λ (x0, y0) ≤ 1

2 (y
∗
0(t0), y∗0(t1))l′′λ(x0(t0), x0(t1))

(
y0(t0)
y0(t1)

)
+ lim

q→∞

Kλ(xq)

d2
q

+ lim inf
q→∞

Eλ(xq)

d2
q

= lim inf
q→∞

Jλ(xq)− Jλ(x0)

d2
q

− lim
q→∞

1
d2

q

{
ρ∗(t1)[xq(t1)− x0(t1)]− ρ∗(t0)[xq(t0)− x0(t0)] + l′λ(x0(t0), x0(t1))

(
xq(t0)− x0(t0)
xq(t1)− x0(t1)

)}
≤ − lim

q→∞

1
d2

q
{ρ∗(t1)[Φ1(xq(t0))−Φ1(x0(t0))−Φ′1(x0(t0))(xq(t0)− x0(t0))]

−ρ∗(t0)[Φ0(xq(t1))−Φ0(x0(t1))−Φ′0(x0(t1))(xq(t1)− x0(t1))]}

= − lim
q→∞

1
d2

q

{
ρ∗(t1)

∫ 1

0
(1− θ)Φ′′1 (x0(t0) + θ[xq(t0)− x0(t0)]; xq(t0)− x0(t0))dθ

−ρ∗(t0)
∫ 1

0
(1− θ)Φ′′0 (x0(t1) + θ[xq(t1)− x0(t1)]; xq(t1)− x0(t1))dθ

}
= −1

2

0

∑
i=−1

(−1)i+1ρ∗(t−i)Φ′′−i(x0(ti+1); y0(ti+1)) ≤ 0.
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Now, if y0 = 0, then

lim
q→∞

Kλ(xq)

d2
q

= 0,

and hence, by hypothesis (v)(b) of Theorem 1,

0 ≥ lim inf
q→∞

Eλ(xq)

d2
q
≥ δ lim inf

q→∞

1
d2

q

∫ t1

t0

V(ẋq(t)− ẋ0(t))dt = δ lim inf
q→∞

(
D(xq − x0)

d2
q

−
V(xq(t0)− x0(t0))

d2
q

)
=

δ

2
− lim sup

q→∞

V(xq(t0)− x0(t0))

d2
q

≥ δ

2
− 1

2
lim sup

q→∞

|xq(t0)− x0(t0)|2

d2
q

=
δ

2
− 1

2
|y0(t0)|2 =

δ

2

implying that δ cannot be positive, which is not the case and in this way we have obtained
(i) of our claim.

Now, observe that since xq is admissible, then for i = −1, 0 and all q ∈ N, we have

yq(t−i) =

(∫ 1

0
Φ′−i(x0(ti+1) + θ[xq(ti+1)− x0(ti+1)])dθ

)
yq(ti+1).

As yq
u−→ y0 on T, then for i = −1, 0, we have

y0(t−i) = Φ′−i(x0(ti+1))y0(ti+1)

and so (ii) of our claim is established.
Now, let us show that

I′i (x0, y0) ≤ 0 (i ∈ ia(x0)). (8)

Indeed, first observe that for all γ = 1, . . . , K,

Iγ(x)−
∫ 1

0
(1− θ)(x∗(t0)− x∗0(t0), x∗(t1)− x∗0(t1))l′′γ [θ]

(
x(t0)− x0(t0)

x(t1)− x0(t1)

)
dθ

= Iγ(x0) + I′γ(x0, x− x0) +Kγ(x) + Eγ(x) (9)

where

Eγ(x) :=
∫ t1

t0

Eγ(t, x(t), ẋ0(t), ẋ(t))dt,

Kγ(x) :=
∫ t1

t0

{Mγ(t, x(t)) + [ẋ∗(t)− ẋ∗0(t)]Nγ(t, x(t))}dt,

and the functions Mγ and Nγ are defined by

Mγ(t, x) := Lγ(t, x, ẋ0(t))− Lγ(t, x0(t), ẋ0(t))− Lγx(t, x0(t), ẋ0(t))(x− x0(t)),

Nγ(t, x) := L∗γẋ(t, x, ẋ0(t))− L∗γẋ(t, x0(t), ẋ0(t)).

We have

Mγ(t, x) = [x∗ − x∗0(t)]Pγ(t, x)(x− x0(t)), Nγ(t, x) = Qγ(t, x)(x− x0(t)),

where

Pγ(t, x) :=
∫ 1

0
(1− θ)Lγxx(t, x0(t) + θ(x− x0(t)), ẋ0(t))dθ,

Qγ(t, x) :=
∫ 1

0
Lγẋx(t, x0(t) + θ(x− x0(t)), ẋ0(t))dθ.
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It is clear that, for all γ = 1, . . . , K,

Mγ(·, xq(·))
dq

= [x∗q (·)− x∗0(·)]Pγ(·, xq(·))yq(·)
L∞
−→ 0,

Nγ(·, xq(·)) = Qγ(·, xq(·))(xq(·)− x0(·))
L∞
−→ 0,

all on T and, since ẏq
L1
⇀ ẏ0 on T, then

lim
q→∞

Kλ(xq)

dq
= 0 and lim

q→∞

Kγ(xq)

dq
= 0 (γ = 1, . . . , K). (10)

By (5) and (10),

0 ≥ lim sup
q→∞

Jλ(xq)− Jλ(x0)

dq

= lim
q→∞

1
dq

0

∑
i=−1

(−1)i+1
∫ 1

0
(1− θ)ρ∗(t−i)Φ′′−i(x0(ti+1) + θ[xq(ti+1)− x0(ti+1)]; xq(ti+1)− x0(ti+1))dθ

+ lim sup
q→∞

Eλ(xq)

dq
= lim sup

q→∞

Eλ(xq)

dq
.

Since for all q ∈ N, Eλ(xq) ≥ 0, then

lim
q→∞

Eλ(xq)

dq
= 0.

Thus, by hypothesis (v)(c) of Theorem 1, for all γ = 1, . . . , K,

lim
q→∞

Eγ(xq)

dq
= 0. (11)

Since for all q ∈ N and i ∈ ia(x0),

0 ≥ Ii(xq) = Ii(xq)− Ii(x0)

=
∫ 1

0
(1− θ)(x∗q (t0)− x∗0(t0), x∗q (t1)− x∗0(t1))l′′i [θ]

(
xq(t0)− x0(t0)
xq(t1)− x0(t1)

)
dθ

+I′i (x0, xq − x0) +Ki(xq) + Ei(xq),

then, by (10) and (11), for i ∈ ia(x0),

0 ≥ lim
q→∞

I′i (x0, xq − x0)

dq
.

As yq
u−→ y0 and ẏq

L1
⇀ ẏ0 both on T, then for i ∈ ia(x0),

0 ≥ lim
q→∞

I′i (x0, xq − x0)

dq
= I′i (x0, y0)

establishing (8).
Let us prove that

I′j(x0, y0) = 0 (j = k + 1, . . . , K). (12)
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Indeed, by (9), (10), (11) and the admissibility of xq, for all j = k + 1, . . . , K,

0 = lim
q→∞

I′j(x0, xq − x0)

dq
= I′j(x0, y0)

which is precisely (12), and hence we obtain (iii) of our claim.
Now, we claim that

ϕαx(t, x0(t), ẋ0(t))y0(t) + ϕαẋ(t, x0(t), ẋ0(t))ẏ0(t) ≤ 0 (a.e. in T). (13)

In fact, for all α ∈ R, q ∈ N, almost all t ∈ T and θ ∈ [0, 1], define

Ωα
q(t; θ) := ϕα(t, x0(t) + θ[xq(t)− x0(t)], ẋ0(t) + θ[ẋq(t)− ẋ0(t)]),

Gα
q (t) := [−ϕα(t, xq(t), ẋq(t))]1/2,

Oα(t) := −ϕαx(t, x0(t), ẋ0(t))y0(t)− ϕαẋ(t, x0(t), ẋ0(t))ẏ0(t).

If t ∈ [t0, t1) is a point of continuity of Ia(·, x0(·), ẋ0(·)) and α ∈ Ia(t, x0(t), ẋ0(t)),
as Ia(·, x0(·), ẋ0(·)) is piecewise constant on T, we have the existence of an interval [t, t̄] ⊂ T
satisfying t < t̄ and such that ϕα(σ, x0(σ), ẋ0(σ)) = 0 for almost all σ ∈ [t, t̄]. Using
the notation

{σ} := (σ, x0(σ) + θ[xq(σ)− x0(σ)], ẋ0(σ) + θ[ẋq(σ)− ẋ0(σ)]),

we have

0 ≤ lim
q→∞

∫
[t,t̄]∩Θ

(Gα
q (σ))

2

dq
dσ

= lim
q→∞

1
dq

∫
[t,t̄]∩Θ

{−ϕα(σ, xq(σ), ẋq(σ)) + ϕα(σ, x0(σ), ẋ0(σ))}dσ

= − lim
q→∞

1
dq

∫
[t,t̄]∩Θ

{Ωα
q(σ; 1)−Ωα

q(σ; 0)}dσ

= − lim
q→∞

1
dq

∫
[t,t̄]∩Θ

∫ 1

0

∂

∂θ
Ωα

q(σ; θ)dθdσ

= − lim
q→∞

1
dq

∫
[t,t̄]∩Θ

∫ 1

0
{ϕαx{σ}(xq(σ)− x0(σ)) + ϕαẋ{σ}(ẋq(σ)− ẋ0(σ))}dθdσ

= − lim
q→∞

∫
[t,t̄]∩Θ

∫ 1

0
{ϕαx{σ}yq(σ) + ϕαẋ{σ}ẏq(σ)}dθdσ

=
∫
[t,t̄]∩Θ

{−ϕαx(σ, x0(σ), ẋ0(σ))y0(σ)− ϕαẋ(σ, x0(σ), ẋ0(σ))ẏ0(σ)}dσ

=
∫
[t,t̄]∩Θ

Oα(σ)dσ.

As Θ can be chosen to be different from T by a set of an arbitrarily small measure, then

0 ≤
∫ t̄

t
Oα(σ)dσ.

If Oα < 0 on a measurable set Σ such that Σ ⊂ [t, t̄] and m(Σ) > 0, then

0 >
∫

Σ∩Θ
Oα(σ)dσ = lim

q→∞

∫
Σ∩Θ

(Gα
q (σ))

2

dq
dσ ≥ 0

which is not the case. Consequently, Oα ≥ 0 almost everywhere on [t, t̄] with t ∈ [t0, t1)
an arbitrary point of continuity of Ia(·, x0(·), ẋ0(·)). Thus, Oα(t) ≥ 0 for almost all t ∈ T
showing that (13) is verified.
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Now, let us prove that for all β ∈ S,

ϕβx(t, x0(t), ẋ0(t))y0(t) + ϕβẋ(t, x0(t), ẋ0(t))ẏ0(t) = 0 (a.e. in T). (14)

Indeed, for all β ∈ S, q ∈ N, almost all t ∈ T and θ ∈ [0, 1], set

Υβ
q (t; θ) := ϕβ(t, x0(t) + θ[xq(t)− x0(t)], ẋ0(t) + θ[ẋq(t)− ẋ0(t)]).

For all β ∈ S, q ∈ N and almost all t ∈ T, we have

0 = Υβ
q (t; 1)− Υβ

q (t; 0) =
∫ 1

0

∂

∂θ
Υβ

q (t; θ)dθ

=
∫ 1

0
[ϕβx{t}(xq(t)− x0(t)) + ϕβẋ{t}(ẋq(t)− ẋ0(t))]dθ

Then, for all β ∈ S, q ∈ N and almost all t ∈ T,

0 =
∫ 1

0
[ϕβx{t}yq(t) + ϕβẋ{t}ẏq(t)]dθ. (15)

By (15), for all t ∈ T and β ∈ S,

0 =
∫
[t0,t]∩Θ

{ϕβx(σ, x0(σ), ẋ0(σ))y0(σ) + ϕβẋ(σ, x0(σ), ẋ0(σ))ẏ0(σ)}dσ.

Once again, since Θ can be chosen to be different from T by a set of an arbitrarily small
measure, then for t ∈ T and β ∈ S,

0 =
∫ t

t0

{ϕβx(σ, x0(σ), ẋ0(σ))y0(σ) + ϕβẋ(σ, x0(σ), ẋ0(σ))ẏ0(σ)}dσ

and hence (14) holds. Consequently, (iv) and (v) of our claim are satisfied.
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