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Abstract: We consider a nonlinear eigenvalue problem driven by the Dirichlet (p, 2)-Laplacian. The
parametric reaction is a Carathéodory function which exhibits (p− 1)-sublinear growth as x → +∞
and as x → 0+. Using variational tools and truncation and comparison techniques, we prove a
bifurcation-type theorem describing the “spectrum” as λ > 0 varies. We also prove the existence of
a smallest positive eigenfunction for every eigenvalue. Finally, we indicate how the result can be
extended to (p, q)-equations (q 6= 2).
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1. Introduction

Let Ω ⊆ RN be a bounded domain with C2-boundary ∂Ω. In this paper, we study the
following nonlinear eigenvalue problem for the Dirichlet (p, 2)-Laplacian

(Pλ)

{
−∆pu(z)− ∆u(z) = λ f (z, u(z)) in Ω,
u|∂Ω = 0, u > 0, λ > 0, 2 < p.

For every r ∈ (1, ∞) by ∆r we denote the r-Laplacian differential operator defined by

∆ru = div (|Du|r−2Du) ∀u ∈W1,p
0 (Ω)

(Du stands for the gradient of u). When r = 2, we have the usual Laplacian denoted by ∆.
In the reaction, λ > 0 is a parameter and f (z, x) is a Carathéodory function. Such

a function is jointly measurable. We assume that for almost all z ∈ Ω, f (z, ·) is (p− 1)-
sublinear as x → +∞. We are looking for positive solutions as the parameter λ > 0
varies. Our work complements those by Gasiński and Papageorgiou [1] and Papageorgiou,
Rădulescu and Repovš [2] where the reaction is (p− 1)-superlinear in x ∈ R. Moreover, in
the aforementioned works, the equation is driven by the p-Laplacian differential operator
which is homogeneous, a property used by the authors in the proof of their results. In
contrast, here, the (p, 2)-Laplace differential operator is not homogeneous.

We mention that equations driven by the sum of two differential operators of different
structures (such as (p, 2)-equations) arise in the mathematical models of many physical
processes. We refer to the survey papers of Marano and Mosconi [3], Rădulescu [4] and the
references therein.

2. Mathematical Background—Hypotheses

The main spaces in the analysis of problem (Pλ) are the Sobolev space W1,p
0 (Ω) and

the Banach space
C1

0(Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}.
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By ‖ · ‖, we denote the norm of the Sobolev space W1,p
0 (Ω). On account of the Poincaré

inequality, we have
‖u‖ = ‖Du‖p ∀u ∈W1,p

0 (Ω).

The Banach space C1
0(Ω) is an ordered Banach space with positive (order) cone

C+ = {u ∈ C1
0(Ω) : u(z) > 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω, ∂u
∂n |∂Ω < 0},

with n being the outward unit normal on ∂Ω and ∂u
∂n = (Du, n)RN .

We know that if r ∈ (1,+∞), then W1,r
0 (Ω)∗ = W−1,r′(Ω) ( 1

r + 1
r′ = 1). Let

Ar : W1,r
0 (Ω) −→W−1,r′(Ω) by the operator defined by

〈Ar(u), h〉 =
∫

Ω
|Du|r−2(Du, Dh)RN dz for all u, h ∈W1,r

0 (Ω).

The next proposition gathers the main properties of this operator (see Gasiński and
Papageorgiou [5]).

Proposition 1. The operator Ar : W1,r
0 (Ω) −→ W−1,r′(Ω) is bounded (that is, maps bounded

sets to bounded sets), continuous, strictly monotone (thus maximal monotone too) and of type (S)+,
that is, Ar has the following property:
if un −→ u weakly in W1,r

0 (Ω) and lim sup
n→∞

〈Ar(un), un − u〉 6 0, then un −→ u in W1,r
0 (Ω).

If r = 2, then we write A2 = A ∈ L(H1
0(Ω), H−1(Ω)).

The Dirichlet r-Laplace differential operator has a principal eigenvalue denoted by
λ̂1(r). Therefore, if we consider the nonlinear eigenvalue problem −∆ru(z) = λ̂|u(z)|r−2u(z) in Ω,

u|∂Ω = 0,

then this problem has a smallest eigenvalue λ̂1(r) > 0 which is isolated and simple. It has
the following variational characterization:

λ̂1(r) = inf
u∈W1,r

0 (Ω),u 6=0

‖Du‖r
r

‖u‖r
r

. (1)

For x ∈ R, we define x± = max{±x, 0}. Then, for u ∈W1,p
0 (Ω), we set u±(z) = u(z)±

for all z ∈ Ω. We know that

u± ∈W1,p
0 (Ω), u = u+ = u−, |u| = u+ + u−.

A set S ⊆W1,p
0 (Ω) is said to be “downward directed”, if given u1, u2 ∈ S, we can find

u ∈ S such that u 6 u1, u 6 u2.
If u, v : Ω −→ R are measurable functions, then we write u ≺ v if and only if for all

compact sets K ⊆ Ω, we have

0 < cK 6 v(z)− u(z) for a.a. z ∈ K.

Evidently if u, v ∈ C(Ω) and u(z) < v(z) for all z ∈ Ω, then u ≺ v.
Now, we introduce the hypotheses on the reaction f (z, x).
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H: f : Ω × R −→ R is a Carathéodory function such that for a.a. z ∈ Ω, f (z, 0) = 0,
f (z, x) > 0 for all x > 0 and

(i) For every $ > 0, there exists a$ ∈ L∞(Ω) such that

f (z, x) 6 a$(z) for a.a. z ∈ Ω, all 0 6 x 6 $;

(ii) limx→+∞
f (z,x)
xp−1 = 0 uniformly for a.a. z ∈ Ω;

(iii) limx→0+
f (z,x)
xp−1 = 0 uniformly for a.a. z ∈ Ω;

(iv) for every $ > 0, there exists sξ̂$ > 0 such that for a.a. z ∈ Ω, the function x 7−→
f (z, x) + ξ̂$xp−1 is nondecreasing on [0, $].

Remark 1. Since we look for positive solutions and the above hypotheses concern the positive
semiaxis R+ = [0,+∞), without any loss of generality we may assume that

f (z, x) = 0 for a.a. z ∈ Ω, all x 6 0. (2)

Hypothesis H(ii) implies that f (z, ·) is (p − 1)-sublinear as x → +∞ while hypothesis
H(iii) says that f (z, ·) is sublinear near 0+. Hypothesis H(iv) is essentially a one-sided local
Lipschitz condition.

3. Positive Solutions

We introduce the following two sets:

L = {λ > 0 : problem (Pλ) admits a positive solution};
Sλ = the set of positive solutions for problem (Pλ).

We also set
λ∗ = infL.

First, we establish the existence of admissible parameters (eigenvalues) and determine
the regularity properties of the corresponding solutions (eigenfunctions).

Proposition 2. If hypotheses H hold, then L 6= ∅ and Sλ ⊆ intC+ for all λ > 0.

Proof. For every λ > 0, let ϕλ : W1,p
0 (Ω) −→ R be the C1-functional defined by

ϕλ(u) =
1
p
‖Du‖p

p +
1
2
‖Du‖2

2 −
∫

Ω
F(z, u+) dz ∀u ∈W1,p

0 (Ω),

with F(z, x) =
∫ x

0 f (z, s) ds. From hypotheses H(i), (ii), we see that given ε > 0, we can
find cε > 0 such that

0 6 F(z, x) 6
ε

p
xp + cε for a.a. z ∈ Ω, all x > 0. (3)

For u ∈W1,p
0 (Ω), using (3) we have

ϕλ(u) >
1
p

(
‖Du‖p

p − λε‖u‖p
p

)
+

1
2
‖Du‖p

p − λcε|Ω|N ,

with | · |N being the Lebesgue measure on RN . Using (1) with r = p, we obtain

ϕλ(u) >
1
p

(
1− λε

λ̂p(p)

)
‖Du‖p

p − λcε|Ω|N .



Axioms 2022, 11, 58 4 of 13

Choosing ε ∈
(
0, λ̂1(p)

λ

)
, we infer that

ϕλ(u) > c1‖u‖p − λcε|Ω|N ,

for some c1 > 0 and thus ϕλ is coercive.
Additionally, using the Sobolev imbedding theorem, we see that ϕλ is sequentially

weakly lower semicontinuous. So, by the Weierstrass–Tonelli theorem, we can find u0 ∈
W1,p

0 (Ω) such that

ϕλ(u0) = min
u∈W1,p

0 (Ω)

ϕλ(u). (4)

On account of the strict positivity of f (z, ·), if u ∈ intC+, then∫
Ω

F(z, u) dz > 0. (5)

Then, we have

ϕλ(u) =
1
p
‖Du‖p

p +
1
2
‖Du‖2

2 − λ
∫

Ω
F(z, u) dz

= c2 − λ
∫

Ω
F(z, u) dz,

with c2 = c2(u) > 0. From (5) and by choosing λ > 0 big, we have

ϕλ(u) < 0,

so
ϕλ(u0) < 0 = ϕλ(0)

(see (4)) and thus
u0 6= 0.

From (4), we have
ϕ′λ(u0) = 0,

so

〈Ap(u0), h〉+ 〈A(u0), h〉 = λ
∫

Ω
f (z, u+

0 )h dz ∀h ∈W1,p
0 (Ω). (6)

In (6), we choose h = −u−0 ∈W1,p
0 (Ω). We obtain

‖Du−0 ‖p 6 0,

thus u0 > 0 and u0 6= 0.
Then, from (6), we have −∆pu0(z)− ∆u0(z) = λ f (z, u0(z)) in Ω,

u0|∂Ω = 0,
(7)

for λ > 0 big and so L 6= ∅.
From Theorem 7.1 of Ladyzhenskaya and Ural’tseva [6], we have that u0 ∈ L∞(Ω).

Then, the nonlinear regularity theory of Lieberman [7] implies that u0 ∈ C+ \ {0}. Let
$ = ‖u0‖∞ and let ξ̂$ > 0 be as postulated by hypothesis H(iv). From (7), we have

−∆pu0(z)− ∆u0(z) + λξ̂$u0(z)p−1 > 0 in Ω,
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so
∆pu0(z) + ∆u0(z) 6 λξ̂$u0(z)p−1 in Ω,

and thus u0 ∈ intC+ (see Pucci and Serrin [8] (pp. 111, 120)). Therefore, we conclude that
Sλ ⊆ intC+ for all λ > 0.

Next, we show that L is connected (more precisely, an upper half-line).

Proposition 3. If hypotheses H hold, λ ∈ L and ϑ > λ, then ϑ ∈ L.

Proof. Since λ ∈ L, we can find uλ ∈ Sλ ∈ intC+ (see Proposition 2). We introduce the
Carathéodory function k(z, x) defined by

k(z, x) =

 f (z, uλ(z)) if x 6 uλ(z)

f (z, x) if uλ(z) < x.
(8)

We set
K(z, x) =

∫ x

0
k(z, s) ds

and consider the C1-functional ψϑ : W1,p
0 (Ω) −→ R defined by

ψϑ(u) =
1
p
‖Du‖p

p +
1
2
‖Du‖2

2 −
∫

Ω
ϑK(z, u) dz ∀u ∈W1,p

0 (Ω).

Note that (8) and hypotheses H(i), (ii) imply that, given ε > 0, we can find ĉε > 0
such that

K(z, x) 6
ε

p
xp + ĉε for a.a. z ∈ Ω, all x ∈ R. (9)

Using (9) and choosing ε > 0 small, as in the proof of Proposition 2, we show that ψϑ

is coercive. In addition, it is sequentially weakly lower semicontinuous. Therefore, we can
find uϑ ∈W1,p

0 (Ω) such that

ψϑ(uϑ) = min
u∈W1,p

0 (Ω)

ψϑ(u),

so ψ′ϑ(uϑ) = 0 and thus

〈Ap(uϑ), h〉+ 〈A(uϑ), h〉 =
∫

Ω
ϑk(z, uϑ)h dz ∀h ∈W1,p

0 (Ω). (10)

In (10), we choose h = (uλ − uϑ)
+ ∈W1,p

0 (Ω). Then, using (8), we have

〈Ap(uϑ), (uλ − uϑ)
+〉+ 〈A(uϑ), (uλ − uϑ)

+〉
=

∫
Ω

ϑ f (z, uλ)(uλ − uϑ)
+ dz

>
∫

Ω
λ f (z, uλ)(uλ − uϑ)

+ dz

= 〈Ap(uλ), (uλ − uϑ)
+〉+ 〈A(uλ), (uλ − uϑ)

+〉

since f > 0 and uλ ∈ Sλ. Thus,
uλ 6 uϑ (11)

(see Proposition 1).
From (8), (10) and (11), we infer that −∆puϑ(z)− ∆uϑ(z) = ϑ f (z, uϑ(z)) in Ω,

uϑ|∂Ω = 0,
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so uϑ ∈ Sϑ ⊆ C+ and thus ϑ ∈ L.

A byproduct of the above proof is the following corollary.

Corollary 1. If hypotheses H hold, λ ∈ L and uλ ∈ Sλ ⊆ intC+ and ϑ > λ, then ϑ ∈ L and we
can find uϑ ∈ Sϑ ⊆ intC+ such that uλ 6 uϑ.

We can improve this corollary using the strong comparison principle of Gasiński and
Papageorgiou [1] (Proposition 3.2).

Proposition 4. If hypotheses H hold, λ ∈ L and uλ ∈ Sλ ⊆ intC+ and ϑ > λ, then ϑ ∈ L and
we can find uϑ ∈ Sϑ ⊆ intC+ such that uϑ − uλ ∈ intC+.

Proof. From Corollary 1, we already know that ϑ ∈ L and there exists uϑ ∈ Sϑ ⊆ intC+

such that
uλ 6 uϑ, uλ 6= uϑ. (12)

Consider the function a : RN −→ RN defined by

a(y) = |y|p−2y + y ∀y ∈ RN .

Evidently, a ∈ C1(RN ;RN) (recall that 2 < p) and we have

∇a(y) = |y|p−2
(

id + (p− 2)
y⊗ y
|y|2

)
+ id ∀y 6= 0,

so (
∇a(y), ξ, ξ

)
RN > |ξ|2 ∀y, ξ ∈ RN .

Then, the tangency principle of Pucci and Serrin [8] (Theorem 2.5.2, p. 35) implies that

uλ(z) < uϑ(z) ∀z ∈ Ω (13)

(see (12)). Let $ = ‖uϑ‖∞ and let ξ̂$ > 0 be as postulated by hypothesis H(iv). We pick
ξ̃$ > ξ̂$ and using (12), hypothesis H(iv) and the facts that f > 0 and uλ 6 uϑ, we have

−∆puϑ − ∆uϑ + ϑξ̃$up−1
ϑ

= ϑ
(

f (z, uϑ) + ξ̂$up−1
ϑ

)
+ ϑ(ξ̃$ − ξ̂$)u

p−1
ϑ

> ϑ
(

f (z, uλ) + ξ̂$up−1
λ

)
+ ϑ(ξ̃$ − ξ̂$)u

p−1
ϑ

> λ f (z, uλ) + ϑξ̃$up−1
λ

= −∆puλ − ∆uλ + ϑξ̃$up−1
λ in Ω. (14)

Note that on account of (13), we have

0 ≺ ϑ(ξ̃$ − ξ̂$)(u
p−1
ϑ − up−1

λ ). (15)

Then, (14), (15) and Proposition 3.2 of Gasiński and Papageorgiou [1] imply that
uϑ − uλ ∈ intC+.

Proposition 5. If hypotheses H hold, then λ∗ > 0.

Proof. We argue by contradiction. Suppose that λ∗ = 0. Let {λn}n∈N ⊆ L be such that
λn → 0+ and consider un = uλn ⊆ intC+ for all n ∈ N. We have

〈Ap(un), h〉+ 〈A(un), h〉 =
∫

Ω
λn f (z, un)h dz ∀h ∈W1,p

0 (Ω), n ∈ N. (16)
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On account of hypotheses H(i), (ii), given ε > 0, we can find cε > 0 such that

0 6 f (z, un(z)) 6 εun(z)p−1 + cε for a.a. z ∈ Ω, n ∈ N. (17)

In (16), first, we choose h = un ∈W1,p
0 (Ω) and then on the right hand side we use (17).

We obtain
‖Dun‖p

p 6 ε‖un‖p
p + c3‖un‖ ∀n ∈ N,

for some c3 = c3(ε) > 0, so(
1− ε

λ̂1(p)

)
‖un‖p−1 6 c3 ∀n ∈ N

(see (1) with r = p). Choosing ε ∈ (0, λ̂1(p)), we see that the sequence {un}n∈N ⊆W1,p
0 (Ω)

is bounded. We may assume that

un −→ u∗ weakly in W1,p
0 (Ω) and un −→ u∗ in Lp(Ω). (18)

In (16), we choose h = un − u∗ ∈W1,p
0 (Ω), pass to the limit as n→ +∞ and use (18).

We obtain
lim

n→+∞

(
〈Ap(un), un − u∗〉+ 〈A(un), un − u∗〉

)
= 0,

so, using the monotonicity of A, we obtain

lim sup
n→+∞

(
〈Ap(un), un − u∗〉+ 〈A(u), un − u∗〉

)
= 0,

thus
lim sup
n→+∞

(
〈Ap(un), un − u∗〉

)
6 0

and hence
un −→ u∗ in W1,p

0 (Ω) (19)

(see Proposition 1). Hypotheses H(i), (ii), (iii) imply that given ε > 0, we can find c4 =
c4(ε) > 0 such that

0 6 f (z, x) 6 εx + c4xp−1 for a.a. z ∈ Ω, x > 0, (20)

so
0 6 f (z, un(z)) 6 εun(z) + c4un(z)p−1 for a.a. z ∈ Ω, n ∈ N,

thus the sequence { f (·, un(·)) ⊆ Lp′(Ω) is bounded (see (19) and recall that p′ < 2 < p).
Therefore, if in (16) we pass to the limit as n→ +∞, we obtain

〈Ap(u∗), h〉+ 〈A(u∗), h〉 = 0 ∀h ∈W1,p
0 (Ω).

Choosing h = u∗ ∈W1,p
0 (Ω), we obtain

‖Du∗‖p 6 0,

so
u∗ = 0. (21)

From (19) and the nonlinear regularity theory of Lieberman [7], we know that there
exist α ∈ (0, 1) and c5 > 0 such that

un ∈ C1,α
0 (Ω) and ‖un‖C1,α

0 (Ω)
6 c5 ∀n ∈ N. (22)
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Since the embedding C1,α
0 (Ω) ⊆ C1

0(Ω) is compact, from (19), (21) and (22), we infer that

un −→ 0 in C1
0(Ω) as n→ +∞. (23)

Let yn = un
‖un‖1,2

, for n ∈ N, with ‖ · ‖1,2 denoting the norm of H1
0(Ω). We have

‖yn‖1,2 = 0, yn > 0 ∀n ∈ N.

We may assume that

yn −→ y weakly in H1
0(Ω), yn −→ y in L2(Ω), y > 0. (24)

From (16), we have

‖un‖p−2
1,2 〈Ap(yn), h〉+ 〈A(yn), h〉 = λn

∫
Ω

f (z, un)

‖un‖1,2
h dz ∀h ∈W1,p

0 (Ω). (25)

On account of (20), we have

0 6
f (z, un(z))
‖un‖1,2

6 εyn(z) + un(z)p−2yn(z) 6 c6yn(z) for a.a. z ∈ Ω, n ∈ N,

for some c6 > 0 and thus

the sequence
{

f (·, un(·))
‖un‖

}
n∈N
⊆ Lp(Ω) is bounded (26)

(recall that, if 2 < p, then p′ < 2). Therefore, if in (25) we pass to the limit as n→ +∞ and
use (23), (24) and (26), we obtain

〈A(y), h〉 6 0 ∀h ∈W1,p
0 (Ω),

so y = 0 and hence ‖Dyn‖2 −→ 0 and n→ +∞ (see (25)), a contradiction since ‖yn‖1,2 = 1
for all n ∈ N. Therefore, we conclude that λ∗ > 0.

Next, we prove a multiplicity result when λ > λ∗.

Proposition 6. If hypotheses H hold and λ > λ∗, then problem (Pλ) has at least two positive
solutions

u0, û ∈ intC+, u0 6= û.

Proof. Let µ ∈ (λ∗, λ). We have µ, λ ∈ L and then, according to Proposition 4, we can find
u0 ∈ Sλ ⊆ intC+ and uµ ∈ Sµ ⊆ intC+ such that

u0 − uµ ∈ intC+. (27)

We truncate f (z, ·) from below at uµ(z) and introduce the Carathéodory function
e(z, x) defined by

e(z, x) =

 f (z, uµ(z)) if x 6 uµ(z),

f (z, x) if uµ(z) < x.
(28)

We set
E(z, x) =

∫ x

0
e(z, s) ds
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and consider the C1-functional ϕ̂λ : W1,p
0 (Ω) −→ R defined by

ϕ̂λ(u) =
1
p
‖Du‖p

p +
1
2
‖Du‖2

2 −
∫

Ω
λE(z, u) dz ∀u ∈W1,p

0 (Ω).

Let
[uµ) = {u ∈W1,p

0 (Ω) : uµ(z) 6 u(z) for a.a. z ∈ Ω}.

Then, from (28), we see that

ϕ̂λ|[uµ) = ϕλ|[uµ) + ξ, (29)

with ξ ∈ R. From the proof of Proposition 2, we know that ϕλ is coercive. Hence ϕλ is
coercive. Additionally, ϕλ is sequentially weakly lower semicontinuous. Therefore, we can
find û0 ∈W1,p

0 (Ω) such that

ϕ̂λ(û0) = min
u∈W1,p

0 (Ω)

ϕ̂λ(u), (30)

so
ϕ̂′λ(û0) = 0,

and hence
〈Ap(û0), h〉+ 〈A(û0), h〉 =

∫
Ω

λe(z, û0)h dz ∀h ∈W1,p
0 (Ω). (31)

Choose h ∈ (uµ − û0)
+ ∈W1,p

0 (Ω). Using (28), we have

〈Ap(û0), (uµ − û0)
+〉+ 〈A(û0), (uµ − û0)

+〉
=

∫
Ω

λ f (z, uµ)(uµ − û0)
+ dz

>
∫

Ω
µ f (z, uµ)(uµ − û0)

+ dz

= 〈Ap(uµ), (uµ − û0)
+〉+ 〈A(uµ), (uµ − û0)

+〉

(since f > 0, µ < λ and uµ ∈ Sµ), so
uµ 6 û0

(see Proposition 1).
Then, from (28) and (31), we infer that û0 ∈ Sλ ⊆ intC+.
If û0 6= u0, then this is the second positive solution of (Pλ). Therefore, we assume that

û0 = u0.

From (27), (29) and (30), it follows that

u0 ∈ intC+ is a local C1
0(Ω)-minimizer of ϕλ

and so
u0 ∈ intC+ is a local W1,p

0 (Ω)-minimizer of ϕλ (32)

(see Gasiński and Papageorgiou [9]).
Hypothesis H(iii) implies that given ε > 0, we can find δ = δ(ε) > 0 such that

F(z, x) 6
ε

2
x2 for a.a. z ∈ Ω, all |x| 6 δ (33)

(see (2)). Let u ∈ C1
0(Ω) with ‖u‖C1

0(Ω) 6 δ. We have

ϕλ(u) >
1
p
‖Du‖p

p +
1
2
‖Du‖2

2 −
λε

2
‖u‖2

2
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>
1
p
‖Du‖p

p +
1
2

(
1− λε

λ̂1(2)

)
‖Du‖2

2

(see (1) with r = 2). Choosing ε ∈ (0, λ̂1(2)
λ ), we obtain

ϕλ(u) >
1
p
‖u‖p ∀u ∈ C1

0(Ω), ‖u‖C1
0(Ω) 6 δ,

so
u = 0 is a local C1

0(Ω)-minimizer of ϕλ

and thus
u = 0 is a local W1,p

0 (Ω)-minimizer of ϕλ (34)

(see Gasiński and Papageorgiou [9]).
We assume that ϕλ(0) = 0 6 ϕλ(u0). The reasoning is similar if the opposite inequality

holds, using (34) instead of (32).
We also assume that

Kϕλ
= {u ∈W1,p

0 (Ω) : ϕ′λ(u) = 0}

(the critical set of ϕλ) is finite. Otherwise, we already have an infinity of distinct positive
solutions of (Pλ). On account of (32) and using Theorem 5.7.6 of Papageorgiou, Rădulescu
and Repovš [2] (p. 449), we can find $ ∈ (0, 1) small such that

ϕλ(0) = 0 6 ϕλ(u0) < inf
‖u−u0‖=$

ϕλ(u) = mλ, 0 < ϕ < ‖u0‖. (35)

Recall that ϕλ is coercive (see the proof of Proposition 2). Therefore, from Proposi-
tion 5.1.15 of Papageorgiou, Rădulescu and Repovš [2] (p. 449), we have that

ϕλ satisfies the PS-condition. (36)

Then, (35) and (36) permit the use of the mountain pass theorem. Therefore, we can
find
û ∈W1,p

0 (Ω) such that
ϕ′λ(û) = 0 and mλ 6 ϕλ(û). (37)

From (35) and (37), we conclude that

û ∈ Sλ ⊆ intC+ and û 6= u0.

It remains to be decided what we can say for the critical parameter value λ∗. We show
that λ∗ > 0 is admissible too.

Proposition 7. If hypotheses H hold, then λ∗ ∈ L.

Proof. Let {λn}n∈N ⊆ L be such that λn −→ λ+
∗ . We can find un ∈ Sλn ⊆ intC+ such that

〈Ap(un), h〉+ 〈A(un), h〉 = λn

∫
Ω

f (z, un)h dz ∀h ∈W1,p
0 (Ω), n ∈ N. (38)

In (38), we use h = un ∈W1,p
0 (Ω). Then,

‖un‖p 6 λ1

∫
Ω

f (z, un)un dz ∀n ∈ N. (39)
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On account of hypotheses H(i), (ii), given ε > 0, we can find cε > 0 such that

0 6 f (z, x)x 6 εxp + cε for a.a. z ∈ Ω, all x > 0. (40)

We use (40) in (39) and have

‖un‖p 6 λ1
ε

λ̂1(p)
‖un‖p + cε|Ω|N

(see (1) with r = p and recall that | · |N is the Lebesgue measure on RN), so(
1− λ1

λ̂1(p)
ε

)
‖un‖p 6 cε|Ω|N ∀n ∈ N.

We choose ε ∈ (0, λ̂1(p)
λ1

) and infer that the sequence {un}n∈N ⊆W1,p
0 (Ω) is bounded.

Therefore, we may assume that

un −→ u∗ weakly in W1,p
0 (Ω) and un −→ u∗ in Lp(Ω).

Then, reasoning as in the proof of Proposition 5 (see the part of the proof after (18)),
we show that

un −→ u∗ in W1,p
0 (Ω), u∗ 6= 0.

Therefore, if in (38) we pass to the limit as n→ +∞, then

〈Ap(u∗), h〉+ 〈A(u∗), h〉 = λ∗

∫
Ω

f ( f , u∗)h dz ∀h ∈W1,p
0 (Ω),

so u∗ ∈ Sλ∗ ⊆ intC+ and so λ∗ ∈ L.

We have proved that
L = [λ∗, ∞).

Next, we show that for every λ ∈ L, problem (Pλ) admits a smallest positive solution
(minimal positive solution).

Proposition 8. If hypotheses H hold and λ ∈ L, then problem (Pλ) admits a smallest solution
u∗λ ∈ Sλ ⊆ intC+ (that is, u∗λ 6 u for all u ∈ Sλ).

Proof. From Proposition 7 of Papageorgiou, Rădulescu and Repovš [10], we know that Sλ

is downward directed. Using Lemma 3.10 of Hu and Papageorgiou [11] (p. 178), we can
find a decreasing sequence {un}n∈N ⊆ Sλ such that

inf
n∈N

un = inf Sλ.

We have

〈Ap(un), h〉+ 〈A(un), h〉 =
∫

Ω
λ f (z, un)h dz ∀h ∈W1,p

0 (Ω), n ∈ N (41)

and
0 6 un 6 u1 ∀n ∈ N. (42)

In (41), we choose h = un ∈ W1,p
0 (Ω) and then use (42) and hypothesis H(i) to

establish that {un}n∈N ⊆W1,p
0 (Ω) is bounded. Therefore, we may assume that

un −→ u∗λ weakly in W1,p
0 (Ω) and un −→ u∗λ in Lp(Ω). (43)
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Then, as before (see the proof of Proposition 5 after (18)), using (43) we obtain

un −→ u∗λ in W1,p
0 (Ω) and u∗λ 6= 0. (44)

If in (41) we pass to the limit as n→ +∞ and use (44), then

〈Ap(u∗λ), h〉+ 〈A(u∗λ), h〉 =
∫

Ω
λ f (z, u∗λ)h dz ∀h ∈W1,p

0 (Ω),

so u∗λ ∈ Sλ ⊆ intC+, u∗λ = inf Sλ.

The theorem that follows summarizes our findings concerning the changes in the set
of positive solutions of (Pλ) as λ > 0 moves.

Theorem 1. If hypotheses H hold, then there exists λ∗ > 0 such that
(a) for all λ > λ∗ problem (Pλ) has at least two positive solutions u0, û ∈ intC+, u0 6= û;
(b) for λ = λ∗, problem (Pλ) has at least one positive solution u∗ ∈ intC+;
(c) for every λ ∈ (0, λ∗) problem (Pλ) has no positive solution;
(d) for every λ ∈ L = [λ∗, ∞), problem (Pλ) has a smallest positive solution u∗λ ∈ intC+.

Remark 2. From Proposition 4, we know that the minimal solution map k̂ : L −→ C1
0(Ω)

defined by k̂(λ) = u∗λ is strictly increasing in the sense that

if λ∗ 6 µ 6 λ, then u∗λ − u∗µ ∈ intC+.

It is worth mentioning that when the reaction f (z, ·) is (p− 1)-superlinear, then we
have the “bifurcation” in λ > 0, for small values of the parameter (see [1], [2]). Here, f (z, ·)
is (p− 1)-sublinear, and the “bifurcation” in λ > 0 occurs for large values of the parameter.

4. (p, q)-Equations

In this section, we briefly mention the situation for the more general (p, q)-equations,
q 6= 2. We now deal with the following nonlinear Dirichlet eigenvalue problem:

(Pλ)
′

{
−∆pu(z)− ∆qu(z) = λ f (z, u(z)) in Ω,
u|∂Ω = 0, u > 0, λ > 0, 1 < q < p.

If we strengthen the conditions on f (z, ·), we can have a similar “bifurcation-type”
result for problem (Pλ)

′.
The new conditions on f (z, x) are the following:

H’: f : Ω×R −→ R is a Carathéodory function, f (z, 0) = 0 for a.a. z ∈ Ω, hypotheses
H′(i), (ii), (iii) are the same as the corresponding hypotheses H(i), (ii), (iii) and (iv) for
a.a. z ∈ Ω, f (z, ·) is strictly increasing on R+.

Remark 3. According to hypothesis H′(iv), we have

0 < f (z, x) for a.a. z ∈ Ω, all x > 0.

The function f (z, x) = a(z)xτ−1 for a.a. z ∈ Ω, all x > 0 with a ∈ L∞(Ω) and
1 < τ < q < p satisfies hypotheses H’.

For the (p, q)-equation (q 6= 2), we cannot use the tangency principle of Pucci and
Serrin [8] (p. 35) (see the proof of Proposition 4). Instead, on account of the stronger
condition H′(iv), we can use Proposition 3.4 of Gasiński and Papageorgiou [1] (strong
comparison principle) and have that uϑ − uλ ∈ intC+. Then, all the other results remain
valid and so we can have the following bifurcation-type result for problem (Pλ)

′.
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Theorem 2. If hypotheses H′ hold, then there exists λ′∗ > 0 such that
(a) for all λ > λ′∗, problem (Pλ)

′ has at least two positive solutions u0, û ∈ intC+, u0 6= û;
(b) for λ = λ′∗, problem (Pλ)

′ has at least one positive solution u∗ ∈ intC+;
(c) for every λ ∈ (0, λ∗)′, problem (Pλ)

′ has no positive solution;
(d) for every λ ∈ L′ = [λ′∗, ∞), problem (Pλ)

′ has a smallest positive solution u∗λ ∈ intC+.

Remark 4. The function f (z, x) defined by

f (z, x) =

 a(z)
(
(x+)r−1 + (x+)η−1) if |x| 6 1,

a(z) ln(x+) if 1 < |x|,

with a ∈ L∞(Ω), p < r < η satisfies hypotheses H but not hypotheses H′.
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