Nonlinear Eigenvalue Problems for the Dirichlet ($p, 2$)-Laplacian

Yunru Bai ${ }^{1}$, Leszek Gasiński ${ }^{2, *}$ and Nikolaos S. Papageorgiou ${ }^{3}$
1 School of Science, Guangxi University of Science and Technology, Liuzhou 545006, China; yunrubai@163.com
2 Department of Mathematics, Pedagogical University of Cracow, Podchorazych 2, 30-084 Cracow, Poland
3 Department of Mathematics, National Technical University, Zografou Campus, 15780 Athens, Greece; npapg@math.ntua.gr
* Correspondence: leszek.gasinski@up.krakow.pl

Citation: Bai, Y.; Gasiński, L.; Papageorgiou, N.S. Nonlinear Eigenvalue Problems for the Dirichlet ($p, 2$)-Laplacian. Axioms 2022,11,58. https://doi.org/ 10.3390/axioms11020058

Academic Editor: Chris Goodrich

Received: 7 January 2022
Accepted: 28 January 2022
Published: 30 January 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

We consider a nonlinear eigenvalue problem driven by the Dirichlet ($p, 2$)-Laplacian. The parametric reaction is a Carathéodory function which exhibits $(p-1)$-sublinear growth as $x \rightarrow+\infty$ and as $x \rightarrow 0^{+}$. Using variational tools and truncation and comparison techniques, we prove a bifurcation-type theorem describing the "spectrum" as $\lambda>0$ varies. We also prove the existence of a smallest positive eigenfunction for every eigenvalue. Finally, we indicate how the result can be extended to (p, q)-equations $(q \neq 2)$.

Keywords: $(p, 2)$ and (p, q)-Laplacians; nonlinear regularity; positive solutions; strong comparison principle; sublinear reaction; bifurcation-type results

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain with C^{2}-boundary $\partial \Omega$. In this paper, we study the following nonlinear eigenvalue problem for the $\operatorname{Dirichlet~(~} p, 2$)-Laplacian

$$
\left\{\begin{array}{l}
-\Delta_{p} u(z)-\Delta u(z)=\lambda f(z, u(z)) \quad \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=0, u \geqslant 0, \lambda>0,2<p .
\end{array}\right.
$$

For every $r \in(1, \infty)$ by Δ_{r} we denote the r-Laplacian differential operator defined by

$$
\Delta_{r} u=\operatorname{div}\left(|D u|^{r-2} D u\right) \quad \forall u \in W_{0}^{1, p}(\Omega)
$$

($D u$ stands for the gradient of u). When $r=2$, we have the usual Laplacian denoted by Δ.
In the reaction, $\lambda>0$ is a parameter and $f(z, x)$ is a Carathéodory function. Such a function is jointly measurable. We assume that for almost all $z \in \Omega, f(z, \cdot)$ is $(p-1)$ sublinear as $x \rightarrow+\infty$. We are looking for positive solutions as the parameter $\lambda>0$ varies. Our work complements those by Gasiński and Papageorgiou [1] and Papageorgiou, Rădulescu and Repovš [2] where the reaction is $(p-1)$-superlinear in $x \in \mathbb{R}$. Moreover, in the aforementioned works, the equation is driven by the p-Laplacian differential operator which is homogeneous, a property used by the authors in the proof of their results. In contrast, here, the ($p, 2$)-Laplace differential operator is not homogeneous.

We mention that equations driven by the sum of two differential operators of different structures (such as ($p, 2$)-equations) arise in the mathematical models of many physical processes. We refer to the survey papers of Marano and Mosconi [3], Rădulescu [4] and the references therein.

2. Mathematical Background-Hypotheses

The main spaces in the analysis of problem $\left(P_{\lambda}\right)$ are the Sobolev space $W_{0}^{1, p}(\Omega)$ and the Banach space

$$
C_{0}^{1}(\bar{\Omega})=\left\{u \in C^{1}(\bar{\Omega}):\left.u\right|_{\partial \Omega}=0\right\} .
$$

By $\|\cdot\|$, we denote the norm of the Sobolev space $W_{0}^{1, p}(\Omega)$. On account of the Poincaré inequality, we have

$$
\|u\|=\|D u\|_{p} \quad \forall u \in W_{0}^{1, p}(\Omega)
$$

The Banach space $C_{0}^{1}(\Omega)$ is an ordered Banach space with positive (order) cone

$$
C_{+}=\left\{u \in C_{0}^{1}(\Omega): u(z) \geqslant 0 \text { for all } z \in \bar{\Omega}\right\} .
$$

This cone has a nonempty interior given by

$$
\operatorname{int} C_{+}=\left\{u \in C_{+}: u(z)>0 \text { for all } z \in \Omega,\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}<0\right\}
$$

with n being the outward unit normal on $\partial \Omega$ and $\frac{\partial u}{\partial n}=(D u, n)_{\mathbb{R}^{N}}$.
We know that if $r \in(1,+\infty)$, then $W_{0}^{1, r}(\Omega)^{*}=W^{-1, r^{\prime}}(\Omega)\left(\frac{1}{r}+\frac{1}{r^{\prime}}=1\right)$. Let $A_{r}: W_{0}^{1, r}(\Omega) \longrightarrow W^{-1, r^{\prime}}(\Omega)$ by the operator defined by

$$
\left\langle A_{r}(u), h\right\rangle=\int_{\Omega}|D u|^{r-2}(D u, D h)_{\mathbb{R}^{N}} d z \quad \text { for all } u, h \in W_{0}^{1, r}(\Omega)
$$

The next proposition gathers the main properties of this operator (see Gasiński and Papageorgiou [5]).

Proposition 1. The operator $A_{r}: W_{0}^{1, r}(\Omega) \longrightarrow W^{-1, r^{\prime}}(\Omega)$ is bounded (that is, maps bounded sets to bounded sets), continuous, strictly monotone (thus maximal monotone too) and of type $(S)_{+}$, that is, A_{r} has the following property:
if $u_{n} \longrightarrow u$ weakly in $W_{0}^{1, r}(\Omega)$ and $\limsup _{n \rightarrow \infty}\left\langle A_{r}\left(u_{n}\right), u_{n}-u\right\rangle \leqslant 0$, then $u_{n} \longrightarrow u$ in $W_{0}^{1, r}(\Omega)$.
If $r=2$, then we write $A_{2}=A \in \mathcal{L}\left(H_{0}^{1}(\Omega), H^{-1}(\Omega)\right)$.
The Dirichlet r-Laplace differential operator has a principal eigenvalue denoted by $\hat{\lambda}_{1}(r)$. Therefore, if we consider the nonlinear eigenvalue problem

$$
\left\{\begin{array}{l}
-\Delta_{r} u(z)=\hat{\lambda}|u(z)|^{r-2} u(z) \quad \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=0,
\end{array}\right.
$$

then this problem has a smallest eigenvalue $\widehat{\lambda}_{1}(r)>0$ which is isolated and simple. It has the following variational characterization:

$$
\begin{equation*}
\widehat{\lambda}_{1}(r)=\inf _{u \in W_{0}^{1, r}(\Omega), u \neq 0} \frac{\|D u\|_{r}^{r}}{\|u\|_{r}^{r}} . \tag{1}
\end{equation*}
$$

For $x \in \mathbb{R}$, we define $x^{ \pm}=\max \{ \pm x, 0\}$. Then, for $u \in W_{0}^{1, p}(\Omega)$, we set $u^{ \pm}(z)=u(z)^{ \pm}$ for all $z \in \Omega$. We know that

$$
u^{ \pm} \in W_{0}^{1, p}(\Omega), \quad u=u^{+}=u^{-}, \quad|u|=u^{+}+u^{-}
$$

A set $S \subseteq W_{0}^{1, p}(\Omega)$ is said to be "downward directed", if given $u_{1}, u_{2} \in S$, we can find $u \in S$ such that $u \leqslant u_{1}, u \leqslant u_{2}$.

If $u, v: \Omega \longrightarrow \mathbb{R}$ are measurable functions, then we write $u \prec v$ if and only if for all compact sets $K \subseteq \Omega$, we have

$$
0<c_{K} \leqslant v(z)-u(z) \quad \text { for a.a. } z \in K .
$$

Evidently if $u, v \in C(\bar{\Omega})$ and $u(z)<v(z)$ for all $z \in \Omega$, then $u \prec v$.
Now, we introduce the hypotheses on the reaction $f(z, x)$.

H: $f: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ is a Carathéodory function such that for a.a. $z \in \Omega, f(z, 0)=0$, $f(z, x)>0$ for all $x>0$ and
(i) For every $\varrho>0$, there exists $a_{\varrho} \in L^{\infty}(\Omega)$ such that

$$
f(z, x) \leqslant a_{\varrho}(z) \quad \text { for a.a. } z \in \Omega, \text { all } 0 \leqslant x \leqslant \varrho ;
$$

(ii) $\lim _{x \rightarrow+\infty} \frac{f(z, x)}{x^{p-1}}=0$ uniformly for a.a. $z \in \Omega$;
(iii) $\lim _{x \rightarrow 0^{+}} \frac{f(z, x)}{x^{p-1}}=0$ uniformly for a.a. $z \in \Omega$;
(iv) for every $\varrho>0$, there exists $s \widehat{\xi}_{\varrho}>0$ such that for a.a. $z \in \Omega$, the function $x \longmapsto$ $f(z, x)+\widehat{\xi}_{\varrho} x^{p-1}$ is nondecreasing on $[0, \varrho]$.

Remark 1. Since we look for positive solutions and the above hypotheses concern the positive semiaxis $\mathbb{R}_{+}=[0,+\infty)$, without any loss of generality we may assume that

$$
\begin{equation*}
f(z, x)=0 \quad \text { for a.a. } z \in \Omega \text {, all } x \leqslant 0 \text {. } \tag{2}
\end{equation*}
$$

Hypothesis $H(i i)$ implies that $f(z, \cdot)$ is $(p-1)$-sublinear as $x \rightarrow+\infty$ while hypothesis $H\left(\right.$ iii) says that $f(z, \cdot)$ is sublinear near 0^{+}. Hypothesis $H(i v)$ is essentially a one-sided local Lipschitz condition.

3. Positive Solutions

We introduce the following two sets:

$$
\begin{aligned}
\mathcal{L} & =\left\{\lambda>0: \text { problem }\left(P_{\lambda}\right) \text { admits a positive solution }\right\} ; \\
S_{\lambda} & =\text { the set of positive solutions for problem }\left(P_{\lambda}\right) .
\end{aligned}
$$

We also set

$$
\lambda_{*}=\inf \mathcal{L} .
$$

First, we establish the existence of admissible parameters (eigenvalues) and determine the regularity properties of the corresponding solutions (eigenfunctions).

Proposition 2. If hypotheses H hold, then $\mathcal{L} \neq \varnothing$ and $S_{\lambda} \subseteq$ int C_{+}for all $\lambda>0$.
Proof. For every $\lambda>0$, let $\varphi_{\lambda}: W_{0}^{1, p}(\Omega) \longrightarrow \mathbb{R}$ be the C^{1}-functional defined by

$$
\varphi_{\lambda}(u)=\frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\|D u\|_{2}^{2}-\int_{\Omega} F\left(z, u^{+}\right) d z \quad \forall u \in W_{0}^{1, p}(\Omega),
$$

with $F(z, x)=\int_{0}^{x} f(z, s) d$. From hypotheses $H(i),(i i)$, we see that given $\varepsilon>0$, we can find $c_{\varepsilon}>0$ such that

$$
\begin{equation*}
0 \leqslant F(z, x) \leqslant \frac{\varepsilon}{p} x^{p}+c_{\varepsilon} \quad \text { for a.a. } z \in \Omega, \text { all } x \geqslant 0 . \tag{3}
\end{equation*}
$$

For $u \in W_{0}^{1, p}(\Omega)$, using (3) we have

$$
\varphi_{\lambda}(u) \geqslant \frac{1}{p}\left(\|D u\|_{p}^{p}-\lambda \varepsilon\|u\|_{p}^{p}\right)+\frac{1}{2}\|D u\|_{p}^{p}-\lambda c_{\varepsilon}|\Omega|_{N},
$$

with $|\cdot|_{N}$ being the Lebesgue measure on \mathbb{R}^{N}. Using (1) with $r=p$, we obtain

$$
\varphi_{\lambda}(u) \geqslant \frac{1}{p}\left(1-\frac{\lambda \varepsilon}{\hat{\lambda}_{p}(p)}\right)\|D u\|_{p}^{p}-\lambda c_{\varepsilon}|\Omega|_{N} .
$$

Choosing $\varepsilon \in\left(0, \frac{\widehat{\lambda}_{1}(p)}{\lambda}\right)$, we infer that

$$
\varphi_{\lambda}(u) \geqslant c_{1}\|u\|^{p}-\lambda c_{\varepsilon}|\Omega|_{N},
$$

for some $c_{1}>0$ and thus φ_{λ} is coercive.
Additionally, using the Sobolev imbedding theorem, we see that φ_{λ} is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find $u_{0} \in$ $W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\varphi_{\lambda}\left(u_{0}\right)=\min _{u \in W_{0}^{1, p}(\Omega)} \varphi_{\lambda}(u) . \tag{4}
\end{equation*}
$$

On account of the strict positivity of $f(z, \cdot)$, if $\bar{u} \in \operatorname{int} C_{+}$, then

$$
\begin{equation*}
\int_{\Omega} F(z, \bar{u}) d z>0 \tag{5}
\end{equation*}
$$

Then, we have

$$
\begin{aligned}
\varphi_{\lambda}(\bar{u}) & =\frac{1}{p}\|D \bar{u}\|_{p}^{p}+\frac{1}{2}\|D \bar{u}\|_{2}^{2}-\lambda \int_{\Omega} F(z, \bar{u}) d z \\
& =c_{2}-\lambda \int_{\Omega} F(z, \bar{u}) d z
\end{aligned}
$$

with $c_{2}=c_{2}(\bar{u})>0$. From (5) and by choosing $\lambda>0$ big, we have

$$
\varphi_{\lambda}(\bar{u})<0
$$

so

$$
\varphi_{\lambda}\left(u_{0}\right)<0=\varphi_{\lambda}(0)
$$

(see (4)) and thus

$$
u_{0} \neq 0
$$

From (4), we have

$$
\varphi_{\lambda}^{\prime}\left(u_{0}\right)=0,
$$

so

$$
\begin{equation*}
\left\langle A_{p}\left(u_{0}\right), h\right\rangle+\left\langle A\left(u_{0}\right), h\right\rangle=\lambda \int_{\Omega} f\left(z, u_{0}^{+}\right) h d z \quad \forall h \in W_{0}^{1, p}(\Omega) . \tag{6}
\end{equation*}
$$

In (6), we choose $h=-u_{0}^{-} \in W_{0}^{1, p}(\Omega)$. We obtain

$$
\left\|D u_{0}^{-}\right\|_{p} \leqslant 0,
$$

thus $u_{0} \geqslant 0$ and $u_{0} \neq 0$.
Then, from (6), we have

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{0}(z)-\Delta u_{0}(z)=\lambda f\left(z, u_{0}(z)\right) \quad \text { in } \Omega \tag{7}\\
\left.u_{0}\right|_{\partial \Omega}=0
\end{array}\right.
$$

for $\lambda>0$ big and so $\mathcal{L} \neq \varnothing$.
From Theorem 7.1 of Ladyzhenskaya and Ural'tseva [6], we have that $u_{0} \in L^{\infty}(\Omega)$. Then, the nonlinear regularity theory of Lieberman [7] implies that $u_{0} \in C_{+} \backslash\{0\}$. Let $\varrho=\left\|u_{0}\right\|_{\infty}$ and let $\widehat{\zeta}_{\varrho}^{\varrho}>0$ be as postulated by hypothesis $H(i v)$. From (7), we have

$$
-\Delta_{p} u_{0}(z)-\Delta u_{0}(z)+\lambda \widehat{\xi}_{\varrho} u_{0}(z)^{p-1} \geqslant 0 \quad \text { in } \Omega
$$

so

$$
\Delta_{p} u_{0}(z)+\Delta u_{0}(z) \leqslant \lambda \widehat{\widehat{\zeta}_{\varrho}} u_{0}(z)^{p-1} \quad \text { in } \Omega
$$

and thus $u_{0} \in \operatorname{int} C_{+}$(see Pucci and Serrin [8] (pp. 111, 120)). Therefore, we conclude that $S_{\lambda} \subseteq \operatorname{int} C_{+}$for all $\lambda>0$.

Next, we show that \mathcal{L} is connected (more precisely, an upper half-line).
Proposition 3. If hypotheses H hold, $\lambda \in \mathcal{L}$ and $\vartheta>\lambda$, then $\vartheta \in \mathcal{L}$.
Proof. Since $\lambda \in \mathcal{L}$, we can find $u_{\lambda} \in S_{\lambda} \in \operatorname{int} C_{+}$(see Proposition 2). We introduce the Carathéodory function $k(z, x)$ defined by

$$
k(z, x)=\left\{\begin{array}{lll}
f\left(z, u_{\lambda}(z)\right) & \text { if } & x \leqslant u_{\lambda}(z) \tag{8}\\
f(z, x) & \text { if } & u_{\lambda}(z)<x
\end{array}\right.
$$

We set

$$
K(z, x)=\int_{0}^{x} k(z, s) d s
$$

and consider the C^{1}-functional $\psi_{\vartheta}: W_{0}^{1, p}(\Omega) \longrightarrow \mathbb{R}$ defined by

$$
\psi_{\vartheta}(u)=\frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\|D u\|_{2}^{2}-\int_{\Omega} \vartheta K(z, u) d z \quad \forall u \in W_{0}^{1, p}(\Omega) .
$$

Note that (8) and hypotheses $H(i)$, (ii) imply that, given $\varepsilon>0$, we can find $\widehat{c}_{\varepsilon}>0$ such that

$$
\begin{equation*}
K(z, x) \leqslant \frac{\varepsilon}{p} x^{p}+\widehat{c}_{\varepsilon} \quad \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R} \tag{9}
\end{equation*}
$$

Using (9) and choosing $\varepsilon>0$ small, as in the proof of Proposition 2, we show that ψ_{ϑ} is coercive. In addition, it is sequentially weakly lower semicontinuous. Therefore, we can find $u_{\vartheta} \in W_{0}^{1, p}(\Omega)$ such that

$$
\psi_{\vartheta}\left(u_{\vartheta}\right)=\min _{u \in W_{0}^{1, p}(\Omega)} \psi_{\vartheta}(u)
$$

so $\psi_{\vartheta}^{\prime}\left(u_{\vartheta}\right)=0$ and thus

$$
\begin{equation*}
\left\langle A_{p}\left(u_{\vartheta}\right), h\right\rangle+\left\langle A\left(u_{\vartheta}\right), h\right\rangle=\int_{\Omega} \vartheta k\left(z, u_{\vartheta}\right) h d z \quad \forall h \in W_{0}^{1, p}(\Omega) \tag{10}
\end{equation*}
$$

In (10), we choose $h=\left(u_{\lambda}-u_{\vartheta}\right)^{+} \in W_{0}^{1, p}(\Omega)$. Then, using (8), we have

$$
\begin{aligned}
& \left\langle A_{p}\left(u_{\vartheta}\right),\left(u_{\lambda}-u_{\vartheta}\right)^{+}\right\rangle+\left\langle A\left(u_{\vartheta}\right),\left(u_{\lambda}-u_{\vartheta}\right)^{+}\right\rangle \\
= & \int_{\Omega} \vartheta f\left(z, u_{\lambda}\right)\left(u_{\lambda}-u_{\vartheta}\right)^{+} d z \\
\geqslant & \int_{\Omega} \lambda f\left(z, u_{\lambda}\right)\left(u_{\lambda}-u_{\vartheta}\right)^{+} d z \\
= & \left\langle A_{p}\left(u_{\lambda}\right),\left(u_{\lambda}-u_{\vartheta}\right)^{+}\right\rangle+\left\langle A\left(u_{\lambda}\right),\left(u_{\lambda}-u_{\vartheta}\right)^{+}\right\rangle
\end{aligned}
$$

since $f \geqslant 0$ and $u_{\lambda} \in S_{\lambda}$. Thus,

$$
\begin{equation*}
u_{\lambda} \leqslant u_{\vartheta} \tag{11}
\end{equation*}
$$

(see Proposition 1).
From (8), (10) and (11), we infer that

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{\vartheta}(z)-\Delta u_{\vartheta}(z)=\vartheta f\left(z, u_{\vartheta}(z)\right) \text { in } \Omega \\
\left.u_{\vartheta}\right|_{\partial \Omega}=0
\end{array}\right.
$$

so $u_{\vartheta} \in S_{\vartheta} \subseteq C_{+}$and thus $\vartheta \in \mathcal{L}$.
A byproduct of the above proof is the following corollary.
Corollary 1. If hypotheses H hold, $\lambda \in \mathcal{L}$ and $u_{\lambda} \in S_{\lambda} \subseteq \operatorname{int} C_{+}$and $\vartheta>\lambda$, then $\vartheta \in \mathcal{L}$ and we can find $u_{\vartheta} \in S_{\vartheta} \subseteq \operatorname{int} C_{+}$such that $u_{\lambda} \leqslant u_{\vartheta}$.

We can improve this corollary using the strong comparison principle of Gasiński and Papageorgiou [1] (Proposition 3.2).

Proposition 4. If hypotheses H hold, $\lambda \in \mathcal{L}$ and $u_{\lambda} \in S_{\lambda} \subseteq \operatorname{int} C_{+}$and $\vartheta>\lambda$, then $\vartheta \in \mathcal{L}$ and we can find $u_{\vartheta} \in S_{\vartheta} \subseteq \operatorname{int} C_{+}$such that $u_{\vartheta}-u_{\lambda} \in \operatorname{int} C_{+}$.

Proof. From Corollary 1, we already know that $\vartheta \in \mathcal{L}$ and there exists $u_{\vartheta} \in S_{\vartheta} \subseteq \operatorname{int} C_{+}$ such that

$$
\begin{equation*}
u_{\lambda} \leqslant u_{\vartheta}, \quad u_{\lambda} \neq u_{\vartheta} . \tag{12}
\end{equation*}
$$

Consider the function $a: \mathbb{R}^{N} \longrightarrow \mathbb{R}^{N}$ defined by

$$
a(y)=|y|^{p-2} y+y \quad \forall y \in \mathbb{R}^{N}
$$

Evidently, $a \in C^{1}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)$ (recall that $2<p$) and we have

$$
\nabla a(y)=|y|^{p-2}\left(\mathrm{id}+(p-2) \frac{y \otimes y}{|y|^{2}}\right)+\mathrm{id} \quad \forall y \neq 0
$$

so

$$
(\nabla a(y), \xi, \xi)_{\mathbb{R}^{N}} \geqslant|\xi|^{2} \quad \forall y, \xi \in \mathbb{R}^{N}
$$

Then, the tangency principle of Pucci and Serrin [8] (Theorem 2.5.2, p. 35) implies that

$$
\begin{equation*}
u_{\lambda}(z)<u_{\vartheta}(z) \quad \forall z \in \Omega \tag{13}
\end{equation*}
$$

(see (12)). Let $\varrho=\left\|u_{\vartheta}\right\|_{\infty}$ and let $\widehat{\xi} \rho>0$ be as postulated by hypothesis $H(i v)$. We pick $\widetilde{\xi}_{\varrho}>\widehat{\xi}_{\varrho}$ and using (12), hypothesis $H(i v)$ and the facts that $f \geqslant 0$ and $u_{\lambda} \leqslant u_{\vartheta}$, we have

$$
\begin{align*}
& -\Delta_{p} u_{\vartheta}-\Delta u_{\vartheta}+\vartheta \widetilde{\xi}_{\varrho} u_{\vartheta}^{p-1} \\
= & \vartheta\left(f\left(z, u_{\vartheta}\right)+\widehat{\xi}_{\varrho} u_{\vartheta}^{p-1}\right)+\vartheta\left(\widetilde{\xi}_{\varrho}-\widehat{\xi}_{\varrho}\right) u_{\vartheta}^{p-1} \\
\geqslant & \vartheta\left(f\left(z, u_{\lambda}\right)+\widehat{\xi}_{\varrho} u_{\lambda}^{p-1}\right)+\vartheta\left(\widetilde{\xi}_{\varrho}-\widehat{\xi}_{\varrho}\right) u_{\vartheta}^{p-1} \\
\geqslant & \lambda f\left(z, u_{\lambda}\right)+\vartheta \widetilde{\xi}_{\varrho} u_{\lambda}^{p-1} \\
= & -\Delta_{p} u_{\lambda}-\Delta u_{\lambda}+\vartheta \widetilde{\xi}_{\varrho} u_{\lambda}^{p-1} \quad \text { in } \Omega . \tag{14}
\end{align*}
$$

Note that on account of (13), we have

$$
\begin{equation*}
0 \prec \vartheta\left(\widetilde{\xi}_{\varrho}-\widehat{\xi}_{\varrho}\right)\left(u_{\vartheta}^{p-1}-u_{\lambda}^{p-1}\right) . \tag{15}
\end{equation*}
$$

Then, (14), (15) and Proposition 3.2 of Gasiński and Papageorgiou [1] imply that $u_{\vartheta}-u_{\lambda} \in \operatorname{int} C_{+}$.

Proposition 5. If hypotheses H hold, then $\lambda_{*}>0$.
Proof. We argue by contradiction. Suppose that $\lambda_{*}=0$. Let $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathcal{L}$ be such that $\lambda_{n} \rightarrow 0^{+}$and consider $u_{n}=u_{\lambda_{n}} \subseteq \operatorname{int} C_{+}$for all $n \in \mathbb{N}$. We have

$$
\begin{equation*}
\left\langle A_{p}\left(u_{n}\right), h\right\rangle+\left\langle A\left(u_{n}\right), h\right\rangle=\int_{\Omega} \lambda_{n} f\left(z, u_{n}\right) h d z \quad \forall h \in W_{0}^{1, p}(\Omega), n \in \mathbb{N} . \tag{16}
\end{equation*}
$$

On account of hypotheses $H(i),(i i)$, given $\varepsilon>0$, we can find $c_{\varepsilon}>0$ such that

$$
\begin{equation*}
0 \leqslant f\left(z, u_{n}(z)\right) \leqslant \varepsilon u_{n}(z)^{p-1}+c_{\varepsilon} \quad \text { for a.a. } z \in \Omega, n \in \mathbb{N} . \tag{17}
\end{equation*}
$$

In (16), first, we choose $h=u_{n} \in W_{0}^{1, p}(\Omega)$ and then on the right hand side we use (17). We obtain

$$
\left\|D u_{n}\right\|_{p}^{p} \leqslant \varepsilon\left\|u_{n}\right\|_{p}^{p}+c_{3}\left\|u_{n}\right\| \quad \forall n \in \mathbb{N},
$$

for some $c_{3}=c_{3}(\varepsilon)>0$, so

$$
\left(1-\frac{\varepsilon}{\hat{\lambda}_{1}(p)}\right)\left\|u_{n}\right\|^{p-1} \leqslant c_{3} \quad \forall n \in \mathbb{N}
$$

(see (1) with $r=p$). Choosing $\varepsilon \in\left(0, \widehat{\lambda}_{1}(p)\right)$, we see that the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, p}(\Omega)$ is bounded. We may assume that

$$
\begin{equation*}
u_{n} \longrightarrow u_{*} \quad \text { weakly in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad u_{n} \longrightarrow u_{*} \quad \text { in } L^{p}(\Omega) \tag{18}
\end{equation*}
$$

In (16), we choose $h=u_{n}-u_{*} \in W_{0}^{1, p}(\Omega)$, pass to the limit as $n \rightarrow+\infty$ and use (18). We obtain

$$
\lim _{n \rightarrow+\infty}\left(\left\langle A_{p}\left(u_{n}\right), u_{n}-u_{*}\right\rangle+\left\langle A\left(u_{n}\right), u_{n}-u_{*}\right\rangle\right)=0
$$

so, using the monotonicity of A, we obtain

$$
\limsup _{n \rightarrow+\infty}\left(\left\langle A_{p}\left(u_{n}\right), u_{n}-u_{*}\right\rangle+\left\langle A(u), u_{n}-u_{*}\right\rangle\right)=0
$$

thus

$$
\limsup _{n \rightarrow+\infty}\left(\left\langle A_{p}\left(u_{n}\right), u_{n}-u_{*}\right\rangle\right) \leqslant 0
$$

and hence

$$
\begin{equation*}
u_{n} \longrightarrow u_{*} \quad \text { in } W_{0}^{1, p}(\Omega) \tag{19}
\end{equation*}
$$

(see Proposition 1). Hypotheses $H(i)$, (ii), (iii) imply that given $\varepsilon>0$, we can find $c_{4}=$ $c_{4}(\varepsilon)>0$ such that

$$
\begin{equation*}
0 \leqslant f(z, x) \leqslant \varepsilon x+c_{4} x^{p-1} \quad \text { for a.a. } z \in \Omega, x \geqslant 0 \tag{20}
\end{equation*}
$$

so

$$
0 \leqslant f\left(z, u_{n}(z)\right) \leqslant \varepsilon u_{n}(z)+c_{4} u_{n}(z)^{p-1} \quad \text { for a.a. } z \in \Omega, n \in \mathbb{N},
$$

thus the sequence $\left\{f\left(\cdot, u_{n}(\cdot)\right) \subseteq L^{p^{\prime}}(\Omega)\right.$ is bounded (see (19) and recall that $p^{\prime}<2<p$). Therefore, if in (16) we pass to the limit as $n \rightarrow+\infty$, we obtain

$$
\left\langle A_{p}\left(u_{*}\right), h\right\rangle+\left\langle A\left(u_{*}\right), h\right\rangle=0 \quad \forall h \in W_{0}^{1, p}(\Omega)
$$

Choosing $h=u_{*} \in W_{0}^{1, p}(\Omega)$, we obtain

$$
\left\|D u_{*}\right\|_{p} \leqslant 0
$$

so

$$
\begin{equation*}
u_{*}=0 \tag{21}
\end{equation*}
$$

From (19) and the nonlinear regularity theory of Lieberman [7], we know that there exist $\alpha \in(0,1)$ and $c_{5}>0$ such that

$$
\begin{equation*}
u_{n} \in C_{0}^{1, \alpha}(\bar{\Omega}) \quad \text { and } \quad\left\|u_{n}\right\|_{C_{0}^{1, \alpha}(\bar{\Omega})} \leqslant c_{5} \quad \forall n \in \mathbb{N} . \tag{22}
\end{equation*}
$$

Since the embedding $C_{0}^{1, \alpha}(\bar{\Omega}) \subseteq C_{0}^{1}(\bar{\Omega})$ is compact, from (19), (21) and (22), we infer that

$$
\begin{equation*}
u_{n} \longrightarrow 0 \quad \text { in } C_{0}^{1}(\bar{\Omega}) \quad \text { as } n \rightarrow+\infty . \tag{23}
\end{equation*}
$$

Let $y_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{1,2}}$, for $n \in \mathbb{N}$, with $\|\cdot\|_{1,2}$ denoting the norm of $H_{0}^{1}(\Omega)$. We have

$$
\left\|y_{n}\right\|_{1,2}=0, \quad y_{n} \geqslant 0 \quad \forall n \in \mathbb{N}
$$

We may assume that

$$
\begin{equation*}
y_{n} \longrightarrow y \quad \text { weakly in } H_{0}^{1}(\Omega), \quad y_{n} \longrightarrow y \text { in } L^{2}(\Omega), \quad y \geqslant 0 . \tag{24}
\end{equation*}
$$

From (16), we have

$$
\begin{equation*}
\left\|u_{n}\right\|_{1,2}^{p-2}\left\langle A_{p}\left(y_{n}\right), h\right\rangle+\left\langle A\left(y_{n}\right), h\right\rangle=\lambda_{n} \int_{\Omega} \frac{f\left(z, u_{n}\right)}{\left\|u_{n}\right\|_{1,2}} h d z \quad \forall h \in W_{0}^{1, p}(\Omega) \tag{25}
\end{equation*}
$$

On account of (20), we have

$$
0 \leqslant \frac{f\left(z, u_{n}(z)\right)}{\left\|u_{n}\right\|_{1,2}} \leqslant \varepsilon y_{n}(z)+u_{n}(z)^{p-2} y_{n}(z) \leqslant c_{6} y_{n}(z) \quad \text { for a.a. } z \in \Omega, n \in \mathbb{N},
$$

for some $c_{6}>0$ and thus

$$
\begin{equation*}
\text { the sequence }\left\{\frac{f\left(\cdot, u_{n}(\cdot)\right)}{\left\|u_{n}\right\|}\right\}_{n \in \mathbb{N}} \subseteq L^{p}(\Omega) \text { is bounded } \tag{26}
\end{equation*}
$$

(recall that, if $2<p$, then $p^{\prime}<2$). Therefore, if in (25) we pass to the limit as $n \rightarrow+\infty$ and use (23), (24) and (26), we obtain

$$
\langle A(y), h\rangle \leqslant 0 \quad \forall h \in W_{0}^{1, p}(\Omega)
$$

so $y=0$ and hence $\left\|D y_{n}\right\|_{2} \longrightarrow 0$ and $n \rightarrow+\infty$ (see (25)), a contradiction since $\left\|y_{n}\right\|_{1,2}=1$ for all $n \in \mathbb{N}$. Therefore, we conclude that $\lambda_{*}>0$.

Next, we prove a multiplicity result when $\lambda>\lambda_{*}$.
Proposition 6. If hypotheses H hold and $\lambda>\lambda_{*}$, then problem $\left(P_{\lambda}\right)$ has at least two positive solutions

$$
u_{0}, \widehat{u} \in \operatorname{int} C_{+}, \quad u_{0} \neq \widehat{u} .
$$

Proof. Let $\mu \in\left(\lambda_{*}, \lambda\right)$. We have $\mu, \lambda \in \mathcal{L}$ and then, according to Proposition 4, we can find $u_{0} \in S_{\lambda} \subseteq \operatorname{int}_{+}$and $u_{\mu} \in S_{\mu} \subseteq \operatorname{int}_{+}$such that

$$
\begin{equation*}
u_{0}-u_{\mu} \in \operatorname{int} C_{+} . \tag{27}
\end{equation*}
$$

We truncate $f(z, \cdot)$ from below at $u_{\mu}(z)$ and introduce the Carathéodory function $e(z, x)$ defined by

$$
e(z, x)=\left\{\begin{array}{lll}
f\left(z, u_{\mu}(z)\right) & \text { if } & x \leqslant u_{\mu}(z) \tag{28}\\
f(z, x) & \text { if } & u_{\mu}(z)<x
\end{array}\right.
$$

We set

$$
E(z, x)=\int_{0}^{x} e(z, s) d s
$$

and consider the C^{1}-functional $\widehat{\varphi}_{\lambda}: W_{0}^{1, p}(\Omega) \longrightarrow \mathbb{R}$ defined by

$$
\widehat{\varphi}_{\lambda}(u)=\frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\|D u\|_{2}^{2}-\int_{\Omega} \lambda E(z, u) d z \quad \forall u \in W_{0}^{1, p}(\Omega) .
$$

Let

$$
\left[u_{\mu}\right)=\left\{u \in W_{0}^{1, p}(\Omega): u_{\mu}(z) \leqslant u(z) \text { for a.a. } z \in \Omega\right\} .
$$

Then, from (28), we see that

$$
\begin{equation*}
\left.\widehat{\varphi}_{\lambda}\right|_{\left[u_{\mu}\right)}=\left.\varphi_{\lambda}\right|_{\left[u_{\mu}\right)}+\xi, \tag{29}
\end{equation*}
$$

with $\xi \in \mathbb{R}$. From the proof of Proposition 2, we know that φ_{λ} is coercive. Hence φ_{λ} is coercive. Additionally, φ_{λ} is sequentially weakly lower semicontinuous. Therefore, we can find $\widehat{u}_{0} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\widehat{\varphi}_{\lambda}\left(\widehat{u}_{0}\right)=\min _{u \in W_{0}^{1, p}(\Omega)} \widehat{\varphi}_{\lambda}(u) \tag{30}
\end{equation*}
$$

so

$$
\widehat{\varphi}_{\lambda}^{\prime}\left(\widehat{u}_{0}\right)=0,
$$

and hence

$$
\begin{equation*}
\left\langle A_{p}\left(\widehat{u}_{0}\right), h\right\rangle+\left\langle A\left(\widehat{u}_{0}\right), h\right\rangle=\int_{\Omega} \lambda e\left(z, \widehat{u}_{0}\right) h d z \quad \forall h \in W_{0}^{1, p}(\Omega) . \tag{31}
\end{equation*}
$$

Choose $h \in\left(u_{\mu}-\widehat{u}_{0}\right)^{+} \in W_{0}^{1, p}(\Omega)$. Using (28), we have

$$
\begin{aligned}
& \left\langle A_{p}\left(\widehat{u}_{0}\right),\left(u_{\mu}-\widehat{u}_{0}\right)^{+}\right\rangle+\left\langle A\left(\widehat{u}_{0}\right),\left(u_{\mu}-\widehat{u}_{0}\right)^{+}\right\rangle \\
= & \int_{\Omega} \lambda f\left(z, u_{\mu}\right)\left(u_{\mu}-\widehat{u}_{0}\right)^{+} d z \\
\geqslant & \int_{\Omega} \mu f\left(z, u_{\mu}\right)\left(u_{\mu}-\widehat{u}_{0}\right)^{+} d z \\
= & \left\langle A_{p}\left(u_{\mu}\right),\left(u_{\mu}-\widehat{u}_{0}\right)^{+}\right\rangle+\left\langle A\left(u_{\mu}\right),\left(u_{\mu}-\widehat{u}_{0}\right)^{+}\right\rangle
\end{aligned}
$$

(since $f \geqslant 0, \mu<\lambda$ and $u_{\mu} \in S_{\mu}$), so

$$
u_{\mu} \leqslant \widehat{u}_{0}
$$

(see Proposition 1).
Then, from (28) and (31), we infer that $\widehat{u}_{0} \in S_{\lambda} \subseteq \operatorname{int} C_{+}$.
If $\widehat{u}_{0} \neq u_{0}$, then this is the second positive solution of $\left(P_{\lambda}\right)$. Therefore, we assume that

$$
\widehat{u}_{0}=u_{0} .
$$

From (27), (29) and (30), it follows that

$$
u_{0} \in \operatorname{int} C_{+} \text {is a local } C_{0}^{1}(\bar{\Omega}) \text {-minimizer of } \varphi_{\lambda}
$$

and so

$$
\begin{equation*}
u_{0} \in \operatorname{int} C_{+} \text {is a local } W_{0}^{1, p}(\Omega) \text {-minimizer of } \varphi_{\lambda} \tag{32}
\end{equation*}
$$

(see Gasiński and Papageorgiou [9]).
Hypothesis $H(i i i)$ implies that given $\varepsilon>0$, we can find $\delta=\delta(\varepsilon)>0$ such that

$$
\begin{equation*}
F(z, x) \leqslant \frac{\varepsilon}{2} x^{2} \quad \text { for a.a. } z \in \Omega, \text { all }|x| \leqslant \delta \tag{33}
\end{equation*}
$$

(see (2)). Let $u \in C_{0}^{1}(\bar{\Omega})$ with $\|u\|_{C_{0}^{1}(\bar{\Omega})} \leqslant \delta$. We have

$$
\varphi_{\lambda}(u) \geqslant \frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\|D u\|_{2}^{2}-\frac{\lambda \varepsilon}{2}\|u\|_{2}^{2}
$$

$$
\geqslant \frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\left(1-\frac{\lambda \varepsilon}{\hat{\lambda}_{1}(2)}\right)\|D u\|_{2}^{2}
$$

(see (1) with $r=2$). Choosing $\varepsilon \in\left(0, \frac{\widehat{\lambda}_{1}(2)}{\lambda}\right)$, we obtain

$$
\varphi_{\lambda}(u) \geqslant \frac{1}{p}\|u\|^{p} \quad \forall u \in C_{0}^{1}(\bar{\Omega}),\|u\|_{C_{0}^{1}(\bar{\Omega})} \leqslant \delta
$$

so

$$
u=0 \text { is a local } C_{0}^{1}(\bar{\Omega}) \text {-minimizer of } \varphi_{\lambda}
$$

and thus

$$
\begin{equation*}
u=0 \text { is a local } W_{0}^{1, p}(\Omega) \text {-minimizer of } \varphi_{\lambda} \tag{34}
\end{equation*}
$$

(see Gasiński and Papageorgiou [9]).
We assume that $\varphi_{\lambda}(0)=0 \leqslant \varphi_{\lambda}\left(u_{0}\right)$. The reasoning is similar if the opposite inequality holds, using (34) instead of (32).

We also assume that

$$
K_{\varphi_{\lambda}}=\left\{u \in W_{0}^{1, p}(\Omega): \varphi_{\lambda}^{\prime}(u)=0\right\}
$$

(the critical set of φ_{λ}) is finite. Otherwise, we already have an infinity of distinct positive solutions of $\left(P_{\lambda}\right)$. On account of (32) and using Theorem 5.7.6 of Papageorgiou, Rădulescu and Repovš [2] (p. 449), we can find $\varrho \in(0,1)$ small such that

$$
\begin{equation*}
\varphi_{\lambda}(0)=0 \leqslant \varphi_{\lambda}\left(u_{0}\right)<\inf _{\left\|u-u_{0}\right\|=\varrho} \varphi_{\lambda}(u)=m_{\lambda}, 0<\varphi<\left\|u_{0}\right\| . \tag{35}
\end{equation*}
$$

Recall that φ_{λ} is coercive (see the proof of Proposition 2). Therefore, from Proposition 5.1.15 of Papageorgiou, Rădulescu and Repovš [2] (p. 449), we have that

$$
\begin{equation*}
\varphi_{\lambda} \text { satisfies the PS-condition. } \tag{36}
\end{equation*}
$$

Then, (35) and (36) permit the use of the mountain pass theorem. Therefore, we can find $\widehat{u} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\varphi_{\lambda}^{\prime}(\widehat{u})=0 \quad \text { and } \quad m_{\lambda} \leqslant \varphi_{\lambda}(\widehat{u}) . \tag{37}
\end{equation*}
$$

From (35) and (37), we conclude that

$$
\widehat{u} \in S_{\lambda} \subseteq \operatorname{int} C_{+} \quad \text { and } \quad \widehat{u} \neq u_{0} .
$$

It remains to be decided what we can say for the critical parameter value λ_{*}. We show that $\lambda_{*}>0$ is admissible too.

Proposition 7. If hypotheses H hold, then $\lambda_{*} \in \mathcal{L}$.
Proof. Let $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathcal{L}$ be such that $\lambda_{n} \longrightarrow \lambda_{*}^{+}$. We can find $u_{n} \in S_{\lambda_{n}} \subseteq \operatorname{int} C_{+}$such that

$$
\begin{equation*}
\left\langle A_{p}\left(u_{n}\right), h\right\rangle+\left\langle A\left(u_{n}\right), h\right\rangle=\lambda_{n} \int_{\Omega} f\left(z, u_{n}\right) h d z \quad \forall h \in W_{0}^{1, p}(\Omega), n \in \mathbb{N} \tag{38}
\end{equation*}
$$

In (38), we use $h=u_{n} \in W_{0}^{1, p}(\Omega)$. Then,

$$
\begin{equation*}
\left\|u_{n}\right\|^{p} \leqslant \lambda_{1} \int_{\Omega} f\left(z, u_{n}\right) u_{n} d z \quad \forall n \in \mathbb{N} . \tag{39}
\end{equation*}
$$

On account of hypotheses $H(i),(i i)$, given $\varepsilon>0$, we can find $c_{\varepsilon}>0$ such that

$$
\begin{equation*}
0 \leqslant f(z, x) x \leqslant \varepsilon x^{p}+c_{\varepsilon} \text { for a.a. } z \in \Omega, \text { all } x \geqslant 0 \tag{40}
\end{equation*}
$$

We use (40) in (39) and have

$$
\left\|u_{n}\right\|^{p} \leqslant \lambda_{1} \frac{\varepsilon}{\hat{\lambda}_{1}(p)}\left\|u_{n}\right\|^{p}+c_{\varepsilon}|\Omega|_{N}
$$

(see (1) with $r=p$ and recall that $|\cdot|_{N}$ is the Lebesgue measure on \mathbb{R}^{N}), so

$$
\left(1-\frac{\lambda_{1}}{\hat{\lambda}_{1}(p)} \varepsilon\right)\left\|u_{n}\right\|^{p} \leqslant c_{\varepsilon}|\Omega|_{N} \quad \forall n \in \mathbb{N}
$$

We choose $\varepsilon \in\left(0, \frac{\widehat{\lambda}_{1}(p)}{\lambda_{1}}\right)$ and infer that the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, p}(\Omega)$ is bounded. Therefore, we may assume that

$$
u_{n} \longrightarrow u_{*} \quad \text { weakly in } W_{0}^{1, p}(\Omega) \text { and } u_{n} \longrightarrow u_{*} \text { in } L^{p}(\Omega) .
$$

Then, reasoning as in the proof of Proposition 5 (see the part of the proof after (18)), we show that

$$
u_{n} \longrightarrow u_{*} \quad \text { in } W_{0}^{1, p}(\Omega), u_{*} \neq 0
$$

Therefore, if in (38) we pass to the limit as $n \rightarrow+\infty$, then

$$
\left\langle A_{p}\left(u_{*}\right), h\right\rangle+\left\langle A\left(u_{*}\right), h\right\rangle=\lambda_{*} \int_{\Omega} f\left(f, u_{*}\right) h d z \quad \forall h \in W_{0}^{1, p}(\Omega)
$$

so $u_{*} \in S_{\lambda_{*}} \subseteq \operatorname{int} C_{+}$and so $\lambda_{*} \in \mathcal{L}$.
We have proved that

$$
\mathcal{L}=\left[\lambda_{*}, \infty\right) .
$$

Next, we show that for every $\lambda \in \mathcal{L}$, problem $\left(P_{\lambda}\right)$ admits a smallest positive solution (minimal positive solution).

Proposition 8. If hypotheses H hold and $\lambda \in \mathcal{L}$, then problem $\left(P_{\lambda}\right)$ admits a smallest solution $u_{\lambda}^{*} \in S_{\lambda} \subseteq \operatorname{int} C_{+}$(that is, $u_{\lambda}^{*} \leqslant u$ for all $u \in S_{\lambda}$).

Proof. From Proposition 7 of Papageorgiou, Rădulescu and Repovš [10], we know that S_{λ} is downward directed. Using Lemma 3.10 of Hu and Papageorgiou [11] (p. 178), we can find a decreasing sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq S_{\lambda}$ such that

$$
\inf _{n \in \mathbb{N}} u_{n}=\inf S_{\lambda} .
$$

We have

$$
\begin{equation*}
\left\langle A_{p}\left(u_{n}\right), h\right\rangle+\left\langle A\left(u_{n}\right), h\right\rangle=\int_{\Omega} \lambda f\left(z, u_{n}\right) h d z \quad \forall h \in W_{0}^{1, p}(\Omega), n \in \mathbb{N} \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leqslant u_{n} \leqslant u_{1} \quad \forall n \in \mathbb{N} \tag{42}
\end{equation*}
$$

In (41), we choose $h=u_{n} \in W_{0}^{1, p}(\Omega)$ and then use (42) and hypothesis $H(i)$ to establish that $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, p}(\Omega)$ is bounded. Therefore, we may assume that

$$
\begin{equation*}
u_{n} \longrightarrow u_{\lambda}^{*} \quad \text { weakly in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad u_{n} \longrightarrow u_{\lambda}^{*} \quad \text { in } L^{p}(\Omega) \tag{43}
\end{equation*}
$$

Then, as before (see the proof of Proposition 5 after (18)), using (43) we obtain

$$
\begin{equation*}
u_{n} \longrightarrow u_{\lambda}^{*} \quad \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad u_{\lambda}^{*} \neq 0 . \tag{44}
\end{equation*}
$$

If in (41) we pass to the limit as $n \rightarrow+\infty$ and use (44), then

$$
\left\langle A_{p}\left(u_{\lambda}^{*}\right), h\right\rangle+\left\langle A\left(u_{\lambda}^{*}\right), h\right\rangle=\int_{\Omega} \lambda f\left(z, u_{\lambda}^{*}\right) h d z \quad \forall h \in W_{0}^{1, p}(\Omega)
$$

so $u_{\lambda}^{*} \in S_{\lambda} \subseteq \operatorname{int} C_{+}, u_{\lambda}^{*}=\inf S_{\lambda}$.
The theorem that follows summarizes our findings concerning the changes in the set of positive solutions of $\left(P_{\lambda}\right)$ as $\lambda>0$ moves.

Theorem 1. If hypotheses H hold, then there exists $\lambda_{*}>0$ such that
(a) for all $\lambda>\lambda_{*}$ problem $\left(P_{\lambda}\right)$ has at least two positive solutions $u_{0}, \widehat{u} \in \operatorname{int} C_{+}, u_{0} \neq \widehat{u}$;
(b) for $\lambda=\lambda_{*}$, problem $\left(P_{\lambda}\right)$ has at least one positive solution $u_{*} \in \operatorname{int} C_{+}$;
(c) for every $\lambda \in\left(0, \lambda_{*}\right)$ problem $\left(P_{\lambda}\right)$ has no positive solution;
(d) for every $\lambda \in \mathcal{L}=\left[\lambda_{*}, \infty\right)$, problem $\left(P_{\lambda}\right)$ has a smallest positive solution $u_{\lambda}^{*} \in \operatorname{int} C_{+}$.

Remark 2. From Proposition 4, we know that the minimal solution map $\widehat{k}: \mathcal{L} \longrightarrow C_{0}^{1}(\bar{\Omega})$ defined by $\widehat{k}(\lambda)=u_{\lambda}^{*}$ is strictly increasing in the sense that

$$
\text { if } \lambda_{*} \leqslant \mu \leqslant \lambda, \text { then } u_{\lambda}^{*}-u_{\mu}^{*} \in \operatorname{int} C_{+} .
$$

It is worth mentioning that when the reaction $f(z, \cdot)$ is $(p-1)$-superlinear, then we have the "bifurcation" in $\lambda>0$, for small values of the parameter (see [1], [2]). Here, $f(z, \cdot)$ is $(p-1)$-sublinear, and the "bifurcation" in $\lambda>0$ occurs for large values of the parameter.

4. (p, q)-Equations

In this section, we briefly mention the situation for the more general (p, q)-equations, $q \neq 2$. We now deal with the following nonlinear Dirichlet eigenvalue problem:

$$
\left\{\begin{array}{l}
-\Delta_{p} u(z)-\Delta_{q} u(z)=\lambda f(z, u(z)) \quad \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=0, u \geqslant 0, \lambda>0,1<q<p .
\end{array}\right.
$$

If we strengthen the conditions on $f(z, \cdot)$, we can have a similar "bifurcation-type" result for problem $\left(P_{\lambda}\right)^{\prime}$.

The new conditions on $f(z, x)$ are the following:
$\underline{\mathrm{H}^{\prime}}: f: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ is a Carathéodory function, $f(z, 0)=0$ for a.a. $z \in \Omega$, hypotheses $H^{\prime}(i),(i i),(i i i)$ are the same as the corresponding hypotheses $H(i),(i i),(i i i)$ and (iv) for a.a. $z \in \Omega, f(z, \cdot)$ is strictly increasing on \mathbb{R}^{+}.

Remark 3. According to hypothesis $H^{\prime}(i v)$, we have

$$
0<f(z, x) \quad \text { for a.a. } z \in \Omega \text {, all } x>0
$$

The function $f(z, x)=a(z) x^{\tau-1}$ for a.a. $z \in \Omega$, all $x \geqslant 0$ with $a \in L^{\infty}(\Omega)$ and $1<\tau<q<p$ satisfies hypotheses H^{\prime}.

For the (p, q)-equation $(q \neq 2)$, we cannot use the tangency principle of Pucci and Serrin [8] (p. 35) (see the proof of Proposition 4). Instead, on account of the stronger condition $H^{\prime}(i v)$, we can use Proposition 3.4 of Gasiński and Papageorgiou [1] (strong comparison principle) and have that $u_{\vartheta}-u_{\lambda} \in \operatorname{int} C_{+}$. Then, all the other results remain valid and so we can have the following bifurcation-type result for problem $\left(P_{\lambda}\right)^{\prime}$.

Theorem 2. If hypotheses H^{\prime} hold, then there exists $\lambda_{*}^{\prime}>0$ such that
(a) for all $\lambda>\lambda_{*}^{\prime}$ problem $\left(P_{\lambda}\right)^{\prime}$ has at least two positive solutions $u_{0}, \widehat{u} \in \operatorname{int} C_{+}, u_{0} \neq \widehat{u}$;
(b) for $\lambda=\lambda_{*}^{\prime}$ problem $\left(P_{\lambda}\right)^{\prime}$ has at least one positive solution $u_{*} \in \operatorname{int} C_{+}$;
(c) for every $\lambda \in\left(0, \lambda_{*}\right)^{\prime}$, problem $\left(P_{\lambda}\right)^{\prime}$ has no positive solution;
(d) for every $\lambda \in \mathcal{L}^{\prime}=\left[\lambda_{*}^{\prime}, \infty\right)$, problem $\left(P_{\lambda}\right)^{\prime}$ has a smallest positive solution $u_{\lambda}^{*} \in \operatorname{int} C_{+}$.

Remark 4. The function $f(z, x)$ defined by

$$
f(z, x)= \begin{cases}a(z)\left(\left(x^{+}\right)^{r-1}+\left(x^{+}\right)^{\eta-1}\right) & \text { if }|x| \leqslant 1 \\ a(z) \ln \left(x^{+}\right) & \text {if } 1<|x|\end{cases}
$$

with $a \in L^{\infty}(\Omega), p<r<\eta$ satisfies hypotheses H but not hypotheses H^{\prime}.

Author Contributions: Conceptualization, L.G. and N.S.P.; formal analysis, Y.B. and L.G.; investigation, Y.B., L.G. and N.S.P.; methodology, L.G. and N.S.P.; resources, L.G. and N.S.P.; supervision, N.S.P.; validation, Y.B., L.G. and N.S.P.; visualization, L.G. and N.S.P.; writing-original draft preparation, L.G. and N.S.P.; writing-review and editing, Y.B. and L.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gasiński, L.; Papageorgiou, N.S. Constant sign and nodal solutions for superlinear double phase problems. Adv. Calc. Var. 2021, 14, 613-626. [CrossRef]
2. Papageorgiou, N.S.; Rădulescu, V.D.; Repovš, D.D. Positive solutions for nonlinear nonhomogeneous parametric Robin problems. Forum Math. 2018, 30, 553-580. [CrossRef]
3. Marano, S.A.; Mosconi, S.J.N. Some recent results on the Dirichlet problem for (p, q)-Laplace equations. Discrete Contin. Dyn. Syst. Ser. S 2018, 11, 279-291. [CrossRef]
4. Rădulescu, V.D. Isotropic and anistropic double-phase problems: Old and new. Opuscula Math. 2019, 39, 259-279. [CrossRef]
5. Gasiński, L.; Papageorgiou, N.S. Nonlinear Analysis; Chapman \& Hall/CRC: Boca Raton, FL, USA, 2006.
6. Ladyzhenskaya, O.A.; Ural'tseva, N.N. Linear and Quasilinear Elliptic Equations; Academic Press: New York, NY, USA; London, UK, 1968.
7. Lieberman, G.M. The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Comm. Partial. Differ. Equ. 1991, 16, 311-361. [CrossRef]
8. Pucci, P.; Serrin, J. The Maximum Principle; Birkhäuser: Basel, Switzerland, 2007.
9. Gasí́ski, L.; Papageorgiou, N.S. Multiple solutions for nonlinear coercive problems with a nonhomogeneous differential operator and a nonsmooth potential. Set-Valued Var. Anal. 2012, 3, 417-443. [CrossRef]
10. Papageorgiou, N.S.; Rădulescu, V.D.; Repovš, D.D. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete Contin. Dyn. Syst. 2017, 37, 2589-2618. [CrossRef]
11. Hu, S.; Papageorgiou, N.S. Handbook of Multivalued Analysis: Volume I: Theory (Mathematics and Its Applications, 419); Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997.
