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Abstract: With the development of logistics, the delayed distribution problem based on a compensa-
tion mechanism has appeared. The core of this problem is to decide whether to delay the distribution
at the beginning of each stage and how to compensate the customers if delay occurs. In this paper,
beginning with the 2 and 3-stage delay distribution problem, the characteristics and computational
complexity of the model are analyzed, and a formal model description of the n-stage problem is
given. The expected value and variance are used as the centralized quantization description strategy
for random variables, and the expected value model and the generalized expectation value model
for solving the delay distribution problem are given. The solution algorithm is given, and the de-
pendence of the single transport cost of each transport vehicle and the penalty for each car delay in
a period-of-time distribution are analyzed. Combined with specific examples, theoretical analysis
and example calculations show that the formal description model is a good platform for further
combinations of solution methods. This method extends the general delayed distribution problem to
multi-stage delayed distribution, which has guiding significance for decision-makers. The proposed
model has solid system structure features and interpretability, and could be used in a wide variety
of applications.

Keywords: stochastic programming; compensation mechanism; minimize expectation cost; non-load
distribution; generalized expectation value

1. Introduction

Together with the reform and opening up policies in China, “the third profit source”
in enterprise logistics has become increasingly important for economic activity. As an
important part of logistics activity, distribution directly affects how consumers evaluate
logistics enterprises. Delayed delivery is a common problem in vehicle logistics, which
leads to a decline in customer satisfaction and affects secondary consumption, and at the
same time makes the relationship between customers and logistics enterprises tense, which
is not conducive to the long-term development of logistics enterprises. For this reason,
optimization of distribution is necessary. Because all uncertain information processing
policies are different, the resulting solutions are often different.

Vehicle load distribution is an important component of logistics optimization. At
the core of vehicle load distribution is how to reasonably arrange the goods to minimize
the number of vehicles and ensure the vehicle loading rate without exceeding the load
capacity of vehicles. Michael et al. [1] analyzed the vehicle logistics with precise methods
and optimized the vehicle logistics. Gizem et al. [2] introduced and considered a dynamic
variant of the vehicle routing problem with roaming delivery locations and developed an
iterative re-optimization framework to solve it and focus on using branch-and-price in a
dynamic decision-making environment to investigate its potential as a solution methodol-
ogy for operational problems. Liu et al. [3] presented a combinatorial optimization model
for the courier delivery network design problem, and optimization aims to determine the
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transportation organization mode for each courier flow considering the frequency delay of
accumulation in the sorting process. Wang et al. [4] proposed the cooperation strategy for
the green pickup and delivery problem (GPDP). Some researchers pay more attention to
logistics and transportation optimization problems [5–10]. The above literature concerns
reasonable optimization of distribution.

Many random factors in distribution can be represented using stochastic programming,
and stochastic programming has been well studied. Al-Khamis et al. [11] proposed a two-
stage stochastic programming model for the parallel machine scheduling problem in which
the objective was to determine the machine capacities that maximized the expected net
profit of on-time jobs with uncertain due dates. Noyan et al. [12] considered a risk-averse
two-stage stochastic programming model with conditional value-at-risk (CVaR) as the risk
measure. This approach constructed two decomposition algorithms based on the generic
Benders-decomposition approach to solving such problems. Abdelaziz et al. [13] surveyed
various solution approaches for multi-objective stochastic problems in which random vari-
ables can exist in both the objectives and the constraint parameters. Abdelaziz et al. [14]
established stochastic programming models from different perspectives and proposed their
own approaches and methods to solve stochastic problems. Wang et al. [15] focused on
finding a priori evacuation plans by considering side constraints, scenario-based stochastic
link travel times, and capacities and proposed a stochastic programming framework for
the reorganization of traffic routing for disaster response. Zahiri et al. [16] proposed a
novel multi-stage probabilistic stochastic programming approach and created a real post-
disaster relief distribution planning case study. Goberna et al. [17] dealt with uncertain
multi-objective convex programming problems and presented sufficient conditions for the
existence of highly robust weakly efficient solutions, that was, robust feasible solutions
which were weakly efficient for any possible instance of the objective function within a
specified uncertainty set. Ogbe et al. [18] proposed a new cross-decomposition method
combining two classical decomposition methods. The method outperformed Benders’
decomposition when the number of scenarios was large. Hasany et al. [19] developed
a two-stage stochastic program for the railroad blocking problem that considers the un-
certainty inherent in demand and supply resource indicators and developed two exact
algorithms based on the L-shaped method. Niu et al. [20] presented a d-minimal cut-based
algorithm to evaluate the performance index Rd+1 of a distribution network, defined as the
probability that a specified demand d + 1 can be successfully distributed through stochastic
arc capacities from the source to the destination. Zheng et al. [21] developed a multimodal
macroscopic fundamental diagram (MFD) to represent the traffic dynamics in a multimodal
transport system. Optimization was performed to minimize the total passenger hours
traveled (PHT) to serve total demand by redistributing the road space among modes. Yu
et al. [22] addressed a new variant of the vehicle routing problem, called the two-echelon
vehicle routing problem with time windows, covering options, and occasional drivers.
Mancini et al. [23] proposed a mixed delivery approach, which combines attended home
delivery and f shared delivery location usage innovatively. Customers can either be served
at home during their preferred time window, or they can be asked to pick up their parcel at
one of the f shared delivery locations. Wang et al. [24] proposed the two-stage delay distri-
bution method based on a compensation mechanism under a random environment. Zhou
et al. [25] proposed the compensation mechanism of delayed distribution based on interest
balance. Some researchers pay more attention to the logistics distribution problem [26–37].

There are shortcomings in the above-mentioned literature: Firstly, some researchers
proposed the compensation mechanism for the delay distribution, but the research is too
scant to improve the development of the delay distribution method. Secondly, there is
no delay distribution involving n stages which only research stages 2–3. Furthermore,
it is difficult to calculate the algorithm. Only the expectation or probability distribution
is considered for the treatment of random variables without considering the variance,
while the model error is large. Therefore the n-stage delay distribution method based on a
compensation mechanism will be established to solve the above problems.
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The remainder of this paper is organized as follows. Section 2 contains the separate
section notations. Section 3 reviews the literature. In Section 4, a delay distribution
method based on penalty and the choice mechanism is analyzed. The solution procedure
is proposed in Section 5. A numerical example is given in Section 6 to illustrate the
effectiveness of the proposed model. The demarcation point of the delayed and non-
delayed distribution is obtained, and the optimal solution is identified. A conclusion and
recommended future research directions are given in the final section.

For narrative convenience, this paper uses the following definitions and assumptions:
(1) int(x) is the integer part of x, x ∈ R, (e.g., int(1.1) = 1); and (2) mod(d, b) = d− bint(d/b)
is the remainder function of d about b (here, d and b are natural numbers, and b 6= 0).

2. Notations
2.1. Indices and Sets

For narrative convenience, the Indices and sets descriprion is shown in Table 1.

Table 1. Indices and Sets Description.

Indices and Sets Explanation

(Ω, B, Pr) Is a probability space.

Ω Is the sample space.

B Is the event space.

d Is the spatial dimension. The value range is a set of natural numbers.

i Is the number of all possible random demand values in the second stage. It is a non-negative integer.

j Is the number of current stages. The value range is a set of natural numbers.

n Is the total number of stages. The value range is a set of natural numbers.

Pr Is the probability. The value range is [0, 1].

R Is a real space. The value range is (−∞, +∞).

Rd Is the d-dimensional real space. It is a The value range is (−∞, +∞)d.

2.2. Parameters

The parameters description is shown in Table 2.

Table 2. Parameters Description.

Parameters Explanation

ξ j
Is the order quantity in the jth stage. It is a random variable. The value range is a set of

natural numbers.

E(ξ j) Is the mathematical expectation of the random variable ξ j.

D(ξ j) Is the variance of the random variable ξ j.

θ Is the penalty for each car delay in a period-of-time distribution. It is continuous.

c Is the single transport cost of each transport vehicle. It is continuous.

lj Is all possible values of ξ j. lj = 0, 1, 2, · · · , Q− 1.

Q Is the single distribution vehicle load capacity. It is an integer.

y1 Is the all possible values of Z1(4, ξ2). It is continuous.

y2 Is the all possible values of Z2(4, ξ2). It is continuous.

Z1(k, ξ2) Is the cost function of choosing delayed delivery in the first stage. It is a random variable function
and continuous.

Z2(k, ξ2) Is the cost function of choosing delayed delivery in the second stage. It is a random variable
function and continuous.
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Table 2. Cont.

Parameters Explanation

Z11(k, ξ2, ξ3)
Is the distribution cost when we use the delayed distribution in stages 1 and 2. It is a random

variable function and continuous.

Z12(k, ξ2, ξ3)
Is the distribution cost when we use the distribution strategy in which delivery is delayed in stage
1, and no distribution delay occurs in stage 2. It is a random variable function and continuous.

Z21(k, ξ2, ξ3)
Is the distribution cost when we use the distribution strategy in which delivery is delayed in stage
2, and no distribution delay occurs in stage 1. It is a random variable function and continuous.

Z22(k, ξ2, ξ3)
Is the distribution costs when we do not use the delay distribution in stages 1 and 2. It is a

random variable function and continuous.

2.3. Decision Variable

The decision variables description is in Table 3.

Table 3. Decisions Variable Description.

Indices and Sets Explanation

k It is the part without delivery. It is an integer.

xj

If we choose delayed delivery on the jth delivery stage, xj = 0, the amount of delayed delivery is k
(k < Q), and each delayed delivery of goods needs a penalty of θ, otherwise xj = 1,

i = 0, 1, 2, · · · , n− 1. They are binary.

3. Delay Distribution Characteristic Analysis in a Random Environment

According to vehicle distribution characteristics, customer demand is a random vari-
able. Therefore, the distribution model is a stochastic programming problem. In the
distribution process, each nodal transportation task can be divided into non-fully loaded
and fully loaded transport. Fully loaded transport can fully use the loading carrier ca-
pacity. Non-fully loaded transport is the total transportation task minus the remaining
goods of the load transportation task. When the goods reach the conditions for full-load
transportation, they need to be delivered on time on the delivery date. If they do not
meet the conditions for full-load transportation, an additional cost is required for on-time
delivery, which produces a certain penalty for delayed delivery. In this case, an important
problem is determining the transportation plan that can minimize the cost. Based on the
above situation, building an appropriate random distribution model and selecting the
appropriate distribution threshold are highly important tasks for managers to make the
correct decisions.

Delay distribution is an added limit, and additional uncertainty coexists in the complex
decision problem, which has attracted widespread attention in academic applications. This
section considers the full-load distribution problem in a random environment and discusses
the method for determining the distribution mechanism.

To improve the service quality and management system, a car manufacturer transfers
the car distribution to a third-party logistics company. The relevant regulations are as
follows: (1) Set up n delivery days in each order cycle, that is, n time nodes; (2) All orders
must be delivered within the order period; (3) If the number of orders on the current
delivery day does not meet the conditions of full-load transportation, you can choose to
postpone the delivery to the next delivery day, but delayed delivery requires a certain
delivery penalty. In real life, based on the customer demand, the manufacturer supplies
compensation to the customer, which can be viewed as a manufacturer’s penalty. We
consider the delay choice in the process of the logistics distribution system.

Because delayed delivery is or is not closely related to the order number for the next
time period, and because the next period of orders is a variable that depends on many
factors, it needs to be treated as a random variable in data processing, the selection of
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delay delivery is a decision-making problem in a random environment. In this paper, we
consider using the n = 2, n = 3, n = 4 and n = 10 delay distribution selection mechanisms to
describe and verify. We make the following assumptions: If the order quantity does not
meet the condition of full-load distribution, the distribution can be delayed; otherwise, the
distribution cannot be delayed.

3.1. Choice Mechanism of 2-Stage Delay Distribution

For the first stage in which we cannot load distribution orders k, and if, for the second
stage, the order quantity is ξ2 with distribution Pr(ξ2 = l2) = pi, l2 = 0, 1, 2, · · · , Q− 1.
Z1(k, ξ2) is the cost function of choosing delayed delivery in the first stage, Z2(k, ξ2) is the
cost function of choosing delivery in the first stage. In the first stage, k cars are delayed
for delivery. Respectively, and these values are random variables; the distributions are
as follows:

Z1(k, ξ2) = kθ + int
(

k + ξ2

Q

)
c + δ

(
k + ξ2

Q

)
c,

Z2(k, ξ2) = c + int
(

ξ2

Q

)
c + δ

(
ξ2

Q

)
c.

where δ(t) =
{

0, when t is an integer,
1, other.

.

For example, when Q = 13, k = 4, we consider the delay decision method. Us-
ing probability theory, we obtain the distribution of Z1(4, ξ2) and Z2(4, ξ2) as shown in
Tables 4 and 5, respectively.

Table 4. The values of Z1(4, ξ2) and Z2(4, ξ2) (Q = 13).

ξ2 0 1 2 3 4 5 6 7 8 9 10 11 12

Pr(ξ2 = l2) p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Z1(4, ξ2) c + 4θ c + 4θ c + 4θ 2c + 4θ 2c + 4θ 2c + 4θ 2c + 4θ 2c + 4θ 2c + 4θ 3c + 4θ 3c + 4θ 3c + 4θ 3c + 4θ

Z2(4, ξ2) c 2c 2c 2c 2c 2c 2c 3c 3c 3c 3c 3c 3c

Table 5. The distribution of Z1(4, ξ2) and Z2(4, ξ2) (Q = 13).

Z1(4, ξ2) c + 4θ 2c + 4θ 3c + 4θ Z2 (4, ξ2) c 2c 3c

Pr(Z1(4, ξ2) = y1) ∑2
i=0 pi ∑8

i=3 pi ∑12
i=9 pi Pr(Z2(4, ξ2) = y2) p0 ∑6

i=1 pi ∑12
i=7 pi

Because Z1(k, ξ2) and Z2(k, ξ2) are random variables, and no simple order relation
exists between random variables, we cannot solve the problem directly. Therefore, this
problem is solved by describing the value of random variables through mathematical
expectation. According to Table 2, we transform E(Z1(4, ξ2)) and E(Z2(4, ξ2)) into the form
of a function

E(Z1(4, ξ2)) = (c + 4θ)∑2
i=0 pi+(2c + 4θ)∑8

i=3 pi+(3c + 4θ)∑12
i=9 pi.

E(Z2(4, ξ2)) = cp0 + 2c ∑6
i=1 pi + 3c ∑12

i=7 pi

As in the above analysis, we let E(Z1(4, ξ2)) = E(Z2(4, ξ2)); then, we obtain
c = 4θ/(∑2

i=1 pi + ∑8
i=7 pi). Therefore, if c < 4θ/(∑2

i=1 pi + ∑8
i=7 pi), the distribution will

occur in the first period; otherwise, the distribution will not occur in the first period. We
can see that θ and c have a positive linear proportional relationship. When θ is large, c is
also large.

In the above analysis, when Q = 13, k = 4, we obtain the values of E(Z1(4, ξ2)) and
E(Z2(4, ξ2)), which are convenient for managers in making the correct decisions in the
first stage.
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Through the above analysis, we can get obtain the 2-stage delay distribution mod-el
(model (1)) as follows (k < Q):{

min z = x1c + (1− x1)kθ + int
(

ξ2+(1−x1)k
Q

)
c + δ

(
ξ2+(1−x1)k

Q

)
c

s.t. x1 = 0, 1.
(1)

In model (1), Q is the maximum loading capacity of each transport vehicle, and c is the
single departure cost of each transport vehicle. θ is the compensation for the delivery delay
in the first stage. If we choose delayed delivery on the first delivery day, x1 = 0, the amount
of delayed delivery is k (k < Q), and each delayed delivery of goods needs a penalty of θ,
otherwise x1 = 1. During the order cycle, all orders must be completed delivered.

3.2. 3-Stage Choice Mechanism of Delay Distribution

For the stage that cannot load distribution orders k, we assume that the distribu-
tions of stages 2 and 3 orders ξ2 and ξ3 are Pr(ξ2 = l2) = pl2 , l2 = 0, 1, 2, · · · , m and
Pr(ξ3 = l3) = ql3 , l3 = 0, 1, 2, · · · , n, where Z11(k, ξ2, ξ3) is the distribution cost when we
use the delayed distribution in stages 1 and 2; Z12(k, ξ2, ξ3) is the distribution cost when
we use the distribution strategy in which delivery is delayed in stage 1, and no distribution
delay occurs in stage 2; Z21(k, ξ2, ξ3) is the distribution cost when we use the distribution
strategy in which delivery is delayed in stage 2, and no delay of distribution occurs in stage
1, and Z22(k, ξ2, ξ3) is the distribution costs when we do not use the delay distribution in
stages 1 and 2. In this work, Zij(k, ξ2, ξ3), i = 1, 2, j = 1, 2 are random variables, and the
specific form is shown below:

Z11(k, ξ2, ξ3) =


kθ + (k + ξ2)θ + int

(
k+ξ2+ξ3

Q

)
c + δ

(
k+ξ2+ξ3

Q

)
c, k + ξ2 < Q,

kθ + int
(

k+ξ2
Q

)
c + int

(
(k + ξ2)− int

(
k+ξ2

Q

)
Q
)

θ+

int
(

mod(k+ξ2, Q)+ξ3
Q

)
c + δ

(
mod(k+ξ2, Q)+ξ3

Q

)
c, k + ξ2 ≥ Q,

Z12(k, ξ2, ξ3) = kθ + int(k + ξ2)c + δ

(
k + ξ2

Q

)
c + int

(
ξ3

Q

)
c + δ

(
ξ3

Q

)
c,

Z21(k, ξ2, ξ3) =


c + ξ2θ + int

(
ξ2+ξ3

Q

)
c + δ

(
ξ2+ξ3

Q

)
c, ξ2 < Q,

c + int
(

ξ2
Q

)
c + int

(
ξ2 − int

(
ξ2
Q

)
Q
)

θ+

int
(

mod(ξ2, Q)+ξ3
Q

)
c + δ

(
mod(ξ2, Q)+ξ3

Q

)
c, ξ2 ≥ Q,

Z22(k, ξ2, ξ3) = c + int
(

ξ2

Q

)
c + δ

(
ξ2

Q

)
c + int

(
ξ3

Q

)
c + δ

(
ξ3

Q

)
c.

where δ(t) =
{

0, when t is an integer,
1, other.

.

From the above analysis, when only the expected cost is considered, we obtain the
following (here, aij, bij are constants, i = 1, 2, j = 1, 2):

E(Z11(k, ξ2, ξ3)) = a11θ + b11c,
E(Z12(k, ξ2, ξ3)) = a12θ + b12c,
E(Z21(k, ξ2, ξ3)) = a21θ + b21c,
E(Z22(k, ξ2, ξ3)) = a22θ + b22c,
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and when E(Z11(k, ξ2, ξ3)) = min{E(Z12(k, ξ2, ξ3)), i = 1, 2, j = 1, 2} (that is, the distri-
bution strategy of delaying distribution in stages 1 and 2 is the best one), the following
linear inequalities hold:

E(Z11(k, ξ2, ξ3)) ≤ E(Z12(k, ξ2, ξ3)),
E(Z11(k, ξ2, ξ3)) ≤ E(Z21(k, ξ2, ξ3)),
E(Z11(k, ξ2, ξ3)) ≤ E(Z22(k, ξ2, ξ3)),

that is, 
a11θ + b11c ≤ a12θ + b12c,
a11θ + b11c ≤ a21θ + b21c,
a11θ + b11c ≤ a22θ + b22c.

In real life, c ≥ 0, θ ≥ 0; therefore, we can see that the region constituted by the above
three linear inequalities is convex. The other distribution strategies also result in the above
conclusion. Therefore, we obtain the following theorem.

Theorem 1. In the 3-stage delay distribution model, taking the expectation value as the evaluation
standard, the dependency region of the single transport cost of each transport vehicle c and the
penalty for each car delay in a period-of-time distribution θ is a convex region.

Remark 1. In a 2-stage delay distribution model, there is a linear relationship between c and θ,
which is analyzed in Section 3.1. When we consider the n-stage delay distribution model (n ≥ 3),
Theorem 2.1 still holds because there is a linear relationship between c and θ. Thus, Theorem 3.1
holds for the n-stage delay distribution model (n ≥ 1).

As in the above analysis, we see that no matter if the distribution occurs in each stage,
the above conclusion is established. Using the above analysis, we obtain the 3-stage delay
distribution as follows:

min z3 =

 x2

(
x1c + (1− x1)kθ + int

(
ξ+(1−x1)k

Q

)
c + δ

(
ξ+(1−x1)k

Q

)
c
)
+ (1− x2)

[
int
(

ξ2+(1−x1)k
Q

)
c

+δ
(

ξ2+(1−x1)k
Q

)
θ
]
+
[
int
(

ξ2+(1−x1)k
Q

)
+ δ
(

ξ2+(1−x1)k
Q

)]
c


s.t. xj = 0, 1, j = 1, 2.

(2)

where Q is the loading capacity of each distribution vehicle. The single transport cost for
transporting vehicles is c. In each month, if the distribution occurs in the first period, x1 = 1;
otherwise, x1 = 0. If the distribution occurs in the second period, x2 = 1; otherwise, x2 = 0.
Additionally, k is the part of the first-period demand that cannot be load distribution; ξ2
and ξ3 are the demand of the second and third stages, respectively; m is the total number
of distribution vehicles; and θ is the compensation for distribution delays for a period
(ten days). In each month (three periods), the order must be met.

For example, when Q = 13, k = 3, we consider the delay decision method with
3 stages. At the end of the first stage, the part of the first-stage demand that cannot
be a load distribution is 3. The part of the second-stage demand that cannot be a load
distribution has 13 possibilities, which are 0, 1, · · · , 12. In each case, we decide between
no delivery and delivery of 3 cars in the first stage. In the second stage, in some cases
(for example, the part of the second-stage demand that cannot be load distribution is
5), if the 3 cars are not delivered in the first stage, we decide between no delivery and
delivery of 8 (3 + 5) cars in the second stage; otherwise, we decide between no delivery
and delivery of 5 cars in the second stage. There are 26 possibilities for no delivery or
delivery of 3 cars in the first stage. With each possibility, the part of the third-stage demand
that cannot be a load distribution also has 13 possibilities, which are 0, 1, · · · , 12. There
are 676 (26 × 13 × 2 = 262) possibilities for no delivery or partial delivery of cars in the
second stage, and so on. If we consider the n-stage delay distribution model, there are
26n possibilities for no delivery or partial delivery of cars in the second stage. From this
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analysis, we can see that the computational complexity is too high to solve using analytical
methods. Next, we consider the demand as a random variable, with the corresponding
expectation and variance.

4. The Generalized Expectation Value Model of Delay Distribution in a
Random Environment

The goal is to build a model for each time period (including n cycles) that minimizes
the overall distribution cost. In this paper, we consider only the two most important costs,
namely, the vehicle transportation cost and the delay penalty fee. Using the above analysis,
we obtain the n-stage delay distribution as follows:

min zn = zn−1xn−1 + (1− xn−1)
[
int
(

ηn−1
Q

)
c + δ

(
ηn−1

Q

)
θ
]
+
[
int
(

ηn
Q

)
+ δ
(

ηn
Q

)]
c

s.t. η1 = k, ηj+1 = ξ j+1 +
(
1− xj

)
ηj, j = 1, 2, 3, · · · , n− 1,

z2 = x1c + (1− x1)kθ + int
(

ξ2+(1−x1)k
Q

)
c + δ

(
ξ2+(1−x1)k

Q

)
c,

xj = 0, 1, j = 1, 2, 3, · · · , n− 1.

(3)

where Q is the loading capacity of each distribution vehicle, and a single transport cost for
transporting vehicles is c. In each time period, if the distribution occurs in the j-th period,
xj = 1; otherwise xj = 0. θ is the compensation for distribution delays for a period. In each
month, the order must be met. k is the part of the first-period demand that cannot be a
load distribution, zj is the cost of the j-stage delay distribution, and ξj is the demand of the
j-th stage.

Model (3) is a formal description model of the n-stage problem. Using model (3), we
can utilize the recursive solution method in Section 4, which can be used in the following
models (4) and (5).

Random information cannot be compared in the same manner as real numbers. Thus,
model (3) is a formal description. The key to solving model (3) is to select a method to
compare random information. Generally, we convert stochastic programming into crisp
programming. If we consider the random variable expectation to describe the variables,
the expectation value model can be expressed as model (4) (the expectation value model).

min E(zn) = E(zn−1)xn−1 + (1− xn−1)E
([

int
(

ηn−1
Q

)
c + δ

(
ηn−1

Q

)
θ
]
+
[
int
(

ηn
Q

)
+ δ
(

ηn
Q

)]
c
)

s.t. η1 = k, ηj+1 = ξ j+1 +
(
1− xj

)
ηj, j = 1, 2, 3, · · · , n− 1,

E(z2) = x1c + (1− x1)kθ + E
(

int
(

ξ2+(1−x1)k
Q

)
c + δ

(
ξ2+(1−x1)k

Q

)
c
)

,
xj = 0, 1, j = 1, 2, 3, · · · , n− 1.

(4)

The model is recursive and crisp programming. If we want to obtain the solution of a
3-stage delay distribution model, we first find the solution of a 2-stage delay distribution
model. If we want to obtain the solution of a 4-stage delay distribution model, we first
find the solution of a 3-stage delay distribution model, and so on. Therefore, if we want
to obtain the solution of model (4) (the expectation value model), we first solve the model
with n-1 stages. The solution complexity of model (4) is far lower than that of model (3),
which has 26n possible solutions.

The expected value is beneficial but merely one characteristic of a random variable.
There is an essential difference between a random variable and its expected value. There are
many inconsistencies between the expected value model and a random decision in the struc-
ture. The core inconsistency is that the decision reliability of the model cannot be reflected.
In the statistical sense, min ξ meets the reliability β, min a meets Pr(ξ ≤ a) ≥ β, and

Pr(ξ ≤ a) ≥ β⇔ Pr

(
Z ,

ξ − E(ξ)√
D(ξ)

≤ a− E(ξ)√
D(ξ)

)
≥ β ⇔ a− E(ξ)√

D(ξ)
≥ Zβ ⇔ a ≥ E(ξ) + Zβ

√
D(ξ). (*)
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Here, Zβ is the β-quantile of Z = (ξ − E(ξ))/
√

D(ξ) (that is, Pr(Z ≤ Zβ) ≥ β,
Pr(Z > Zβ) ≤ 1− β). Thus, if we regard Zβ as a constant C, mina can be converted into

min
(

E(ξ) + C
√

D(ξ)
)

.
The following can be easily seen. (1) In (*), β should be a larger value (for example,

β ∈ [0.7, 1]), and when β is large, Zβ is a non-negative value (for example, when ξ obeys
the normal distribution, Z0.75 = 0.68, Z0.90 = 1.29, and Z0.95 = 1.65; when ξ obeys the
exponential distribution, Z0.75 = 0.39, Z0.90 = 1.30, and Z0.95 = 1.99; and when ξ obeys the
uniform distribution, Z0.75 = 0.87, Z0.90 = 1.39, and Z0.95 = 1.56). This fact indicates that
C in E(ξ) + C

√
D(ξ) should be non-negative (generally, 0 ≤ C ≤ 2). (2) If we regard the

variance as the credibility measure index of “using the expected value to collect the value
of the random variable,” C can be interpreted as a penalty coefficient (the effect weakened
by uncertainty). (3) When C = 0, E(ξ) + C

√
D(ξ) is the mathematical expectation E(ξ),

which implies that E(ξ) + C
√

D(ξ) can be regarded as the generalized expectation of ξ.
According to this analysis, it is a compound quantization model with both the size

characteristics and the uncertainty of the value. The measurement model based on model
(3) can be generalized into the following model (5) (called the generalized expectation
value model, abbreviated as GEM):

min z = E(zn) + C
√

D(zn),
s.t. zn = zn−1xn−1 + (1− xn−1)

[
int
(

ηn−1
Q

)
c + δ

(
ηn−1

Q

)
θ
]
+
[
int
(

ηn
Q

)
+ δ
(

ηn
Q

)]
c,

η1 = k, ηj+1 = ξ j+1 +
(
1− xj

)
ηj, j = 1, 2, 3, · · · , n− 1,

z2 = x1c + (1− x1)kθ + int
(

ξ2+(1−x1)k
Q

)
c + δ

(
ξ2+(1−x1)k

Q

)
c,

xj = 0, 1, j = 1, 2, 3, · · · , n− 1.

(5)

Using the above discussion, we can see that (1) when C = 0, model (5) is model (4), and
the computational complexities of model (5) and model (4) are the same; (2) model (5)
has good structural characteristics and can be explained by the different values, which
reflect the degree of randomness in the decision-making process; and (3) model (5) defines
the statistical significance (i.e., the reliability quantile of (zn − E(zn))/

√
D(zn)). In the

actual problem, we can choose the specific value of C via the distribution characteristics of
(zn − E(zn))/

√
D(zn).

From this analysis, we observe that model (5) contains the traditional random pro-
cessing method. With the different types of synthesis effect functions, the model shows
different decision-making approaches, increasing computational complexity.

5. Solution Procedure

From model (3), we can see that we use the solution of z2 to obtain z3, we use the
solution of z3 to obtain z4, and so on. Because the solution zi+1 depends only on the solution
zi, the distribution cost sequence {z1, z2, · · · , zn} is a Markov chain.

As seen in this analysis, we can complete the computation of the n-stage delay distri-
bution problem with the following n-stage delay distribution Algorithm 1.

Algorithm 1 n-stage delay distribution algorithm

1: Input the initial delay distribution model (3).
2: Given the parameters c, θ, Q and η2 = ξ2 + (1− x2)η1, z2 is obtained. Here, η1 = k.
3: Calculate the probability of η2 by ξ2. We obtain the distribution function of η2.
4: Through the cycle, the distribution function of ηi can be determined by ξi .
5: Using zi and ηi = ξi + (1− xi)ηi−1, zi+1 is calculated.
6: Select a proper generalized expectation value function z = E(zn) + C

√
D(zn), C ≥ 0.

7: Convert the stochastic programming model to the GEM.
8: Calculate all possible values of E(zn) + C

√
D(zn), C ≥ 0 and choose the optimal value to determine the GEM solution.

9: Obtain the solution.

Remark 2. If theGEM is a convex function, we can use a convex programming solution method to
solve it. If the objective function is linear and the constraints are the selected synthesizing effect
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function, theGEM is a convex function. However, these are strong conditions, theGEM is commonly
not a convex function, and we cannot solve it through traditional methods [38–40].

6. Numerical Examples

In this section, selected examples are presented to demonstrate the effectiveness of the
proposed model.

Case 1 (2-stage delay distribution problem). The automobile manufacturer cooperates
with the third-party logistics company, and the third-party logistics company is responsible
for transporting the produced automobiles to the automobile dealers. There are two
delivery dates in a delivery cycle, that is, two time nodes. If the goods are not delivered
in time on the first delivery day, the third-party logistics company needs to compensate
the car dealers, and the compensation for each commercial car is θ. All orders need to be
completed before the second delivery date.

The third-party logistics company’s distribution vehicle load capacity is 12 (Q = 12),
and the vehicle type is the same, the unit transportation cost of each distribution vehicle
is C. The demand on each delivery day is a random variable. If the delivery is timely, the
transportation cost is Z1(k, ξ2); Otherwise, the transportation cost is Z2(k, ξ2).

After the distribution of the commercial vehicles before the first delivery date is
arranged according to the load of the distribution vehicles, the remaining 9 vehicles do
not meet the full load distribution standard. In order to reduce the cost of the third party
logistics enterprises, we arrange according to the distribution demand of the next delivery
day. The distribution demand of the next delivery day is predicted by the historical data,
as shown in Table 6. (These data are obtained from actual research and statistics and have a
certain degree of credibility.)

Table 6. Stage-2 demand probability forecast in a month.

Demand Number ξ2 2 6 7 8 9 10 11 12 13 15

Pr(ξ2 = l2) 0.05 0.07 0.12 0.19 0.23 0.13 0.08 0.05 0.05 0.03

The demand in stage 2 is ξ2. With Table 3, we obtain E(ξ2) = 8.83. According to the
demand distribution, we obtain the cost when the demand for vehicles is 8 in this period.

We obtain E(z1) = 1.95c + 9θ and E(z2) = 2.08c. Using the above analysis, we obtain
Tables 8 and 9 in Table 7.

Table 7. Total cost in two periods (with the demand for vehicles in this period = 8).

ξ2 2 6 7 8 9 10 11 12 13 15

Pr(ξ2 = l2) 0.05 0.07 0.12 0.19 0.23 0.13 0.08 0.05 0.05 0.03

Z1(k, ξ2) c + 9θ 2c + 9θ 2c + 9θ 2c + 9θ 2c + 9θ 2c + 9θ 2c + 9θ 2c + 9θ 2c + 9θ 2c + 9θ

Z2(k, ξ2) 2c 2c 2c 2c 2c 2c 2c 2c 3c 3c

Table 8. Goods vehicle transport schedule of fees.

ξ2 2 6 7 8 9 10 11 12 13 15
E(Zj(k, ξ2))

Pr(ξ2 = i) 0.05 0.07 0.12 0.19 0.23 0.13 0.08 0.05 0.05 0.03

k

1
Z1(k, ξ2) c + θ c + θ c + θ c + θ c + θ c + θ c + θ 2c + θ 2c + θ 2c + θ 1.13c + θ

Z2(k, ξ2) 2c 2c 2c 2c 2c 2c 2c 2c 3c 3c 2.08c

2
Z1(k, ξ2) c + 2θ c + 2θ c + 2θ c + 2θ c + 2θ c + 2θ 2c + 2θ 2c + 2θ 2c + 2θ 2c + 2θ 1.21c + 2θ

Z2(k, ξ2) 2c 2c 2c 2c 2c 2c 2c 2c 3c 3c 2.08c

3
Z1(k, ξ2) c + 3θ c + 3θ c + 3θ c + 3θ c + 3θ 2c + 3θ 2c + 3θ 2c + 3θ 2c + 3θ 2c + 3θ 1.21c + 3θ

Z2(k, ξ2) 2c 2c 2c 2c 2c 2c 2c 2c 3c 3c 2.08c
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Table 8. Cont.

ξ2 2 6 7 8 9 10 11 12 13 15
E(Zj(k, ξ2))

Pr(ξ2 = i) 0.05 0.07 0.12 0.19 0.23 0.13 0.08 0.05 0.05 0.03

k

4
Z1(k, ξ2) c + 4θ c + 4θ c + 4θ c + 4θ 2c + 4θ 2c + 4θ 2c + 4θ 2c + 4θ 2c + 4θ 2c + 4θ 1.57c + 4θ

Z2(k, ξ2) 2c 2c 2c 2c 2c 2c 2c 2c 3c 3c 2.08c

5
Z1(k, ξ2) c + 5θ c + 5θ c + 5θ 2c + 5θ 2c + 5θ 2c + 5θ 2c + 5θ 2c + 5θ 2c + 5θ 2c + 5θ 1.76c + 5θ

Z2(k, ξ2) 2c 2c 2c 2c 2c 2c 2c 2c 3c 3c 2.08c

6
Z1(k, ξ2) c + 6θ c + 6θ 2c + 6θ 2c + 6θ 2c + 6θ 2c + 6θ 2c + 6θ 2c + 6θ 2c + 6θ 2c + 6θ 1.88c + 6θ

Z2(k, ξ2) 2c 2c 2c 2c 2c 2c 2c 2c 3c 3c 2.08c

7
Z1(k, ξ2) c + 7θ 2c + 7θ 2c + 7θ 2c + 7θ 2c + 7θ 2c + 7θ 2c + 7θ 2c + 7θ 2c + 7θ 2c + 7θ 1.95c + 7θ

Z2(k, ξ2) 2c 2c 2c 2c 2c 2c 2c 2c 3c 3c 2.08c

8
Z1(k, ξ2) c + 8θ 2c + 8θ 2c + 8θ 2c + 8θ 2c + 8θ 2c + 8θ 2c + 8θ 2c + 8θ 2c + 8θ 2c + 8θ 1.95c + 8θ

Z2(k, ξ2) 2c 2c 2c 2c 2c 2c 2c 2c 3c 3c 2.08c

9
Z1(k, ξ2) c + 9θ 2c + 9θ 2c + 9θ 2c + 9θ 2c + 9θ 2c + 9θ 2c + 9θ 2c + 9θ 2c + 9θ 2c + 9θ 1.95c + 9θ

Z2(k, ξ2) 2c 2c 2c 2c 2c 2c 2c 2c 3c 3c 2.08c

10
Z1(k, ξ2) c + 10θ 2c + 10θ 2c + 10θ 2c + 10θ 2c + 10θ 2c + 10θ 2c + 10θ 2c + 10θ 2c + 10θ 3c + 10θ 1.98c + 10θ

Z2(k, ξ2) 2c 2c 2c 2c 2c 2c 2c 2c 3c 3c 2.08c

11
Z1(k, ξ2) 2c + 11θ 2c + 11θ 2c + 11θ 2c + 11θ 2c + 11θ 2c + 11θ 2c + 11θ 2c + 11θ 2c + 11θ 3c + 11θ 2.03c + 11θ

Z2(k, ξ2) 2c 2c 2c 2c 2c 2c 2c 2c 3c 3c 2.08c

Table 9. Not loaded with average cost.

k 1 2 3 4 5 6

E(Z1(k, ξ2)) 1.13c + θ 1.21c + 2θ 1.21c + 3θ 1.57c + 4θ 1.76c + 5θ 1.88c + 6θ

E(Z2(k, ξ2)) 2.08c 2.08c 2.08c 2.08c 2.08c 2.08c

k 7 8 9 10 11

E(Z1(k, ξ2)) 1.95c + 7θ 1.95c + 8θ 1.95c + 9θ 1.98 c + 10θ 2.03c + 11θ

E(Z2(k, ξ2)) 2.08c 2.08c 2.08c 2.08c 2.08c

With the expectation value model, we only consider the expectation of Z1(k, ξ2) and
Z2(k, ξ2). From Table 6, we can see that, for a given c and θ, E(Z1(k, ξ2)) is monotonous and
increasing about k. Using this analysis method, the solution of model (4) (the expectation
value model) is x1 = 1, the optimal global solution. The other cases of average cost are
addressed with different c and θ values. Using the proposed algorithm with Matlab 7.0, we
obtain the GEM solutions, as shown in Table 10. We obtain the expected cost E(Z2(k, ξ2))
and the generalized expectation cost E(Z2(k, ξ2)) + C

√
D(Z2(k, ξ2)).

Table 10. The GEM solutions (n = 2).

c 1000 1000 1000 1500 1500 1500 2000 2000 2000

θ 50 150 200 50 150 200 50 150 200

C = 0.1 x 1 0 0 1 0 0 0 0 0

C = 0.5 x 1 1 0 0 1 0 1 0 1

C = 1 x 1 0 1 1 0 0 0 1 1

When C = 0, the GEM degenerates into an expectation value model. From Table 10, we
note that the proposed method’s solutions contain the solutions x1 = 1 and x1 = 0, which
are the solutions of the expectation value model. Thus, the solution is more reliable. All
results were obtained using a single core of a 24-core AMD EPYC 7451 CPU running at a
base clock frequency of 3.1 GHz. The computation time is 0.0421 s.
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Model (5) represents different decision preferences. In the generalized expected value
model, when C is small, the third-party logistics company mainly focuses on the expected
value of transportation cost. When C is large, the third-party logistics company mainly
focuses on the variance of the second stage demand.

Case 2 (3-stage delay distribution problem). This case is similar to Case 1, except that
each month contains three transportation time points, i.e., the 10th, 20th, and 30th.

The demand in stages 2 and 3 is ξ2 and ξ3, and the distributions are Pr(ξ2 = l2)
and Pr(ξ3 = l3), respectively, whcih are shown in Table 11. From Table 7, we find that
E(ξ2) = 8.92 and E(ξ3) = 9.17. As in the analysis in Section 3.2 and Theorem 3.1, the
relation of c and θ is as shown in Figure 1.

Table 11. Stages 2 and 3 demand distribution (Pr(ξ2 = l2) and Pr(ξ3 = l3)) forecast in a month.

Demand 2 6 7 8 9 10 11 12 13 15

Pr(ξ2 = l2) 0.04 0.08 0.1 0.2 0.21 0.15 0.09 0.05 0.06 0.02

Pr(ξ3 = l3) 0.05 0.08 0.12 0.15 0.15 0.17 0.11 0.06 0.04 0.07
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If we only consider the expectation value, we can observe that, for c = 100, when θ ≤ 0,
we use the delay distribution in stages 1 and 2. When 0 < θ ≤ 100, we use the distribution
strategy to delay delivery in stage 1, with no delay in stage 2. When 100 < θ ≤ 150, we use
the distribution strategy in which delivery is delayed in stage 2, and no distribution delay
occurs in stage 1. When θ > 150, we do not use the delay distribution in stages 1 and 2. We
can also determine that, for θ = 1000, when c ≤ 0, we do not use the delay distribution in
stages 1 and 2. When 0 < c ≤ 1000, we use the distribution strategy in which delivery is
delayed in stage 2 with no distribution delay in stage 1. When 1000 < c ≤ 1500, we use the
distribution strategy in which delivery is delayed in stage 1, and there is no distribution
delay in stage 2. When c > 1500, we use the distribution delay in stages 1 and 2.

Using the proposed algorithm with Matlab 7.0, we obtain the GEM solutions, as shown
in Table 12.

From Table 12, we note that when C = 0.1, c = 1500, θ = 1500, the solution of the
proposed method contains the solution x1 = 1, x2 = 0, which is the solution of the expectation
value model. With different C values, the solutions are different, which shows different
decision-making preferences. When the C value is small, the solution is the same as that of
the expectation value model. When the C value is large, the solution indicates that more
attention should be paid to the variance in the random variable. Thus, the solution is more
reliable. All results were obtained using a single core of a 24-core AMD EPYC 7451 CPU
running at a base clock frequency of 3.1 GHz. The computation time is 0.1266 s.
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Table 12. The GEM solutions (n = 3).

c 100 100 100 500 1500 2000

θ 50 150 200 1500 1500 1500

C = 0.1
x1 1 0 1 0 1 1

x2 0 1 1 1 0 1

C = 0.5
x1 0 0 0 0 1 1

x2 0 1 1 1 0 0

C = 1
x1 0 0 1 0 0 0

x2 0 0 0 0 1 1

Case 3 (4-stage delay distribution problem). This case is similar to Case 1, except that
each month contains four transportation time points, i.e., the 7th, 14th, 21st, and 30th, as
shown in Table 13.

Table 13. Stages 2, 3 and 4 demand distribution (Pr(ξ2 = i), Pr(ξ3 = i) and Pr(ξ4 = i)) forecast in
a month.

Demand 2 6 7 8 9 10 11 12 13 15

Pr(ξ2 = l2) 0.04 0.08 0.1 0.2 0.21 0.15 0.09 0.05 0.06 0.02

Pr(ξ3 = l3) 0.05 0.08 0.12 0.15 0.15 0.17 0.11 0.06 0.04 0.07

Pr(ξ4 = l4) 0.06 0.09 0.18 0.11 0.12 0.13 0.16 0.03 0.02 0.10

The demand in stages 2, 3 and 4 is ξ2, ξ3, ξ4, and the distributions are Pr(ξ2 = l2),
Pr(ξ3 = l3), Pr(ξ4 = l4), respectively. From Table 11, we obtain E(ξ2) = 8.92, and E(ξ4) = 9.06.
As in the analysis in Section 3.2, we can determine the relation of c and θ, as shown in
Figure 2.
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Next, we only consider, for a given c, the changes that range near θ. For a given θ,
the change analysis of c is similar. For a given c = 100, when θ ≤ 0, we use the delay
distribution in stages 1, 2, and 3. When 0 < θ ≤ 100, we use the distribution strategy to
delay delivery in stage 1, with no distribution delay in stages 2 and 3. When 100 < θ ≤ 150,
we use the distribution strategy in which delivery is delayed in stage 2 with no distribution
delay in stages 1 and 3. When 150 < θ ≤ 200, we use the distribution strategy in which
delivery is delayed in stage 3, and no distribution delay occurs in stages 1 and 2. When
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200 < θ ≤ 300, we use the distribution strategy in which delivery is delayed in stages 1 and
2, and no distribution delay occurs in stage 3. When 300 < θ ≤ 450, we use the distribution
strategy in which delivery is delayed in stages 1 and 3, and no distribution delay occurs in
stage 2. When 450 < θ ≤ 600, we use the distribution strategy in which delivery is delayed
in stages 2 and 3, and no distribution delay occurs in stage 1. When θ > 600, we use the
distribution strategy in which delivery is delayed in stages 1, 2, and 3.

Using the proposed algorithm with Matlab 7.0, we obtain the GEM solutions, as shown
in Table 14.

Table 14. The GEM solutions (n = 4).

c 100 100 100 100 100 100 100

θ 50 150 200 300 450 600 1000

C = 0.1

x1 1 0 0 0 1 1 1

x2 0 1 1 1 0 0 1

x3 1 1 0 0 1 1 1

C = 0.5

x1 0 0 0 1 0 0 1

x2 0 1 1 1 1 1 1

x3 1 1 1 0 1 1 1

C = 1

x1 0 1 0 1 0 1 1

x2 0 0 1 1 1 1 1

x3 1 1 1 0 1 1 1

From Table 14, we note that when C = 0.1, c = 100, θ = 150, the solution of the
proposed method contains the solution x1 = 0, x2 = 1, x3 = 0, which is the solution of
the expected value model. With different C values, the solutions are different and show
different decision-making preferences. When the C value is small, the solution is the same
as the expected value model. When the C value is large, the solution pays more attention to
the variance of the random variable. Thus, the solution is more reliable. All results were
obtained using a single core of a 24-core AMD EPYC 7451 CPU running at a base clock
frequency of 3.1 GHz. The computation time is 0.3214 s.

Case 4 (10-stage delay distribution problem). This case is similar to Case 1, except
that each month contains ten transportation time points, i.e., the 3rd, 6th, 9th, · · · 30th.

According to historical data, we forecast the next 9 stage node demand probability
distributions as shown in Table 15.

Table 15. Stage-n demand probability forecast in a month.

Demand 2 6 7 8 9 10 11 12 13 15

Pr(ξn = i)· 0.04 0.08 0.1 0.2 0.21 0.15 0.09 0.05 0.06 0.02

From Table 15, we obtain E(ξn) = 8.92, n = 2, 3, · · · , 10. For C = 0.1 and c = 100,
using the proposed algorithm with Matlab 7.0, we obtain the GEM solutions, as shown in
Table 16.

From Table 16, we note that when C = 0.1, c = 100, θ = 200, the solutions of the
proposed method contain the solution x1 = 0, x2 = 1, x3 = 0, x4 = 0, x5 = 1, x6 = 0, x7 = 0,
x8 = 1, x9 = 0, which is the solution of the expected value model. Thus, the solution is more
reliable. All results were obtained using a single core of a 24-core AMD EPYC 7451 CPU
running at a base clock frequency of 3.1 GHz.The computation time is 1.2279 s. From Case
4, we can see that, if the stage 2 to stage-n node demand probability distributions are given,
the proposed method can be developed into an n-stage case.
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Table 16. The GEM solutions (n = 10).

c 100 100 100 100 100 100 100 100 100

θ 50 150 200 300 450 600 800 1000 2000

x1 1 0 0 0 1 1 1 0 0

x2 0 1 1 1 0 0 0 1 1

x3 1 0 0 0 1 1 1 0 1

x4 0 0 0 0 0 1 0 1 0

x5 0 1 1 0 1 0 0 1 0

x6 1 1 0 1 1 1 1 0 1

x7 1 0 0 0 0 1 0 0 0

x8 0 0 1 0 0 0 0 1 1

x9 0 1 0 0 1 1 1 0 0

From the above analysis, we can see that the proposed model can solve the n-stage
delayed distribution problem. It can be concluded whether the distribution should be
delayed at each stage with different c and θ. This conclusion can well assist logistics
enterprises to make the optimal decision, to reduce the total cost and improve the efficiency
of logistics enterprises. In real life, the stage number is not large, so the proposed model
has good system structure features and interpretability, and it can be used in a wide variety
of applications.

7. Conclusions

In this paper, we consider a class of the n-stage delay distribution problem based on
the compensation mechanism in a random environment. First, using the recurrence relation,
the n-stage delay stochastic distribution model is established. Second, with the synthesizing
effect function, the stochastic distribution problem is converted into a deterministic GEM,
and the proposed model contains different decision-making preferences. Therefore, the
solution is more reliable than the expectation model, and the proposed method is more
concise and effective. Third, the GEM solutions can contain those of the traditional solution
methods. The GEM solution is better than the traditional solution methods if we select the
proper synthesis effect functions. Fourth, the dependency region of the single transport cost
for each transport vehicle and the penalty for each car delay in a period-of-time distribution
is a convex region. Finally, we give a decision-making method for the multi-stage delayed
distribution problem. It has a certain guiding significance for optimizing the logistics
distribution process.

In practical problems, the multi-stage delay distribution problem is more complex.
This paper only discusses making the optimal decision based on given delay compensation.
As the amount of compensation increases with the increase of the delay stage, it is not
a fixed value. With the limitation of user satisfaction of distribution delay data, this
paper does not give the pricing mechanism of phased delay compensation. In the future,
we can further discuss the delay compensation pricing mechanism and give the delay
compensation strategies in different stages to improve the delay distribution mechanism.
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9. Šedivý, J.; Čejka, J.; Guchenko, M. Possible application of solver optimization module for solving single-circuit transport problems.

LOGI-Sci. J. Transp. Logist. 2020, 11, 78–87. [CrossRef]
10. Oluwaseyi, J.A.; Olalekan, A.O.; Temitayo, A.O. Transportation factors in the distribution of agricultural produce to urban center

in Nigeria. LOGI-Sci. J. Transp. Logist. 2018, 9, 1–10.
11. Al-Khamis, T.; M’Hallah, R. A two-stage stochastic programming model for the parallel machine scheduling problem with

machine capacity. Comput. Oper. Res. 2011, 38, 1747–1759. [CrossRef]
12. Noyan, N. Risk-averse two-stage stochastic programming with an application to disaster management. Comput. Oper. Res. 2012,

39, 541–559. [CrossRef]
13. Abdelaziz, F.B. Solution approaches for the multiobjective stochastic programming. Eur. J. Oper. Res. 2012, 216, 1–16. [CrossRef]
14. Abdelaziz, F.B.; Aouni, B.; Fayedh, R.E. Multi-objective Stochastic Programming for Portfolio Selection. Eur. J. Oper. Res. 2007,

177, 1811–1823. [CrossRef]
15. Wang, L.; Yang, L.X.; Gao, Z.Y.; Li, S.K.; Zhou, X.S. Evacuation planning for disaster responses: A stochastic programming

framework. Transp. Res. Part C Emerg. Technol. 2016, 69, 150–172. [CrossRef]
16. Zahiri, B.; Torabi, S.A.; Tavakkoli-Moghaddam, R. A novel multi-stage possibilistic stochastic programming approach (with an

application in relief distribution planning). Information Sci. 2017, 385, 225–249. [CrossRef]
17. Goberna, M.A.; Jeyakumar, V.; Li, G.; Vicente-Pérez, J. Guaranteeing highly robust weakly efficient solutions for uncertain

multi-objective convex programs. Eur. J. Oper. Res. 2018, 270, 40–50. [CrossRef]
18. Ogbe, E.; Li, X. A new cross decomposition method for stochastic mixed-integer linear programming. Eur. J. Oper. Res. 2017, 256,

487–499. [CrossRef]
19. Hasany, R.M.; Shafahi, Y. Two-stage stochastic programming for the railroad blocking problem with uncertain demand and

supply resources. Comput. Ind. Eng. 2017, 106, 275–286. [CrossRef]
20. Niu, Y.F.; Gao, Z.Y.; Lam, W.H.K. Evaluating the reliability of a stochastic distribution network in terms of minimal cuts. Transp.

Res. Part E Logist. Transp. Rev. 2017, 100, 75–97. [CrossRef]
21. Zheng, N.; Geroliminis, N. On the distribution of urban road space for multimodal congested networks. Transp. Res. Part B

Methodol. 2013, 57, 326–341. [CrossRef]
22. Yu, V.F.; Jodiawan, P.; Hou, M.L.; Gunawan, A. Design of a two-echelon freight distribution system in last-mile logistics

considering covering locations and occasional drivers. Transp. Res. Part E Logist. Transp. Rev. 2021, 154, 102461. [CrossRef]
23. Mancini, S.; Gansterer, M. Vehicle routing with private and shared delivery locations. Comput. Oper. Res. 2021, 133, 105361.

[CrossRef]
24. Wang, J.J.; Zhou, L.; Li, F.C. The Two-stage Delay Distribution Method Based on Compensation Mechanism under Random

environment. Internet Manuf. Serv. 2019, 6, 19–31. [CrossRef]

http://doi.org/10.1007/s13676-018-0139-6
http://doi.org/10.1016/j.trb.2019.08.004
http://doi.org/10.1016/j.cie.2019.106144
http://doi.org/10.1016/j.trb.2018.05.003
http://doi.org/10.3390/machines9110258
http://doi.org/10.1051/ro/2020056
http://doi.org/10.1016/j.trpro.2020.02.032
http://doi.org/10.1186/s41601-020-0154-0
http://doi.org/10.2478/logi-2020-0008
http://doi.org/10.1016/j.cor.2011.01.017
http://doi.org/10.1016/j.cor.2011.03.017
http://doi.org/10.1016/j.ejor.2011.03.033
http://doi.org/10.1016/j.ejor.2005.10.021
http://doi.org/10.1016/j.trc.2016.05.022
http://doi.org/10.1016/j.ins.2017.01.018
http://doi.org/10.1016/j.ejor.2018.03.018
http://doi.org/10.1016/j.ejor.2016.08.005
http://doi.org/10.1016/j.cie.2017.02.014
http://doi.org/10.1016/j.tre.2017.01.008
http://doi.org/10.1016/j.trb.2013.06.003
http://doi.org/10.1016/j.tre.2021.102461
http://doi.org/10.1016/j.cor.2021.105361
http://doi.org/10.1504/IJIMS.2019.096642


Axioms 2022, 11, 67 17 of 17

25. Zhou, L.; Dong, L.L.; Li, F.C. Compensation mechanism of delayed distribution based on interest balance. Transp. Lett. Int. J.
Transp. Res. 2020, 12, 732–737. [CrossRef]

26. Stopka, O.; Stopkova, M.; Kampf, R. Application of the Operational Research Method to Determine the Optimum Transport
Collection Cycle of Municipal Waste in a Predesignated Urban Area. Sustainability 2019, 11, 2275. [CrossRef]

27. Amir, M.N.; Mahdavi, M. Coordinating Order Acceptance and Integrated Production-distribution Scheduling with Batch Delivery
considering Third Party Logistics distribution. J. Manuf. Syst. 2018, 1, 29–45.

28. Fazlollahtabar, H. Lagrangian Relaxation Method for Optimizing Delay of Multiple Autonomous Guided vehicles. Transp. Lett.
Int. J. Transp. Res. 2018, 10, 354–360. [CrossRef]

29. Hajej, Z.; Rezg, N.; Gharbi, A. Forecasting and Maintenance Problem under Subcontracting Constraint with Transportation delay.
Int. J. Prod. Res. 2014, 52, 6695–6716. [CrossRef]

30. Ozbaygin, G.; Karasan, O.E.; Savelsbergh, M. A Branch-and-price Algorithm for the Vehicle Routing Problem with Roaming
Delivery locations. Transp. Res. Part B Methodol. 2016, 100, 115–137. [CrossRef]

31. Subramanyam, A.; Wang, A. A Scenario Decomposition Algorithm for Strategic Time Window Assignment Vehicle Routing
problems. Transp. Res. Part B Methodol. 2018, 117, 296–317. [CrossRef]

32. Tang, M.; Gong, D.; Liu, S. Applying Multi-phase Particle Swarm Optimization to Solve Bulk Cargo Port Scheduling problem.
Adv. Prod. Eng. Manag. 2016, 4, 299–310. [CrossRef]

33. Yuan, W.; Jiang, X.J.; Lee, L.H.; Chew, E.P.; Tan, K.C. Tree Based Searching Approaches for Integrated Vehicle Dispatching and
Container Allocation in a Transshipment hub. Expert Syst. Appl. 2017, 15, 139–150.

34. Zhang, Z.; Figliozzi, M.A. A Survey of China’s Logistics Industry and the Impacts of Transport Delays on Importers and Exporters.
Transp. Rev. 2010, 30, 179–194. [CrossRef]

35. Sun, H.L.; Li, J.M.; Wang, T.S.; Xue, Y.F. A novel scenario-based robust bi-objective optimization model for humanitarian logistics
network under risk of disruptions. Transp. Res. Part E Logist. Transp. Rev. 2022, 157, 102578. [CrossRef]

36. Loske, D.; Klumpp, M. Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics. Int. J.
Prod. Econ. 2021, 241, 108236. [CrossRef]

37. Granillo-Macías, R. Logistics optimization through a social approach for food distribution. Socio-Econ. Plan. Sci. 2021, 76, 100972.
[CrossRef]

38. Iwamura, K.; Liu, B. A Genetic Algorithm for Chance Constrained programming. J. Inf. Optim. Sci. 1996, 17, 40–47. [CrossRef]
39. Li, F.C.; Jin, C.X.; Wang, L. Applied Mathematical Modelling Quasi-linear Stochastic Programming Model Based on Expectation

and Variance and Its Application in Transportation problem. Appl. Math. Model. 2014, 7, 919–1928.
40. Liu, B.D. Dependent-chance Goal Programming and Its Genetic Algorithm Based approach. Math. Comput. Model. 1996, 24,

43–52.

http://doi.org/10.1080/19427867.2019.1700006
http://doi.org/10.3390/su11082275
http://doi.org/10.1080/19427867.2017.1386871
http://doi.org/10.1080/00207543.2014.911418
http://doi.org/10.1016/j.trb.2017.02.003
http://doi.org/10.1016/j.trb.2018.09.008
http://doi.org/10.14743/apem2016.4.228
http://doi.org/10.1080/01441640902843232
http://doi.org/10.1016/j.tre.2021.102578
http://doi.org/10.1016/j.ijpe.2021.108236
http://doi.org/10.1016/j.seps.2020.100972
http://doi.org/10.1080/02522667.1996.10699291

	Introduction 
	Notations 
	Indices and Sets 
	Parameters 
	Decision Variable 

	Delay Distribution Characteristic Analysis in a Random Environment 
	Choice Mechanism of 2-Stage Delay Distribution 
	3-Stage Choice Mechanism of Delay Distribution 

	The Generalized Expectation Value Model of Delay Distribution in a Random Environment 
	Solution Procedure 
	Numerical Examples 
	Conclusions 
	References

