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Abstract: In this paper, we define and study q-statistical limit point, q-statistical cluster point, q-
statistically Cauchy, q-strongly Cesàro and statistically Cq

1-summable sequences. We establish rela-
tionships of q-statistical convergence with q-statistically Cauchy, q-strongly Cesàro and statistically
Cq

1-summable sequences. Further, we apply q-statistical convergence to prove a Korovkin type
approximation theorem.
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1. Introduction and Background

Recently, q-calculus appeared as a connection between mathematics and physics. There
exist many applications in several areas of mathematics and physics such as orthogonal
polynomials, hyper-geometric functions, number theory, complex analysis, combinatorics,
matrix summability, approximation theory, quantum physics, particle physics, the theory
of relativity, etc. (see [1] for fundamental aspects of quantum calculus). More specifi-
cally, q-calculus has a major role in the development of quantum physics. In theories of
quantum gravity, q can be thought of as a parameter related to the exponential of the
cosmological constant. That is, if q = 1, then we recover classical quantum mechanics. For
q 6= 1, we have a theory of quantum mechanics in a space time with constant curvature.
Recently, q-calculus has been used in some matrix and non-matrix summability methods
such as q-Cesàro matrix, q-Hausdorff summability and q-statistical convergence (see [2–6]).
In approximation theory, it also plays a very important role; e.g., [7–12]. The q-analogs
of Bernstein operators and other operators significantly lead to more general results on
approximations and show a better rate of convergence than the respective classical opera-
tors [13]. Recently, approximation properties for Bernstein operators and their different
generalizations have been studied in [14–21].

First, we recall some basic notations for q-calculus ([1,22]). For q > 0 and any positive
integer τ, a q-integer is defined by ([1,22])

[τ] = [τ]q :=


1− qτ

1− q
, q 6= 1,

τ, q = 1,

and the q-factorial by

[τ]! = [τ]q! :=
{

[τ][τ − 1]...[1], τ ≥ 1,
1, τ = 0.
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For the integers 0 ≤ k ≤ τ, q-binomial coefficients are defined by[
τ
k

]
=

[
τ
k

]
q

:=
[τ]q!

[k]q![τ − k]q!
(τ ≥ k ≥ 0).

For q > 0, we write
Nq := {[τ], with τ ∈ N},

that is,
Nq =

{
0, 1, 1 + q, 1 + q + q2, ....

}
.

For q = 1, Nq = N, the set of nonnegative integers.
In 1951, Fast [23] conceived of the idea of statistical convergence, which was further

studied by several authors. Among them, we refer to [24] for the study of several specific
operators from the point of view of the q-calculus.

Let B ⊆ N. Then, δ(B) = limr
1
r #{k ≤ r : k ∈ B} is called the density (also known as

asymptotic density or natural density) of B, provided the limit exists, where # denotes the
cardinality of the enclosed set. A sequence η = (ηk) is called statistically convergent to the
number s (see [23]) if δ({k ≤ r : |ηk − s| > ε}) = 0 for each ε > 0; i.e.,

lim
r

1
r

#{k ≤ r : |ηk − s| ≥ ε} = 0

and we write St − lim η = s.
We write St for the set of statistically convergent sequences. Note that the ordinary

convergence implies statistical convergence, but not conversely. Indeed, such a notion is
similar to that of clustering, when studying the eigenvalue or singular value distribution of
(preconditioned) matrix-sequences with increasing order (see e.g., [25,26] and references
therein): it is worth stressing that the analysis of clustering has important applications
when studying the convergence speed of nonstationary iterative solvers for large linear
systems [27].

Let A = (gnk) be an infinite matrix. Aη = (An(η))
∞
n=0 = (∑∞

k=0 gnkηk)
∞
n=0 is called the

A-transform of a sequence η = (ηk), provided that ∑∞
k=0 gnkηk converges for each n ∈ N.

A matrix A is said to be regular if the A-transform of all convergent sequences is
convergent with the same limit. A is regular [28] if and only if

(i) ‖A‖ = supn ∑∞
k=0 |gnk| < ∞,

(ii) lim
n→∞

gnk = 0 for each k ∈ N,

(iii) lim
n→∞

∞
∑

k=0
gnk = 1.

Freedman and Sember [29] introduced the notion of A-density for a nonnegative
regular matrix A = (gnk)

∞
n,k=0. Let B ⊆ N and χB denote the characteristic function of B.

δA(B) = lim inf
n→∞

(AχB)n

is defined as the A-density of B. If A is replaced by the Cesàro matrix C1, then A-density is
reduced to the natural density. That is,

δ(B) = δC1(B) = lim
n→∞

1
n

n

∑
k=1

χB(k). (1)

Gadjiev and Orhan [30] used the idea of statistical convergence in approximation
theory and showed that replacing ordinary convergence by statistical convergence leads
to a more general approximation, in combination with a higher convergence rate. Since
q-statistical convergence is more general than both ordinary convergence and statistical
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convergence (see Example 1 of Section 2), one can improve several results on approximation
theory, where ordinary convergence and statistical convergence both fail to work. This
idea motivates us to further study q-analogs of some summability methods and apply
them in approximation theory. The Korovkin type approximation is one of the most
powerful approaches to approximate any continuous function by a sequence of linear
positive operators converging to the identity operator and employing, in general, only
a limited information on the given continuous function (e.g., samplings in the case of
Bernstein operators). Further, we apply the notion of q-statistical convergence to prove a
Korovkin type theorem, which is demonstrated to be more general than the classical as
well as statistical versions.

This paper is organized as follows: in Section 2, we study q-statistical convergence,
q-statistical limit points and q-statistical cluster points. In Section 3, we define q-statistical
Cauchy and find its relation with q-statistical convergence. In Section 4, we introduce two
notions, namely q-strongly Cesàro summable and statistically C(q)

1 -summable sequences,
and establish their relationship with q-statistical convergence. In the section, we apply
q-statistical convergence in order to study a Korovkin type approximation result, with an
example to support our claim that our result is more general than both the cases of ordinary
convergence and statistical convergence.

2. q-Statistical Convergence

Defining a q-analog of Cesàro matrix C1 is not unique (see [2,4,5]). Here, we consider
the q-Cesàro matrix, C(q)

1 = (c1
nk(q

k))∞
n,k=0 defined by

c1
nk(q

k) =


qk

[n+1]q
, k ≤ n,

0, otherwise,

which is regular for q ≥ 1 (see Lemma 7 of [4]).
Recently, Aktuğlu and Bekar [4] defined q-density and q-statistical convergence by

replacing the matrix A by C(q)
1 in (1). That is, for q ≥ 1

δq(B) = δ
C(q)

1
(B) = lim inf

n→∞
(C(q)

1 χB)n, q ≥ 1.

For double sequences, see [31,32].

Definition 1 ([4]). A sequence η = (ηk) is said to be q-statistically convergent to the number L if
for every ε > 0, δq(Bε,n) = 0, where Bε,n = {k ≤ n : |ηk − L| ≥ ε}. That is, for every ε > 0,

lim
n→∞

1
[n]

#{k ≤ n : qk|ηk − L| ≥ ε} = 0

and we write Stq- limn→∞ ηk = L.

If δ(B) = 0 for an infinite set B, then δq(B) = 0. Hence, statistical convergence implies
q-statistical convergence, but not conversely (c.f. [4] (Example 15)).

Example 1. Let η = (ηk) be defined by (see [4] (Example 15))

(1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, ...),

where 1,s (ones) and 0,s (zeros) occur 22n and 22n−1 (n = 0, 1, 2, ...) times, respectively. Let
B = {k ∈ N : ηk = 1}. Then limn→∞(Cq

1χB)22n−1 = 0, i.e., Stq- limn→∞ ηk = 0 but δ(B) does
not exists, so η is not statistically convergent.
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Now, we define q-statistical limit points and q-statistical cluster points of a real number
sequence with some examples. For more details, we refer to [33].

Definition 2. For a subsequence (ηk(j)) of η = (ηk) and B = {k(j) : j ∈ N}, we write {η}B for
(ηk(j)). If δq(B) = 0, {η}B is called a subsequence of q-density zero, or a q-thin subsequence. On
the other hand, {η}B is a q-nonthin subsequence of η if B fails to have q-density zero.

Definition 3. A sequence η = (ηk) is said to have a q-statistical limit point ς if ς is the limit of a
q-nonthin subsequence of η.

For any sequence η, we denote by Lη , Λη and Λq
η the set of all ordinary limit points,

statistical limit points and q-statistical limit points of η, respectively.

Example 2. Consider Example 1. Then, Lη = Λη = {0, 1} and Λq
η = {0}, since Stq− lim η = 0.

Definition 4. A sequence η = (ηk) is said to have a q-statistical cluster point γ if for every ε > 0,
δq({k ∈ N :| ηk − γ |< ε}) 6= 0.

For a given sequence η, we denote by Γη and Γq
η the set of all statistical cluster points

and q-statistical cluster points of η, respectively. Clearly, Γq
η ⊆ Lη for every η. Similar to the

result of Fridy [33] (Example 15), we find the following.

Proposition 1. For any number sequence η, Λq
η ⊆ Γq

η .

We prove the following result, which is the q-analog of the result of Šalát [34].

Theorem 1. A sequence η = (ηk) is q-statistically convergent to ` if and only if there exists a set
B = {k1 < k2 < · · · < kn < · · · } ⊆ N such that δq(B) = 1 and limn ηkn = `.

Proof. Suppose δq(B) = 1 for B = {k1 < k2 < · · · < kn < · · · } and limn ηkn = `. Then,
there is N ∈ N for which

|ηkn − `| < ε for n > N. (2)

Put Bε := {k ∈ N : |ηk − `| ≥ ε} and B′ = {kN+1, kN+2, · · · }. Then δq(B′) = 1 and
Bε ⊆ N−B′, so that δq(Bε) = 0. Hence, η = (ηk) is q-statistically convergent to l.

Conversely, let η = (ηk) be q-statistically convergent to `. Write Br := {k ∈ N :
|ηk − `| ≥ 1/r} and Er := {k ∈ N : |ηk − `| < 1/r} (r = 1, 2, 3, · · · ). Then δq(Br) = 0 and

E1 ⊃ E2 ⊃ · · · Ei ⊃ Ei+1 ⊃ · · · (3)

and
δq(Er) = 1. (4)

To show (ηkn) is convergent to ` (n ∈ Er), suppose limn→∞ ηkn 6= `. Then,
|ηkn − `| ≥ ε for infinitely many terms. Let Eε := {n ∈ N : |ηkn − `| < ε} and ε > 1/r
(r = 1, 2, 3, · · · ). Then,

δq(Eε) = 0, (5)

and by (3), Er ⊂ Eε. Therefore, δq(Er) = 0; i.e., a contradiction to (4). Hence, (ηkn) is
convergent to `.

3. q-Statistically Cauchy Sequences

We define a q-analog of statistically Cauchy sequences [35] and we obtain relevant
relations with the notion of q-statistical convergence.
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Definition 5. A sequence η = (ηk) is q-statistically Cauchy if for every ε > 0 there exists
C = C(ε) such that the set

{k ≤ n :| ηk − ηC |≥ ε}

has q-density zero.

Theorem 2. A sequence η = (ηk) is q-statistically Cauchy if and only if η is q-statistically convergent.

Proof. Let η be q-statistically Cauchy but not q-statistically convergent. Then, there exists
C such that the set Aε,n = {k ≤ n :| ηk − ηC |≥ ε} has q-density zero. Consequently,
δq(Dε,n) = 1, where

Dε,n = {k ≤ n :| ηk − ηC |< ε}.

In particular, we can write
| ηk − ηC |≤ 2 | ηk − l |< ε (6)

if | ηk − l |< ε/2. Now, let

Bε,n = {k ≤ n :| ηk − l |≥ ε},

Fε,n = {k ≤ n :| ηC − l |≥ ε}.

Since η is not q-statistically convergent, δq(Bε,n) = 1; i.e., for the set δq({k ≤ n :| ηk − l |<
ε}) = 0. Therefore, by (6), the set

{k ≤ n :| ηk − ηC |< ε}

has q-density 0; i.e., δq(Aε,n) = 1, a contradiction. Hence η is q-statistically convergent.
Conversely, let η be q-statistically convergent to a number l. Then, for every ε > 0,

the set
{k ≤ n :| ηk − l |≥ ε}

has q-density zero. Choose N such that | ηN − L |≥ ε. Then Aε,n ⊆ Bε,n ∪ Fε,n and therefore
δq(Aε,n) ≤ δq(Bε,n) + δq(Fε,n) = 0. Hence η is q-statistically Cauchy.

4. q-Strong Cesàro Summability

We define the notion of q-strong Cesàro summability and statistically C(q)
1 -summable

sequences. Then, we describe their relations with the concept of q-statistical convergence.

Definition 6. A sequence η = (ηk) is q-strongly Cesàro summable to l, i.e., [C(q)
1 ]- lim ηk = l, if

lim
n→∞

1
[n]

n

∑
k=1

qk|ηk − l| = 0.

We write [C(q)
1 ] for the set of q-strongly Cesàro summable sequences.

A sequence η = (ηk) is statistically A-summable to l [36] if for every ε > 0, δ({j ≤ n :
|Aj(η)− l |≥ ε}) = 0. Here, we define statistical C(q)

1 -summability, which is obtained by

replacing A by C(q)
1 , and find its relation with q-statistical convergence.

Definition 7. A sequence η = (ηk) is statistically C(q)
1 -summable to l if for every ε > 0, δq({k :

|(C(q)
1 η)k − l |≥ ε}) = 0, where

(C(q)
1 η)k =

k

∑
j=1

qj

[k]
ηj.
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In the following theorem, we study the relation between q-strong Cesàro summability
and q-statistical convergence.

Theorem 3. q-strongly Cesàro summablity implies q-statistical convergence to the same limit. The
converse also holds for a bounded sequence.

Proof. For any η = (ηk) and ε > 0, we observe that

n

∑
k=1

qk|ηk − l| ≥
∣∣{k ≤ n : qk|ηk − l| ≥ ε}

∣∣ε.

Hence, [C(q)
1 ]- lim ηk = l implies Stq- lim ηk = l.

Conversely, let η be bounded and Stq- lim ηk = l. Let us write M = ‖η‖∞+ | l | . For
a given ε > 0, choose Nε such that for all n > Nε

1
[n]
∣∣{k : qk|ηk − l| ≥ ε

2
}
∣∣ < ε/2M.

Write Ln =
{

k : qk|ηk − l| ≥ ε/2
}

. For n > Nε, we have

(1/[n])
n

∑
k=1

qk | ηk − l | = (1/[n])
{

∑
k∈Ln

qk | ηk − l | + ∑
k 6∈Ln ,k≤n

qk | ηk − l |
}

< (1/[n])([n]ε/2M)M + (1/[n])([n])(ε/2)

= ε/2 + ε/2 = ε.

Hence [C(q)
1 ]- lim ηk = l.

The following theorem provides important relations between statistical C(q)
1 -summability

and q-statistical convergence.

Theorem 4. If a sequence η is bounded, then q-statistical convergence implies statistical C(q)
1 -

summablity, but not conversely.

Proof. Let η = (ηk) be bounded and Stq- lim ηk = l. Then

| (C(q)
1 η)k − l |≤| ∑

k/∈Kε

cq
nk(ηk − l) | + | ∑

k∈Kε

cq
nk(ηk − l) |

≤ ε ∑
k/∈Kε

cq
nk + (sup

k
| ηk − l |) ∑

k∈Kε

cq
nk.

Then the regularity of the q-Cesàro matrix C(q)
1 implies st- lim | (C(q)

1 η)k − l |= 0.
Conversely, let η = (ηk)

∞
k=0 be defined by

ηk =


1
qk , k is even,
−1
qk , k is odd,

which is not q-statistically convergent. However, η is C(q)
1 -summable to 0 and hence

statistically C(q)
1 -summable to 0.

5. Application of q-Statistical Convergence

We apply the notion of q-statistical convergence to prove a Korovkin type theorem.
For further applications of q- and (p, q)-calculus in approximations, we refer to [8,12,18].
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Let C[0, 1] be the set of all continuous functions on [0, 1], which is a Banach space
with norm

‖ζ‖∞ := sup
y∈[0,1]

|ζ(y)|, ζ ∈ C[0, 1].

Theorem 5 ([37]). Let (Tn) be a sequence of linear positive operators (LPOs) from C[0, 1] into itself.
Then, for all ζ ∈ C[0, 1], limn(Tnζ)(x) = ζ(x) uniformly on [0, 1] if and only if limn Tn(xi) = xi

(i = 0, 1, 2) uniformly on [0, 1].

We prove a Korovkin type approximation theorem for q-statistical convergence anal-
ogous to that of given by Gadjiev and Orhan [30]. The Korovkin type approximation
theorems have been proved by various authors through different summability methods;
e.g., [38–44].

Theorem 6. Let (Tk) be a sequence of LPOs from C[0, 1] into itself. Then for all $ ∈ C[0, 1]

Stq- lim
k→∞

∥∥∥∥Tk($)− $

∥∥∥∥
∞
= 0 (7)

if and only if

Stq- lim
k→∞

∥∥∥∥Tk(1)− 1
∥∥∥∥

∞
= 0 (8)

Stq- lim
k→∞

∥∥∥∥Tk(s)− υ

∥∥∥∥
∞
= 0 (9)

Stq- lim
k→∞

∥∥∥∥Tk(s2)− υ2
∥∥∥∥

∞
= 0. (10)

Proof. Since each of 1, υ, υ2 belongs to C[0, 1], conditions (8)–(10) follow immediately from
(7). Let $ ∈ C[0, 1]. Since $ is bounded on the whole real axis, there exists a constant Q > 0
such that

|$(s)− $(υ)| ≤ 2Q, −∞ < s, υ < ∞. (11)

In addition, since $ is continuous on [0, 1], for a given ε > 0, there is a δ > 0 for which

|$(s)− $(υ)| < ε, (12)

whenever |s− υ| < δ for all υ, s.
Using (11) and (12), we obtain

|$(s)− $(υ)| < ε +
2Q
δ2 (s− υ)2

for all s ∈ (−∞, ∞) and y ∈ [0, 1]. Then as in [30], we have

‖ Tk($)− $ ‖∞≤ K
(∥∥∥∥Tk(1)− 1

∥∥∥∥
∞
+

∥∥∥∥Tk(s)− s
∥∥∥∥

∞
+

∥∥∥∥Tk(s2)− s2
∥∥∥∥

∞

)
(13)

where K = max{ε + Q + 2Q
δ2 , 4Qb

δ2 }. For any λ > 0, define the following sets

G(ε, n) = {k ≤ n : ||Tk($)− $||∞ ≥
λ

K
},

G1(ε, n) = {k ≤ n : ||Tk(1)− 1||∞ ≥
λ

3K
},

G2(ε, n) = {k ≤ n : ||Tk(s)− υ||∞ ≥
λ

3K
},
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G3(ε, n) = {k ≤ n : ||Tk(s2)− υ2||∞ ≥
λ

3K
}.

Then, G(ε) ⊂ G1(ε, n) ∪ G2(ε, n) ∪ G3(ε, n), and so by (13) we obtain

δq(G(ε, n)) ≤ δq(G1(ε, n)) + δq(G2(ε, n)) + δq(G3(ε, n)).

Therefore, using conditions (8)–(10), we finally infer

Stq- lim
n
||Tn($)− $||∞ = 0.

Example 3. Consider the Bernstein operators

Bn($, y) :=
n

∑
k=0

(
n
k

)
yk(1− y)n−k$

(
k
n

)
, $ ∈ C[0, 1].

Now, define the operators Pn : CB[0, 1] → C[0, 1] by Pn = (1 + un)Bn($, y) where the
sequence (un) is defined by (Example 15 of [4])

(1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, ...).

Then the sequence (Pn) satisfies conditions (8)–(10). Hence, by Theorem 6, we deduce

Stq- lim
n→∞

‖Pn($)− $‖∞ = 0.

Let Pn($; 0) = (1 + un)$(0).
Since Bn($; 0) = $(0), and hence

‖Pn($)− $‖∞ ≥ |Pn($; 0)− $(0)| = un|$(0)|.

However, the sequence (un) is neither convergent nor statistically convergent, so Theorem 5 as well
as Theorem 1 of Gadjiev and Orhan [30] does not hold for (Pn).

Hence, Theorem 6 is stronger than Theorem 5 as well as its statistical version.

6. Concluding Remarks and Suggestions for Further Studies

In this paper, we have defined and studied q-analogs of statistical limit point, sta-
tistical cluster point, statistically Cauchy, strongly Cesàro sequences and established the
inter-relationships between them as well as with q-statistical convergence. We have also
introduced the notion of statistical C(q)

1 -summablility and obtained its relationship with
q-statistical convergence for bounded as well as unbounded sequences. Further, we have
applied the notion of q-statistical convergence to prove a Korovkin type theorem to approx-
imate any continuous function, which is demonstrated to be more general than the classical
as well as statistical versions. For further studies, we suggest that some results on the
statistical convergence of Salat [34] and Schoenberg [45] can be extended for q-analogs. The
ideas of q-double Cesàro matrices and the q-statistical convergence of double sequences
have been studied by [32], which can be further used in studying approximation results for
bivariate operators. Recently, (p, q)-calculus, a more general case than q-calculus, has been
used in several studies; e.g., orthogonal polynomials, hyper-geometric functions, inequali-
ties, complex analysis, combinatorics, post-quantum physics, approximation theory, etc.
One can think to study the (p, q)-version of Cesàro matrices, strongly Cesàro summability,
density and statistical convergence with applications in approximation theory. Finally,
since the Korovkin theory has been employed in applied problems in numerical linear
algebra for the fast solution of large structured linear systems (see [46,47]), it would be
interesting to investigate the use of the new notions also in this context.
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