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Abstract: The complexity of earthquakes and the nonlinearity of structures tend to increase the
calculation cost of reliability-based design optimization (RBDO). To reduce computational burden
and to effectively consider the uncertainties of ground motions and structural parameters, an efficient
RBDO method for structures under stochastic earthquakes based on adaptive Gaussian process
regression (GPR) metamodeling is proposed in this study. In this method, the uncertainties of
ground motions are described by the record-to-record variation and the randomness of intensity
measure (IM). A GPR model is constructed to obtain the approximations of the engineering demand
parameter (EDP), and an active learning (AL) strategy is presented to adaptively update the design of
experiments (DoE) of this metamodel. Based on the reliability of design variables calculated by Monte
Carlo simulation (MCS), an optimal solution can be obtained by an efficient global optimization
(EGO) algorithm. To validate the effectiveness and efficiency of the developed method, it is applied
to the optimization problems of a steel frame and a reinforced concrete frame and compared with the
existing methods. The results show that this method can provide accurate reliability information for
seismic design and can deal with the problems of minimizing costs under the probabilistic constraint
and problems of improving the seismic reliability under limited costs.

Keywords: seismic reliability analysis; nonlinear structure; reliability-based design optimization;
adaptive metamodeling; gaussian process regression; Monte Carlo simulation

1. Introduction

Due to environmental changes, manual operation, manufacturing process, and other
factors in the construction or use of engineering structures, there are usually uncertainties
in component size, material properties, and external loads. According to the guidelines [1],
the structure under seismic load should reach performance levels related to a set of specified
reliability criteria during the design service life. Incorporating RBDO into seismic design
can provide an ideal tool for designers to realize this design principle [2,3]. Compared with
deterministic optimization, RBDO can take the uncertainties of structural performance into
account and can achieve a balance between the structural reliability and costs [4].

Reliability-based seismic optimization is characterized by considering the uncertainties
of earthquakes. Seismic load is a complex external excitation. Recent studies have been
devoted to the application of RBDO in structural seismic design. Mishra et al. [5] studied the
influence of parameter uncertainty on the optimization results of base-isolated structures
subjected to random earthquakes, in which the structural response is obtained by the
framework of random vibration analysis. Zou et al. [4] proposed an RBDO procedure
for reinforced concrete buildings with fiber-reinforced polymer composites, taking the
inter-storey displacement of structures as the performance parameter. Ni et al. [2] applied
the first-order reliability method (FORM) and Kriging model to RBDO of nonlinear steel
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frames and reinforced concrete frames, where the uncertainties of structural parameters
are considered. In the research studies of Refs. [2,4], structural response is calculated
by the Pushover method, where uncertainties associated with the frequency content of
ground motions are difficult to be taken into account. Hadidi et al. [6] optimized semi-
rigidly connected base-isolated buildings subjected to near-fault stochastic earthquakes.
Yazdani et al. [3] developed an optimization method for RBDO problems of reinforced
concrete structures considering soil-structure interaction effects, in which the MCS method
was adopted to calculate the reliability and the support vector machine (SVM) approach
was employed to evaluate the structural response. Peng et al. [7] proposed an RBDO
framework for base isolation systems, which used sensitivity analysis to identify critical
design parameters and employed probability density evolution method to analyze the
reliability of structures. In the studies of Refs. [3,6,7], the artificial records generated by
ground motion models rather than natural records are required for dynamic analysis.

As reliability needs to be evaluated in optimization, the number of calls to structural
analysis in RBDO is far more than that in deterministic design optimization. Furthermore,
the complexity of earthquakes and nonlinearity of structures further increase compu-
tational burden. In addition to the randomness of IM, there is also uncertainty in the
frequency contents and other dynamic characteristics of seismic ground motions, which is
called record-to-record variation [8]. The reliability problems considering the uncertainties
of earthquakes and structural parameters can be addressed by probabilistic evaluation
methods combining MCS with nonlinear time history analysis (NLTHA) [9,10]. However,
NLTHA for response calculation is very time consuming, and calling for structural analysis
repeatedly will generate huge computational costs. In order to improve calculation effi-
ciency, metamodel (also known as surrogate model) approaches are introduced into the
probabilistic evaluation of seismic performance, such as the response surface methodology
(RSM) [11], artificial neural network (ANN) [12], SVM [13], and radial basis function [14].
The dual RSM-based seismic reliability analysis (D-RSM-SRA) approach proposed by
Towashiraporn [15] is a commonly used seismic risk assessment method. In this method,
the dual RSM framework where the EDP is assumed to follow a certain random distribution
is adopted to deal with the record-to-record variation, which overcomes the difficulty of
handling the input of high-dimensional seismic time history in metamodeling. Two RSM
models are constructed to estimate the mean and standard deviation of the stochastic
response, respectively, and the response approximation obtained by the models is used as a
substitute for the real response in MCS. D-RSM-SRA has been widely used in probability
analysis of seismic performance of various structures, such as track-on steel-plate-girder
bridge [16], base-isolated liquid storage tank [17], bridge pier [18], nuclear power plant [11],
reinforced concrete bridge [19], and base-isolated frame [20]. Datta et al. [21] applied the
dual RSM framework to reliability-based optimization, and their developed method can
efficiently solve the optimization problem considering record-to-record variation. However,
the DoE for building dual RSM models is often obtained by one-shot sampling, which may
lead to a difficulty in predetermining the number of samples for different structures [22].
In addition, it is difficult to pay more attention to the positions that have a key influence on
calculation results in the sampling space by one-shot sampling. Obviously, these factors
will affect computational efficiency and result accuracy.

For general RBDO problems, in order to reasonably choose DoE, researchers applied
adaptive sampling in metamodeling and proposed a number of RBDO methods based on
adaptive metamodeling, such as sequential maximum expected improvement sampling
strategy based on the performance measurement analysis [23], RBDO approach using
efficient global reliability analysis and EGO (EGO-EGRA) [24], local adaptive sampling [25],
active learning method with Kriging and chaotic single loop [26], and dismantled method
based on quantile [27]. Such approaches first build the initial metamodel with a small
number of experiments and then add new samples to the DoE until the model has sufficient
accuracy. They do not require the metamodel to be globally accurate, but the accuracy at
locations that have a great influence on the optimization results in terms of the complexity
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of the problem is improved, thus reducing the number of samples for metamodeling.
However, in these methods, the value of each performance function or structural response
is estimated by one metamodel, and the metamodel needs to have the ability to evaluate
the error of estimation. Therefore, they cannot be directly used to improve the accuracy of
dual RSM metamodels.

In order to reduce calculation costs and to effectively consider the uncertainties of
earthquakes in optimization, in this research, an RBDO approach for structures subjected
to seismic load based on adaptive GPR metamodeling is proposed. In this method, the
same assumption of seismic demand as in the dual RSM framework is adopted to deal
with the record-to-record variation, but the number of metamodels corresponding to each
performance function is reduced to one. An AL sampling strategy is given to improve the
EGO-EGRA algorithm, and it is used in adaptive modeling of the EDP to search for an
optimal solution. In this paper, the RBDO formulation and EGO-EGRA methods are first
reviewed. Then, the details of the proposed RBDO framework of structures subjected to
earthquake load are presented. Finally, the proposed method is applied to two illustrative
examples—a steel frame and a reinforced concrete frame. The first example is a problem of
minimizing the costs under the reliability constraint, and the second example is a problem
of improving the seismic reliability under limited costs. The analysis results are compared
with those of the MCS and EGO-EGRA methods.

2. RBDO Problem and EGO-EGRA Approach
2.1. RBDO Formulation

A general deterministic optimization problem is to find point d* where the objective
function takes the extreme value subjected to the constraints, which can be described [28,29]
as follows:

Find : d
Minimize : f (d)
Subject to : gi(d) ≤ 0 i = 1, 2, . . . , I

dL ≤ d ≤ dU

(1)

where f (d) is the objective function, gi(d)≤ 0 denotes the constraint, I represents the number
of constraints, d* is called the optimal solution, and the superscripts ‘L’ and ‘U’ denote the
lower and upper bounds of variables, respectively.

A typical RBDO form is to minimize the costs of the structure while meeting the
reliability constraints [30], which can be described as follows:

Find : D = [d,µZ]
Minimize : w(d,µZ,µP)
Subject to : Pr{G(d, Z, P) ≤ 0} ≤ PT

dL ≤ d ≤ dU,µL
Z ≤ µZ ≤ µU

Z

(2)

where d represents the vector of deterministic design variable, Z and P denote the vectors
of random design variable and random parameter, and their mean values are µZ and µP,
respectively; D represents the vector of design variable; Pr{G(d, Z, P) < 0} is the failure
probability corresponding to the performance function G(d, Z, P); and PT denotes the target
failure probability of the reliability constraint. If the performance function value is positive,
the structure is safe; otherwise, it fails. There can be multiple reliability constraints in an
RBDO problem. Another form of RBDO is to optimize structural reliability [24], which can
be expressed as follows:

Find : D= [d,µZ]
Minimize : Pr{G(d, Z, P) ≤ 0}
Subject to : h(d,µZ,µP) ≤ 0

dL ≤ d ≤ dU,µL
Z ≤ µZ ≤ µU

Z

(3)

where h(d,µZ,µP) ≤ 0 is the deterministic constraint.
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2.2. Efficient Global Optimization

Since the objective and constraint functions need to be called repeatedly in solving the
optimization problem, the calculation cost of optimization is very high when the function
values are obtained by time-consuming finite element analysis (FEA). To improve the
efficiency of deterministic optimization, the predicted values f̂ (d) and ĝi(d) provided by
the metamodels of the objective and constraint functions can be used as substitutes for
the true values f (d) and gi(d). Only a small number of response analyses are required to
generate the samples for establishing the metamodels. Then, the optimization problem (1)
can be transformed into the following.

Find : d
Minimize : f̂ (d)
Subject to : ĝi(d) ≤ 0 i = 1, 2, . . . , I

dL ≤ d ≤ dU

(4)

The EGO method [31] is an optimization algorithm using infill-sampling criterion,
which can reduce the accuracy loss of the optimization results caused by metamodels.
It adopts Gaussian process (GP) model for metamodeling. In this model, the unknown
function value is regarded as a normal distribution variable for which its mean is the
prediction and standard deviation is the predicted error. For unconstrained optimization
problems, this method selects new samples in terms of the expected improvement (EI)
function value. The EI function is defined as follows:

EI(d) =
(

fbest − f̂ (d)
)

Φ

(
fbest − f̂ (d)

σ f̂ (d)

)
+ σ f̂ (d) · φ

(
fbest − f̂ (d)

σ f̂ (d)

)
(5)

where σ̂ f̂ (d) is the predicted standard deviation of the objective function f (d), f best is the
current best objective value, and Φ(·) and φ(·) are the probability distribution function
and probability density function of the standard normal distribution, respectively. The
basic steps of EGO are as follows: (1) select a small number of samples in the design space
and calculate their function values; (2) establish the metamodel; (3) search for the point d′

with the maximum EI value; and (4) if the convergence condition EI < 0.01·f best is satisfied
at point d′, stop infill-sampling and take the design point d* corresponding to f best as the
optimal solution of the optimization problem, otherwise add point d′ to the DoE and return
to step (2).

If the optimization problem contains constraints, the constrained EI (CEI) function can
be used to replace the EI function in the EGO procedure. The CEI function [32] is defined
as follows:

CEI(d) = EI(d) · PoF(d)

=

[(
fbest − f̂ (d)

)
Φ
(

fbest− f̂ (d)
σ f̂ (d)

)
+ σ f̂ (d) · φ

(
fbest− f̂ (d)

σ f̂ (d)

)]
·

I
∏
i=1

Φ
(
−ĝi(d)
σi(d)

) (6)

where σi(d) represents the predicted standard deviation of the constraint function gi(d).

2.3. EGO-EGRA Approach

Inspired by EGO, Bichon et al. proposed the efficient global reliability analysis (EGRA)
method. By integrating EGRA into EGO, three RBDO methods were proposed, namely
EGO-EGRA with separate metamodel, EGO-EGRA with single metamodel, and sequential
EGO-EGRA [24]. “EGO-EGRA” in this study refers to EGO-EGRA with a single metamodel,
which is the most efficient of the three methods.

In EGO-EGRA, a small number of samples were first selected to establish the initial
metamodel of the performance function. The input variable vector x of the metamodel
consists of d, Z, and P. Then, in order to obtain new samples that can refine the metamodel
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at the limit state surface, the global optimization algorithm is used to search the x space for
the point xnew with the maximum EF function value. The EF function is defined as follows

EF(x) =
(
Ĝ(x)− z

)[
2Φ
(

z−Ĝ(x)
σĜ(x)

)
−Φ

(
z−ξ−Ĝ(x)

σĜ(x)

)
−Φ

(
z+ξ−Ĝ(x)

σĜ(x)

)]
−

σĜ(x)
[
2φ
(

z−Ĝ(x)
σĜ(x)

)
− φ

(
z−ξ−Ĝ(x)

σĜ(x)

)
− φ

(
z+ξ−Ĝ(x)

σĜ(x)

)]
+

ξ
[
Φ
(

z+ξ−Ĝ(x)
σĜ(x)

)
−Φ

(
z−ξ−Ĝ(x)

σĜ(x)

)] (7)

where Ĝ and σĜ are the prediction and predicted error of performance function G, z is the
threshold corresponding to the limit state, and ξ is generally taken as 2σĜ. The EF value
at a point indicates how well the real function value at this point is expected to satisfy
equality constraint G = z. A point where the prediction is close to z and the predicted
error is large has a large EF value [33]. When the value of EF(xnew) is small, the metamodel
is considered to be accurate enough and sampling can be terminated; otherwise, xnew is
added to the DoE and the metamodel continues to be updated in this manner.

Once the metamodel of the performance function with sufficient accuracy is estab-
lished, the approximate failure probability p̂ f (D) of the design variable D can be calculated
without calling the real performance function. Then, by transforming RBDO problem (1) or
(2) into the following:

Find : D
Minimize : f (D) = w(d,µZ,µP)
Subject to : g(D) = p̂ f (D)− PT ≤ 0; DL ≤ D ≤ DU

(8)

or
Find : D
Minimize : f (D) = p̂ f (D)

Subject to : g(D) = h(d,µZ,µP) ≤ 0; DL ≤ D ≤ DU
(9)

the approximate optimal solution can be obtained by using the EGO method.
The EGO-EGRA method has advantages in solving structural design optimization

problems of civil engineering. On the one hand, as some restrictions on structural design
caused by factors such as design codes and actual engineering conditions cannot be consid-
ered in the optimization process, the scenario corresponding to the optimization result may
still needs to be manually adjusted before it can be adopted by the design. The EGO-EGRA
method can provide accurate reliability information at the optimal solution and other
parameters. On the other hand, in addition to the problem with reliability constraints, the
problem of taking the reliability as the optimization objective sometimes needs to be solved
in civil engineering structure design. These two kinds of problems can both be solved by
the EGO-EGRA method. However, this method may select some points with low joint
probability density in the variable space, at which metamodel accuracy is not important.

3. Proposed RBDO Method for Structures Subjected to Earthquakes
3.1. Metamodel of the EDP

In the proposed method, the uncertainties of ground motions are described by the
randomness of IM and record-to-record variation. The IM variable im is treated as a random
parameter. An EDP is a quantity to measure the structural response of the dynamic analysis
model, such as the maximum inter-storey drift angle and base shear [34]. In seismic
reliability assessment, the safety state of a structure is usually judged based on whether
EDP R exceeds threshold z, and the failure probability [11] can be expressed as follows:

p f =
∫

Pr{R > z|IM = im} fIM(im)d(im) (10)

where fIM(im) represents the probability density function of IM. The conditional probabil-
ity Pr{R > z|IM = im} is affected by the record-to-record variation. To tackle this variation,
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the same seismic demand assumption as in D-RSM-SRA [16] is adopted. In other words,
given the IM variable and structural parameters (including d, Z and the structural ran-
dom parameter s), EDP R is a random variable, for which its statistical properties can be
expressed by the mean and variance [11]. Based on this assumption, the record-to-record
variation can be implicitly incorporated in a set of ground motion records [18]. In this study,
EDP is considered to be lognormally distributed [35]. At each sample in DoE, the mean
µln R and standard deviation σln R of the logarithms of EDP can be obtained by performing
NLTHA for all selected records [20].

GPR [36] is a nonparametric statistical method for data fitting with GP. It is suitable
for small-sample learning [37]. Common machine learning methods also include linear
regression, ridge regression, and logistic regression [38,39]. Compared with other machine
learning methods, GPR can analyze the error of the predicted value [40]. Therefore, GPR is
employed for metamodeling in the developed method. For a function F(x) to be fitted, the GPR
model is built based on a DoE composed of a group of experiments X = [x(1), x(2), . . . , x(m)] and
their outputs y = [y(1), y(2), . . . , y(m)]T, where x(i) represents a n-dimensional input vector
and y(i) represents its output. At a test point x∗, the joint prior distribution of y and F(x∗) is
as follows: [

y
F(x∗)

]
∼ N

(
0,
[

K(X, X) + σN
2Im K(X, x∗)

K(x∗, X) k(x∗, x∗)

])
(11)

where σN represents the standard deviation of the normally distributed noise; K(X, X) = [kij]m×m

is the covariance matrix and kij = k(x(i), x(j)) is the covariance between x(i) and x(j);
K(X, x∗) = K(x∗, X)T is the m × 1 covariance matrix between x∗ and X; and Im is
the m-dimensional identity matrix. The prediction F̂(x∗) and predicted variance σ2

F̂
(x∗) of

x∗ are obtained by the following formulas:

F̂(x∗) = K(x∗, X)[K(X, X) + σN
2Im]

−1
y (12)

and the following.

σ2
F̂(x∗) = k(x∗, x∗)− K(x∗, X)[K(X, X) + σN

2Im]
−1

K(X, x∗) (13)

In the GPR model, F(x∗) is considered to follow the normal distribution as follows.

F(x∗) ∼ N
(

F̂(x∗), σ2
F̂(x∗)

)
(14)

The square exponential covariance function [41,42] is adopted in this article.
A metamodel for estimating EDP is established in the proposed procedure. To facilitate

the prediction of the estimation error, the proposed method does not build the metamodel
of the mean µln R and standard deviation σln R as in the dual RSM framework but employs
a GPR model to obtain the structural response. In terms of the assumption of lognormally
distributed seismic demand, when d, Z, s, and im are fixed, the value of the EDP is expressed
as follows.

R= exp[µln R+N(0, σln R
2)] (15)

The normally distributed variable N(0, σln R
2) can be converted to u · σln R, where u follows

the standard normal distribution. Then, Formula (15) is transformed into the following.

R= exp(µln R + u · σln R) (16)

The input variable x of the EDP’s metamodel consists of d, Z and P, i.e., x = [d, Z, P].
Variable u related to the randomness of seismic demand is regarded as a random parameter,
and structural random parameter s is also included in P. By choosing samples in x space and
calculating their corresponding R values according to Formula (16), DoE can be generated.
Based on the DoE, the GPR model of EDP is constructed, which can provide the prediction
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R̂(x) and prediction error σR̂(x) of the response. The schematic of modeling for the EDP is
shown in Figure 1.
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Figure 1. Schematic of metamodeling for EDP.

For a given design variable D = [d, µZ], by combining d with N points ran-
domly generated according to the distribution parameters of Z and P, MCS samples
XMC = [xMC

1 , xMC
2 , . . . , xMC

N ] are obtained. Then, the failure probability that the response
exceeds the threshold z can be estimated by the following:

p̂ f (D) =

N
∑

j=1
I[z− R̂(xMC

j )]

N
(17)

where I(·) is an indicator function for counting the number of negative values. When the
value in the brackets is negative, the value of I(·) is 1; otherwise, it is 0.

3.2. Refinement of the Metamodel

Based on the metamodel of EDP, RBDO methods such as EGO-EGRA can be used
to obtain the optimal solution of the problem. However, EGO-EGRA does not consider
the influence of probability density in updating DoE, which may result in unnecessary
calculation cost. In order to further reduce computational burden, this study presents an
AL strategy to improve the EGO-EGRA method. AL has been widely used in reliability
analysis [43,44]. Such strategies update DoE by selecting new samples based on the learning
function value of each point in the candidate set.

Since Latin hypercube sampling (LHS) [45] has the advantage of avoiding excessive
aggregation of samples, initial experiments are uniformly sampled in the upper and lower
bounds of each variable by LHS. In order to accurately predict the safety states of most
MCS points, the sampling range of DoE should be a region where the points with large joint
probability density can fall. The bounds of the i-th random parameter Pi in P can be taken
as F−1

i [Φ(±4)], where F−1
i (·) is the inverse function of the probability distribution function

of Pi. The sampling ranges of d and Z can be the bounds in the optimization problem. The
size of the initial DoE can be close to the number of input variables of the metamodel.

After the initial metamodel is established, AL is used in the proposed method to select
new sample points to update DoE. A candidate point set Xc = [xc

1, xc
2, . . . , xc

r] for refining
the metamodel needs to be first generated without calculating the corresponding responses.
The accuracy of the model at the location where MCS random points are very sparse has
little influence on the reliability results; thus, there is no need to sample many candidate
points with a small joint probability density. The candidate set is chosen by LHS according
to the statistical characteristics of the variables, which is obtained as follows: a set of points
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Q = [qi]r =[qij]r×n is uniformly generated in the space of (0, 1)n using LHS, and candidate
set Xc is obtained by transforming [9] Q as follows.

Xc = [xc
i ]r = [F−1

i (qij)]r×n (18)

In this transformation, Z and P can be treated as uniformly distributed variables.
By selecting the candidate point that is most favorable for refining the metamodel

as the new sample xnew, DoE is updated once. The model can be gradually refined by
sampling new experiment from the candidate set sequentially. The new sample xnew is
picked in terms of the learning function values of the candidate points. It can be observed
from Formula (17) that the accuracy of the metamodel near the limit state surface R = z has
a great influence on the judgment of the sign of z− R̂. Therefore, more attention should be
paid to accuracy in this area. Due to the characteristics of the GPR model, if the prediction
error at a certain point is large and the point may be in the vicinity of the limit state, adding
this point to DoE can improve the accuracy of R̂(x) in the neighborhood of z. The learning
function should be able to identify such points. The U function is a commonly used learning
function [44]. For the metamodel of the seismic demand, the U function can be expressed
as follows

U(x) =
∣∣∣∣ z− R̂(x)

σR̂(x)

∣∣∣∣ (19)

It can be observed from Formula (19) that the closer the approximate response of a
point is to z and the greater the predicted error is, and the smaller the U function value is.
Therefore, the point with the minimum value of U function in the candidate set is chosen
as the new sample xnew. It can be described as follows.

xnew = argmin
x∈Xc

(U(x)) (20)

According to Ref. [43], the error rate of safety state judgment of a point with the
metamodel is less than 2.3% if the U function value of this point is greater than 2, and
sampling can be stopped when the U function values of all candidate points are greater than
2. This stop condition is too strict for the engineering issues concerned in this study; thus, a
more relaxed condition is adopted. In the developed method, whether to stop sampling is
determined according to the proportion pU<2 of candidate points with U function value
less than 2. Here, pU<2 is described as follows:

pU<2 =
NU<2

r
=

r
∑

k=1
I[U(xc

k)− 2]

r
(21)

where NU<2 represents the number of points for which its U function is less than 2 in the
candidate set. When pU<2 is less than a certain tolerance ζ, the metamodel is considered to
be sufficiently accurate. ζ is taken as 0.02 in this paper.

After the metamodel of EDP is refined, RBDO problems (1) or (2) can be transformed
into the form in Formulas (8) or (9) by Formula (17), and the optimal solution can be
obtained by using EGO. It can be observed from the steps of the proposed method that
the number of calls to FEA in optimization depends on the number of experiments for
establishing the metamodel of EDP.

3.3. Computational Procedure of RBDO

The proposed RBDO framework of structures subjected to earthquake load involves
the following basic steps, and its flowchart is shown in Figure 2:
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(1) Select a group of seismic records and establish a structural analysis model.
(2) Generate an initial DoE: sample ns (e.g., the number of the input variables) initial

experiments in the space of x = [d, Z, P] by LHS, perform NLTHA for all selected
records at each sample, and calculate the seismic demand according to Formula (16).

(3) In terms of Formula (18), use LHS to choose a candidate set containing r points
(r = 10,000 in this research).

(4) Construct the GPR model of EDP with DoE.
(5) Pick the point xnew with the minimum value of U function from the candidate set

according to Formula (20). If pU<2 < ζ (ζ is taken as 0.02), proceed to step (6); otherwise,
add the new sample xnew with its seismic demand to the DoE, and return to step (4).

(6) By Formula (17), transform RBDO problems (1) or (2) into the form in Formulas (8) or (9)
and search for the optimal solution using the EGO algorithm.

4. Numerical Studies

To validate the effectiveness and efficiency of the proposed method, it is applied to
two illustrative examples: one is to reduce the costs of a steel frame under the probability
constraint, and the other is to improve the reliability of a reinforced concrete frame under
the cost constraint. The results were compared with MCS and EGO-EGRA. MCS is usually
considered to be a highly accurate reliability calculation method; thus, it is used here to
test the accuracy of other methods. Since calculation time is mainly spent on the NLTHA,
computational efficiency is measured by the number Nc of calls to FEA. Nc is equal to the
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number of samples for constructing the metamodel of the EDP. In an FEA, the NLTHA is
carried out for all selected earthquake records.

In the examples, the assumptions of distribution types commonly used in existing
studies are adopted for IM and structural parameters. For practical engineering problems,
whether a random variable follows the assumed distribution type can be evaluated by
goodness-of-fit tests, such as Anderson–Darling statistic [46]. In the problems in this section,
peak ground acceleration (PGA) a is selected as the IM. The ground motion parameters are
considered to be Type I or Type II extreme value distributed in Cornell’s research [47]. In
this study, the PGA in a future period of time t is assumed to follow the Type II extreme
value distribution, and its probability distribution function [48] is as follows:

Fa(a) = exp

[
− t

T

(
a
ag

)−K
]

(22)

where T represents the design reference period, ag denotes the mode value of acceleration,
and K represents the shape parameter. t/T is taken as 1 here, and then the mean µa,
standard deviation σa and coefficient of variation Ca of PGA are as follows.

µa = agΓ(1− 1
K
) (23)

σa = ag

[
Γ(1− 2

K
)− Γ2(1− 1

K
)

] 1
2

(24)

Ca =

[
Γ(1− 2

K
)/Γ2(1− 1

K
)− 1

] 1
2

(25)

Gao et al. carried out statistics on the seismic hazard of 45 cities, and the data show the
following: µa = 0.597ak, Ca = 1.176; here, ak represents the basic design acceleration,
which is the acceleration value with an exceedance probability of 10% within the design
reference period of 50 years [49]. Accordingly, K = 2.40 and ag = 0.391ak [50]. It is assumed
that the seismic fortification intensity is 8 and the site classification is II. The damping ratio
of the structures is 0.05. With reference to the current Chinese code for seismic design of
buildings (GB50011-2010) [51], ak is taken as 0.2 g. Then, the mean of a is 1.17 m/s2.

About 10~20 earthquake records are required for dynamic analysis to evaluate the
seismic performance of structures [52]. Therefore, 20 seismic records for NLTHA were
chosen from the ground motion database of PEER Center, taking the design spectrum in
GB50011-2010 as the target spectrum. The information of these ground motions is listed in
Table 1, and the design spectrum and mean spectrum of the selected records are plotted in
Figure 3. NLTHA was carried out in OpenSeespy (the version of OpenSees for Python).
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Table 1. Earthquake records.

No. Earthquake Name Year Station Name Arias Intensity
(m/s) Magnitude

1 Cape Mendocino 1992 Eureka—Myrtle and West 0.3 7.01
2 Cape Mendocino 1992 Fortuna—Fortuna Blvd 0.3 7.01
3 Landers 1992 Yermo Fire Station 0.9 7.28
4 Northridge-01 1994 Downey—Co Maint Bldg 0.6 6.69
5 Northridge-01 1994 Hollywood—Willoughby Ave 0.9 6.69
6 Northridge-01 1994 LA—Baldwin Hills 0.7 6.69
7 Northridge-01 1994 Moorpark—Fire Sta 0.9 6.69
8 Kocaeli_ Turkey 1999 Iznik 0.4 7.51
9 Cape Mendocino 1992 College of the Redwoods 0.6 7.01

10 Chuetsu-oki_ Japan 2007 Joetsu Ogataku 0.7 6.8
11 Chuetsu-oki_ Japan 2007 Sanjo Shinbori 2 6.8
12 Chuetsu-oki_ Japan 2007 Nakanoshima Nagaoka 2.1 6.8
13 Chuetsu-oki_ Japan 2007 Yan Sakuramachi City watershed 0.7 6.8
14 Iwate_ Japan 2008 Kami_ Miyagi Miyazaki City 0.4 6.9
15 Iwate_ Japan 2008 Matsuyama City 1.2 6.9
16 Iwate_ Japan 2008 Iwadeyama 1.8 6.9
17 Iwate_ Japan 2008 Misato_ Miyagi Kitaura—B 0.7 6.9
18 Iwate_ Japan 2008 Minamikatamachi Tore City 1.4 6.9
19 Iwate_ Japan 2008 Yokote Masuda Tamati Masu 0.3 6.9
20 Iwate_ Japan 2008 Yokote Ju Monjimachi 0.4 6.9

4.1. Example 1: A Steel Frame

Figure 4a shows a three-storey steel frame for which its storey height is 3.2 m and bay
width is 5 m. The density of steel is 7850 kg/m3. The uniformly distributed load q on beams
is 30.0 kN/m. A wide flange cross-section is adopted for the beam. The section depth is
0.3 m, the web thickness is 0.016 m, and the flange width and thickness are 0.22 m and
0.016 m, respectively. A square tube section with a width of bc and wall thickness of tc is
adopted for the column. The beam and column members are modeled using displacement-
based beam–column elements. The bilinear model is employed to simulate the nonlinear
properties of steel [53], as shown in Figure 4b. The ratio of post-yield to initial stiffness
B is 0.02. The initial elastic modulus and yield strength of the column steel are E1 and f 1,
respectively. The initial elastic modulus and yield strength of the beam steel are E2 and
f 2, respectively.

As inter-storey drift is often used to evaluate the seismic performance of structures [54],
it is selected as the failure criterion in this study where the maximum inter-storey drift
angle ϕ of the structure under earthquake load exceeds the deformation limit ϕb. With
reference to the evaluation standard for moderate damage of steel frames in GB50011-2010,
deformation limit ϕb is taken as 1/100 in this example.

In addition to the uncertainty of earthquakes, the randomness of E1, E2, f 1, f 2, and tc
is also considered in this optimization problem. E1, E2, f 1, and f 2 are random parameters;
tc is a random design variable with a mean of µtc . Their distribution information is shown
in Table 2. Since the column parameters have a great impact on seismic resistance, the
width bc and the thickness mean value µtc are taken as design variables. The bounds of bc
and µtc are [0.22, 0.5] m and [0.01, 0.02] m, respectively. Generally, the failure probability
of a structural component is required to be less than 0.05 in civil engineering [7]. In this
optimization problem, the failure probability of the structure is limited to less than 0.05,
and the column section area Sc is selected as the optimization objective to minimize the
costs. The RBDO problem can be described as follows.

Find : D= [bc, µtc ]
T

Minimize : Sc(bc, µtc) = bc
2 − (bc − 2µtc)

2

Subject to : Pr{ϕ( f1, f2, E1, E2, u, a, bc, tc) ≥ 1/100} ≤ 0.05
(26)
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Table 2. Random design variables and parameters in Example 1.

Variable Distribution Type Mean Standard Deviation

f 1 (Pa) Lognormal 3 × 108 3 × 107

f 2 (Pa) Lognormal 3 × 108 3 × 107

E1 (Pa) Lognormal 2 × 1011 2 × 1010

E2 (Pa) Lognormal 2 × 1011 2 × 1010

u Normal 0 1
a (m/s2) Type II extreme value 1.17 1.376

tc (m) Lognormal µtc 0.05·µtc

The values of bc and µtc in the initial scenario are 0.25 m and 0.016 m, respectively.
The proposed method was used to solve this optimization problem. Nine initial

experiments for establishing the metamodel of the EDP were chosen, which are listed in
Table 3. A candidate set containing 10,000 points was generated, and their distribution in f 1-
f 2-E1 space is shown in Figure 5. A total of 52 samples were added during AL sampling, and
the iteration history of sampling is shown in Figure 6a. It can be observed that the response
predictions of the new samples were mostly located in the vicinity of the threshold ϕb. With
the expansion of the size of DoE, the difference between ϕ(xnew) and ϕ̂(xnew) gradually
decreased, and the value of pU<2 decreased with fluctuations. After establishing the
metamodel, the failure probability corresponding to design variable D could be obtained.
The failure probability values obtained by the proposed method were compared with those
by MCS and EGO-EGRA. The simulation samples of MCS were selected by LHS. According
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to Ref. [10], 200 samples generated using LHS are sufficient to ensure the accuracy of the
MCS results for seismic reliability calculation; thus, 1000 simulation points were selected
in this work. The reliability values of 25 groups of design variables were calculated, and
the number of calls to FEA in MCS is 25,000 and that number in EGO-EGRA is 120. The
reliability results obtained by different methods are plotted in Figure 7. The three surfaces
are very close to each other, which verifies the accuracy of the reliability information
provided by the proposed method.

Table 3. Initial DoE of the EDP in Example 1.

No.
Input Variable Vector x

ϕf 1
(108 Pa)

f 2
(108 Pa)

E1
(1011 Pa)

E2
(1011 Pa) u a

(m/s2)
bc

(m)
tc

(m)

1 2.614 4.143 2.339 1.636 1 2.59 0.395 0.01875 0.00785
2 4.143 3.837 1.837 1.837 −2 4.86 0.5 0.01125 0.00697
3 3.837 2.309 2.439 2.138 3 9.39 0.465 0.015 0.03796
4 2.003 3.532 1.636 2.038 4 13.92 0.36 0.01625 0.28035
5 4.449 2.92 2.138 1.937 0 18.45 0.29 0.02 0.06172
6 3.532 4.449 2.038 2.339 2 7.12 0.22 0.01375 0.12321
7 2.92 2.003 1.937 1.736 −1 11.65 0.255 0.01 0.03365
8 2.309 3.226 2.239 2.439 −3 16.18 0.43 0.0125 0.01047
9 3.226 2.614 1.736 2.239 −4 0.33 0.325 0.0175 0.00025
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Based on the metamodel of the EDP, the original RBDO problem could be transformed
into the form of Formula (8), and the optimal solution was obtained using EGO. The
optimization results of the proposed method and EGO-EGRA are listed in Table 4. After
optimization, the cross-section area of column was reduced from 0.015 m2 to 0.0128 m2,
and the failure probability was less than 5%. The result of the proposed method is close
to that of EGO-EGRA, but the calculation cost is less, which validates the efficiency and
accuracy of this method.
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Table 4. Optimization results of Example 1.

Method Nc
Design Variable Vector D

Sc (m2) p̂f
bc (m) µtc (m)

EGO-EGRA 120 0.3322 0.01 0.01289 0.0481
Proposed method 9 + 52 0.3300 0.01 0.01280 0.0497

3 + 61 0.3302 0.01 0.01281 0.0496
6 + 58 0.3304 0.01 0.01282 0.0496
17 + 55 0.3321 0.01 0.01288 0.0483

Initial scenario - 0.25 0.016 0.01498 0.0914

In addition, the optimization problem was solved using the proposed method in
another three different cases, where the numbers of initial experiments, NI, were 3, 6, and
17, respectively. The changes in ϕ(xnew), ϕ̂(xnew), and pU<2 in the sampling processes are
shown in Figure 6b–d. The difference between the four solutions of the proposed method
is small, which indicates that this method is insensitive to the number of initial samples
and can obtain optimization results stably.

4.2. Example 2: A Reinforced Concrete Frame

This example is a four-storey reinforced concrete frame, as shown in Figure 8. The
height of the first floor is 3.9 m, and the height of other floors is 3.3 m. The width of
the bay is 5 m. The density of concrete is 2550 kg/m3. The uniformly distributed load
q on the structure is 35 kN/m. The cross-section of the member is composed of steel
reinforcement, cover concrete, and core concrete. The diameter of rebar is 28 mm. The
thickness of the cover concrete is 0.03 m. The cross-section of beam is a rectangle with a
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size of 0.4 m × 0.6 m. A square cross-section is adopted for the column. The width of the
column section of the first floor is b1; the column cross-sections of the second, third, and
fourth floor are the same, the width of which is b2. The material properties of the steel
bar are simulated using a bilinear model. The initial elastic modulus and yield strength of
the steel are Es and f s, respectively, and the ratio of the post-yield to the initial stiffness is
0.05. The Kent–Scott–Park model is employed to simulate the nonlinear characteristics of
concrete [53], as shown in Figure 9. The compressive strength of the cover concrete, f c,cover,
is 2.758 × 107 Pa, and the strain at maximum strength εc,cover is 0.002; the crushing strength
f u,cover is 0, and the strain at crushing strength εu,cover is 0.06. The crushing strength of the
core concrete, f u,core, is 2.413 × 107 Pa [2], and the strain at maximum strength εu,core is 0.02;
the compressive strength and strain at maximum strength are f c,core and εc,core.
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According to the evaluation standard for the moderate damage of reinforced concrete
frames in GB50011-2010, deformation limit ϕb is taken as 1/120. In this RBDO problem, b1
and b2 are regarded as deterministic random variables, and the bounds are b1, b2 ∈ [0.3, 0.5] m.
The randomness of material property parameters f s, Es, f c, and εu,core are considered, and
the distribution information of the random parameters is shown in Table 5. In the initial
scenario, b1 and b2 are 0.33 m and 0.43 m, respectively. The optimization objective is to
maximize the reliability of the structure, and the total volume Vc of columns is required
not to exceed the column volume Vc0 of the initial scenario. The RBDO problem can be
described as follows.

Find : D= [b1, b2]
T

Minimize : Pr{ϕ( fs, fc, Es, εu,core, u, a, b1, b2) ≥ 1/120}
Subject to : Vc ≤ Vc0

(27)
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Table 5. Random parameters in Example 2.

Variable Distribution Type Mean Standard Deviation

f s (Pa) Lognormal 3.07 × 108 3.07 × 107

f c (Pa) Lognormal 3.447 × 107 3.447 × 106

Es (Pa) Lognormal 2.01 × 1011 2.01 × 1010

εu,core Lognormal 5 × 10−3 5 × 10−4

u Normal 0 1
a (m/s2) Type II extreme value 1.17 1.376

The proposed method was used to find the optimal solution of the problem. The
initial DoE contained nine sample points, as listed in Table 6. According to Formula (18),
1000 candidate points were generated. A total of 101 samples were added in the iterative
process of AL sampling, as shown in Figure 10. The failure probabilities corresponding to
the design variables obtained by MCS, EGO-EGRA, and the proposed method are plotted
in Figure 11. The number of calls to FEA in MCS is 25,000 and that in EGO-EGRA is 196. It
can be observed that the reliability information given by the proposed method is close to
that of MCS, but the computational burden is far less than that of the latter.

Table 6. Initial DoE of the EDP in Example 2.

No.
Input Variable Vector x

ϕ(x)f s
(108 Pa)

f c
(107 Pa)

Es
(1011 Pa)

εu,core
(10−3) u a

(m/s2)
b1

(m)
b2

(m)

1 2.363 4.76 1.342 5.377 3 6.18 0.35 0.375 0.1648
2 4.24 4.409 2.571 7.415 1 4.23 0.425 0.3 0.02113
3 2.988 5.112 2.981 4.867 −3 10.08 0.45 0.425 0.00566
4 3.614 3.707 1.957 3.338 −4 2.28 0.3 0.4 0.00139
5 3.927 2.301 2.776 4.357 4 8.13 0.375 0.475 0.28316
6 4.553 4.058 1.547 6.396 −2 12.03 0.4 0.5 0.01429
7 3.301 3.355 1.752 3.848 2 13.98 0.5 0.325 0.22224
8 2.675 2.653 2.366 6.905 −1 15.93 0.325 0.35 0.04925
9 2.05 3.004 2.161 5.886 0 0.34 0.475 0.45 0.00066
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Once the metamodel was built, the optimization problem could be transformed into
the form of Formula (9), and the EGO algorithm was used to obtain the optimal solution,
which is listed in Table 7. The result of EGO-EGRA is also given in this table, which shows
that the solution obtained by this method is close to that by EGO-EGRA. After optimization,
the failure probability of the structure decreased from 9.6% to 4.2%, and the materials used
in the structure did not increase. The example indicates that the proposed method is also
applicable to the problem of taking seismic reliability as the optimization objective.

Table 7. Optimization results of Example 2.

Method Nc
Design Variable Vector D

Vc (m3) p̂f
b1 (m) b2 (m)

EGO-EGRA 196 0.448 0.386 9.02 0.0424
Proposed method 9 + 101 0.442 0.388 9.02 0.0423

Initial scenario - 0.33 0.43 9.02 0.096

5. Conclusions

In order to effectively consider the uncertainties of ground motions and structural
parameters with appropriate computation cost in optimization problems, an efficient RBDO
method for structures under earthquake load based on adaptive metamodeling is proposed.
In this method, the uncertainties of ground motions are expressed by the record-to-record
variation and the randomness of IM. GPR is used to estimate the seismic demand of the
structure, and MCS is employed to calculate the failure probability of the design variables.
An AL sampling strategy is presented to refine the metamodel of the EDP. Based on
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approximate reliability, the optimal solution of the RBDO problem can be obtained by the
EGO algorithm.

The developed method was applied to a steel frame and a reinforced concrete frame,
respectively, in which the randomness of material properties was considered, and the
analysis results are compared with those of the MCS and EGO-EGRA methods. The results
show that this method can adaptively improve DoE according to the complexity of the
problem. It can tackle the problems of minimizing costs under the reliability constraint
and problems of improving the seismic reliability under limited costs. The reliability
information obtained by this method is very close to that of MCS, but the number of calls to
FEA is much less than that of MCS. The difference between the optimization result obtained
by the proposed method and that by EGO-EGRA is small, but this method shows higher
efficiency. In addition, the number of initial samples has little impact on the results of the
proposed procedure, and the optimal solution can be obtained stably.

The proposed method provides a foundation for future research on optimization
problems considering the robustness of seismic performance of complex structures.
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