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Abstract: Mathematical inequalities have gained importance and popularity due to the application of
integral operators of different types. The present paper aims to give Chebyshev-type inequalities for
generalized k-integral operators involving the Mittag-Leffler function in kernels. Several new results
can be deduced for different integral operators, along with Riemann–Liouville fractional integrals
by substituting convenient parameters. Moreover, the presented results generalize several already
published inequalities.

Keywords: Chebyshev inequality; fractional integrals; Mittag-Leffler function

1. Introduction

Integral operators play a very important role in the field of mathematical inequalities.
A large number of integral inequalities exist in the literature for different types of integral
operators [1–9]. Due to the extensions and generalizations of integral operators, it becomes
possible to obtain extensions and generalizations of classical inequalities. From classical
inequalities, the Chebyshev inequality is studied extensively by using such extensions and
generalizations (for details, see [3,5,10–16]).

Inspired by this latest research, the aim of the present paper is to establish Chebyshev-
type inequalities for generalized k-integral operators containing the Mittag-Leffler function
in their kernels, which produce many well-known integral operators. The results in this
paper provide generalizations of various inequalities published in the literature of fractional
integral inequalities. Next, we give the definition of Riemann–Liouville integral operators,
the classical Chebyshev inequality, Chebyshev inequalities for Riemann–Liouville integral
operators, and definitions of generalized integral operators containing the Mittag-Leffler
function.

The Riemann–Liouville integral operators are defined as follows:

Definition 1. Let ζ ∈ L1[σ1, σ2]. Then, Riemann–Liouville integral operators of order µ ∈
C, <(µ) > 0 are defined by:(

ξ
µ

σ+
1

ζ

)
(x) =

1
Γ(µ)

∫ x

σ1

(x− τ)µ−1ζ(τ)dτ, x > σ1, (1)

(
ξ

µ

σ−2
ζ

)
(x) =

1
Γ(µ)

∫ σ2

x
(τ − x)µ−1ζ(τ)dτ, x < σ2, (2)

where Γ(.) is the gamma function defined as: Γ(µ) =
∫ ∞

0 τµ−1e−τdτ.
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For more details and results related to the fractional integrals (1) and (2), we refer the
readers to [11,12,17–19]. The Chebyshev inequality [20] is given as follows:

1
σ2 − σ1

∫ σ2

σ1

ζ1(τ)ζ2(τ)dτ ≥
(

1
σ2 − σ1

∫ σ2

σ1

ζ1(τ)dτ

)(
1

σ2 − σ1

∫ σ2

σ1

ζ2(τ)dτ

)
, (3)

where ζ1 and ζ2 are two integrable and synchronous functions over the interval [σ1, σ2].
Two functions are called synchronous on [σ1, σ2] if the following inequality holds:

(ζ1(ψ)− ζ1(φ))(ζ2(ψ)− ζ2(φ)) ≥ 0, ∀ ψ, φ ∈ [σ1, σ2].

Many researchers have introduced various generalizations and extensions of inequal-
ity (3) for different integral operators. In [11], Belarbi and Dahmani proved the following
Chebyshev-type inequalities for Riemann–Liouville integral operators.

Theorem 1. Let ζ1, ζ2 : [0, ∞)→ R be two integrable functions of same monotonicity. Then, for
Riemann–Liouville integral operators, we have(

ξ
µ
0+ζ1ζ2

)
(x) ≥ Γ(µ + 1)

xµ

(
ξ

µ
0+ζ1

)
(x)
(

ξ
µ
0+ζ2

)
(x).

Theorem 2. Assume that the conditions given in Theorem 1 are valid. Then

xµ

Γ(µ + 1)
(
ξν

0+ζ1ζ2
)
(x) +

xν

Γ(ν + 1)

(
ξ

µ
0+ζ1ζ2

)
(x)

≥
(

ξ
µ
0+ζ1

)
(x)
(
ξν

0+ζ2
)
(x) +

(
ξν

0+ζ1
)
(x)
(

ξ
µ
0+ζ2

)
(x).

Theorem 3. Let (ζi)i=1,.....,n be n positive increasing functions on [0, ∞). Then(
ξ

µ
0+

n

∏
i=1

ζi

)
(x) ≥

(
(ξ

µ
0+1)(x)

)1−n n

∏
i=1

(
ξ

µ
0+ζi

)
(x).

Theorem 4. Let ζ1 and ζ2 be two functions defined on [0, ∞), such that ζ1 is increasing, ζ2 is
differentiable and m := in fx∈[0,∞)ζ

′
2(x). Then

(
ξ

µ
0+ζ1ζ2

)
(x) ≥

(
(ξ

µ
0+1)(x)

)−1(
ξ

µ
0+ζ1

)
(x)
(

ξ
µ
0+ζ2

)
(x)

− mx
µ + 1

(
ξ

µ
0+ζ1

)
(x) + m

(
ξ

µ
0+xζ1

)
(x).

Several integral operators containing the Mittag-Leffler function have been defined
by various authors (for details, see [21–24]). Recently, Chebyshev-type inequalities for
operators involving Mittag-Leffler functions and other operators have been established
in [25–30]. Next, we give the generalized fractional integral operators defined by Andrić et
al. [31], as follows:

Definition 2. Let ζ : [σ1, σ2] → R, 0 < σ1 < σ2 be an integrable function. Furthermore,
let λ, ω, µ, δ, α, η ∈ C, <(ω),<(µ),<(δ) > 0, <(η) > <(α) > 0 with q ≥ 0, ς > 0 and
0 < ρ ≤ ς +<(ω). Then, for x ∈ [σ1, σ2], the generalized integral operators are defined by:(

ξ
α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ

)
(x; q) =

∫ x

σ1

(x− τ)µ−1Eα,ς,ρ,η
ω,µ,δ (λ(x− τ)ω; q)ζ(τ)dτ, (4)

(
ξ

α,ς,ρ,η
ω,µ,δ,λ,σ−2

ζ

)
(x; q) =

∫ σ2

x
(τ − x)µ−1Eα,ς,ρ,η

ω,µ,δ (λ(τ − x)ω; q)ζ(τ)dτ, (5)
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where Eα,ς,ρ,η
ω,µ,δ (τ; q) is the generalized Mittag-Leffler function defined by:

Eα,ς,ρ,η
ω,µ,δ (τ; q) =

∞

∑
n=0

Bq(α + nρ, η − α)

B(α, η − α)

(η)nρ

Γ(ωn + µ)

τn

(δ)nς
,

Bq(x, y) =
∫ 1

0 τx−1(1− τ)y−1e−
q

τ(1−τ) dτ and (η)nρ = Γ(η+nρ)
Γ(η) .

Recently, Zhang et al. introduced the generalized k-integral operators involving the
Mittag-Leffler function in ([32] Definition 4). It is noted that in ([32] Definition 4) some
conditions of convergence of the Mittag-Leffler function were misprinted, we state it with
correct conditions as follows:

Definition 3. Let ζ, γ : [σ1, σ2] → R, 0 < σ1 < σ2 be the functions such that ζ be a positive
and integrable and γ be a differentiable and strictly increasing. Furthermore, let λ, µ, δ, α, η ∈ C,
<(µ),<(δ) > 0, <(η) > <(α) > 0 with q ≥ 0, ω, ς > 0, 0 < ρ ≤ ς + ω and k > 0. Then for
x ∈ [σ1, σ2] the integral operators are defined by:(

k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ

)
(x; q) =

∫ x

σ1

(γ(x)− γ(τ))
µ
k−1Eα,ς,ρ,η

ω,µ,δ,k(λ(γ(x)− γ(τ))
ω
k ; q)ζ(τ)d(γ(τ)), (6)

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ−2

ζ

)
(x; q) =

∫ σ2

x
(γ(τ)− γ(x))

µ
k−1Eα,ς,ρ,η

ω,µ,δ,k(λ(γ(τ)− γ(x))
ω
k ; q)ζ(τ)d(γ(τ)), (7)

where Eα,ς,ρ,η
ω,µ,δ,k(τ; q) is the modified Mittag-Leffler function defined by:

Eα,ς,ρ,η
ω,µ,δ,k(τ; q) =

∞

∑
n=0

Bq(α + nρ, η − α)

B(α, η − α)

(η)nρ

kΓk(ωn + µ)

τn

(δ)nς
.

Remark 1. Many new integral operators containing the Mittag-Leffler function can be deduced
from (6) and (7) (for details, see [32] Remark 1). Furthermore, the integral operators (6) and (7),
reproduce various well-known integral operators (for details, see [32] Remark 2).

In [32], Zhang et al. proved the following formulas for constant function, which we
will use in our results:(

k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
1
)
(x; q) = k(γ(x)− γ(σ1))

µ
k Eα,ς,ρ,η

ω,µ+k,δ,k(λ(γ(x)− γ(σ1))
ω
k ; q) := χ

µ

σ+
1
(x; q) (8)(

k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ−2

1
)
(x; q) = k(γ(σ2)− γ(x))

µ
k Eα,ς,ρ,η

ω,µ+k,δ,k(λ(γ(σ2)− γ(x))
ω
k ; q) := χ

µ

σ−2
(x; q). (9)

In the upcoming section, we give Chebyshev-type inequalities for generalized k-integral
operators containing the Mittag-Leffler function in kernels. Furthermore, we give gen-
eralizations of Chebyshev-type inequalities for well-known integral operators proved
in [11,13–16], and some new fractional versions of Chebyshev inequalities can be deduced
for integral operators given in [32] (Remark 1).

2. Main Results

In first theorem, we prove the Chebyshev-type inequality by using the k-integral
operator and the same monotonicity of functions.

Theorem 5. Let ζ1, ζ2 : [0, ∞)→ R be two integrable functions of same monotonicity. Then, for
k-integral operator (6), we have
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(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1ζ2

)
(x; q) ≥

(
χ

µ

σ+
1
(x; q)

)−1(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1

)
(x; q)

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ2

)
(x; q), (10)

provided χ
µ

σ+
1
(x; q) 6= 0.

Proof. As we know the functions ζ1 and ζ2 are increasing or decreasing simultaneously,
then for all ψ, φ ≥ 0, we have

(ζ1(ψ)− ζ1(φ))(ζ2(ψ)− ζ2(φ)) ≥ 0. (11)

This gives the following inequality:

ζ1(ψ)ζ2(ψ) + ζ1(φ)ζ2(φ) ≥ ζ1(ψ)ζ2(φ) + ζ1(φ)ζ2(ψ). (12)

Multiplying (12) with (γ(x)− γ(ψ))
µ
k−1Eα,ς,ρ,η

ω,µ,δ,k(λ(γ(x)− γ(ψ))ω ; q)γ′(ψ) and integrating
with respect to ψ over [σ1, x], we have∫ x

σ1

(γ(x)− γ(ψ))
µ
k−1Eα,ς,ρ,η

ω,µ,δ,k(λ(γ(x)− γ(ψ))ω; q)γ′(ψ)ζ1(ψ)ζ2(ψ)dψ (13)

+ ζ1(φ)ζ2(φ)
∫ x

σ1

(γ(x)− γ(ψ))
µ
k−1Eα,ς,ρ,η

ω,µ,δ,k(λ(γ(x)− γ(ψ))ω; q)γ′(ψ)dψ

≥ ζ2(φ)
∫ x

σ1

(γ(x)− γ(ψ))
µ
k−1Eα,ς,ρ,η

ω,µ,δ,k(λ(γ(x)− γ(ψ))ω; q)γ′(ψ)ζ1(ψ)dψ

+ ζ1(φ)
∫ x

σ1

(γ(x)− γ(ψ))
µ
k−1Eα,ς,ρ,η

ω,µ,δ,k(λ(γ(x)− γ(ψ))ω; q)γ′(ψ)ζ2(ψ)dψ.

By using (6) and (8), we obtain(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1ζ2

)
(x; q) + ζ1(φ)ζ2(φ)χ

µ

σ+
1
(x; q) (14)

≥ ζ2(φ)

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1

)
(x; q) + ζ1(φ)

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ2

)
(x; q).

Now, multiplying (14) with (γ(x)− γ(φ))
µ
k−1Eα,ς,ρ,η

ω,µ,δ,k(λ(γ(x)− γ(φ))ω; q)γ′(φ) and inte-
grating with respect to φ over [σ1, x], we have(

k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1ζ2

)
(x; q)

∫ x

σ1

(γ(x)− γ(φ))
µ
k−1Eα,ς,ρ,η

ω,µ,δ,k(λ(γ(x)− γ(φ))ω; q)γ′(φ)dφ (15)

+ χ
µ

σ+
1
(x; q)

∫ x

σ1

(γ(x)− γ(φ))
µ
k−1Eα,ς,ρ,η

ω,µ,δ,k(λ(γ(x)− γ(φ))ω; q)γ′(φ)ζ1(φ)ζ2(φ)dφ

≥
(

k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1

)
(x; q)

∫ x

σ1

(γ(x)− γ(φ))
µ
k−1Eα,ς,ρ,η

ω,µ,δ,k(λ(γ(x)− γ(φ))ω; q)γ′(φ)ζ2(φ)dφ

+

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ2

)
(x; q)

∫ x

σ1

(γ(x)− γ(φ))
µ
k−1Eα,ς,ρ,η

ω,µ,δ,k(λ(γ(x)− γ(φ))ω; q)γ′(φ)ζ1(φ)dφ.

Again, by using k-integral operator (6), the required inequality (10) is obtained.

Remark 2. Several new Chebyshev-type inequalities can be deduced from Theorem 5 for integral
operators given in [32] (Remark 1) with the help of the substitution of parameters. Furthermore,
Theorem 5 reproduces the Chebyshev-type inequalities for well-known integral operators. For
example, for λ = q = 0 and γ(x) = (x−σ1)

z

z , we obtain the first inequality of ([13] Theorem 3.1)
(it is explained in Corollary 2), for k = 1, λ = q = σ1 = 0 and γ(x) = xz

z , we obtain ([16]
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Theorem 5), for k = 1, λ = q = σ1 = 0 and γ(x) = xy+z

y+z , we obtain ([14] Theorem 2.1), for
λ = q = σ1 = 0, we obtain ([15] Theorem 4.1).

Corollary 1. For γ(x) = x, k = 1 and λ = q = 0, we obtain the following result for the
Riemann–Liouville fractional integral:(

ξ
µ

σ+
1

ζ1ζ2

)
(x) ≥ Γ(µ + 1)

xµ

(
ξ

µ

σ+
1

ζ1

)
(x)
(

ξ
µ

σ+
1

ζ2

)
(x).

Remark 3. It can be noted that if σ1 → 0, then one can obtain Theorem 1.

Corollary 2. The following result holds for a k-fractional conformable integral:(
k
zξ

µ

σ+
1

ζ1ζ2

)
(x) ≥

((
k
zξ

µ

σ+
1

1
)
(x)
)−1(

k
zξ

µ

σ+
1

ζ1

)
(x)
(

k
zξ

µ

σ+
1

ζ2

)
(x). (16)

Proof. For γ(x) = (x−σ1)
z

z , z ∈ R− {0} and λ = q = 0 in (6), we obtain the definition of

left k-fractional conformable integral
(

k
zξ

µ

σ+
1

.
)
(x) given in [13]. Therefore, by using these

substitutions in the proof of the above theorem, the inequality (16) is obtained.

Theorem 6. Assume that the conditions given in Theorem 5 are valid. Then

χν
σ+

1
(x; q)

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1ζ2

)
(x; q) + χ

µ

σ+
1
(x; q)

(
k
γξ

α,ς,ρ,η
ω,ν,l,λ,σ+

1
ζ1ζ2

)
(x; q) (17)

≥
(

k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1

)
(x; q)

(
k
γξ

α,ς,ρ,η
ω,ν,l,λ,σ+

1
ζ2

)
(x; q) +

(
k
γξ

α,ς,ρ,η
ω,ν,l,λ,σ+

1
ζ1

)
(x; q)

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ2

)
(x; q).

Proof. Multiplying (14) with (γ(x)− γ(φ))
ν
k−1Eα,ς,ρ,η

ω,ν,δ,k(λ(γ(x)− γ(φ))ω ; q)γ′(φ) and inte-
grating with respect to φ over [σ1, x], we have(

k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1ζ2

)
(x; q)

∫ x

σ1

(γ(x)− γ(φ))
ν
k−1Eα,ς,ρ,η

ω,ν,δ,k(λ(γ(x)− γ(φ))ω; q)γ′(φ)dφ (18)

+ χ
µ

σ+
1
(x; q)

∫ x

σ1

(γ(x)− γ(φ))
ν
k−1Eα,ς,ρ,η

ω,ν,δ,k(λ(γ(x)− γ(φ))ω; q)γ′(φ)ζ1(φ)ζ2(φ)dφ

≥
(

k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1

)
(x; q)

∫ x

σ1

(γ(x)− γ(φ))
ν
k−1Eα,ς,ρ,η

ω,ν,δ,k(λ(γ(x)− γ(φ))ω; q)γ′(φ)ζ2(φ)dφ

+

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ2

)
(x; q)

∫ x

σ1

(γ(x)− γ(φ))
ν
k−1Eα,ς,ρ,η

ω,ν,δ,k(λ(γ(x)− γ(φ))ω; q)γ′(φ)ζ1(φ)dφ.

By using k-integral operator (6), the required inequality (17) is obtained.

Remark 4. Several new Chebyshev-type inequalities can be deduced from Theorem 6 for integral
operators given in [32] (Remark 1) with the help of the substitution of parameters. Furthermore,
Theorem 6 reproduces the Chebyshev-type inequalities for well-known integral operators. For
example, for λ = q = 0 and γ(x) = (x−σ1)

z

z , we obtain the second inequality of ([13, Theorem 3.1])
(explained in Corollary 2), for k = 1, λ = q = σ1 = 0 and γ(x) = xz

z , we obtain ([16] Theorem 6),
for k = 1, λ = q = σ1 = 0 and γ(x) = xy+z

y+z , we obtain ([14] Theorem 2.2), for λ = q = σ1 = 0,
we obtain ([15] Theorem 4.5).
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Corollary 3. For γ(x) = x, k = 1 and λ = q = 0, we obtain the following result for the
Riemann–Liouville fractional integral:

xµ

Γ(µ + 1)

(
ξν

σ+
1

ζ1ζ2

)
(x) +

xν

Γ(ν + 1)

(
ξ

µ

σ+
1

ζ1ζ2

)
(x)

≥
(

ξ
µ

σ+
1

ζ1

)
(x)
(

ξν
σ+

1
ζ2

)
(x) +

(
ξν

σ+
1

ζ1

)
(x)
(

ξ
µ

σ+
1

ζ2

)
(x).

Remark 5. It can be noted that if σ1 → 0, then one can obtain Theorem 2. Furthermore, from
Theorem 6 for µ = ν, one can obtain Theorem 5.

Corollary 4. The following result holds for a k-fractional conformable integral:(
k
zξ

µ

σ+
1

ζ1ζ2

)
(x)
(

k
zξν

σ+
1

1
)
(x) +

(
k
zξν

σ+
1

ζ1ζ2

)
(x)
(

k
zξ

µ

σ+
1

1
)
(x) (19)

≥
(

k
zξ

µ

σ+
1

ζ1

)
(x)
(

k
zξν

σ+
1

ζ2

)
(x) +

(
k
zξν

σ+
1

ζ1

)
(x)
(

k
zξ

µ

σ+
1

ζ2

)
(x).

Proof. For γ(x) = (x−σ1)
z

z , z ∈ R− {0} and λ = q = 0 in (6), we obtain the definition of

the left k-fractional conformable integral
(

k
zξ

µ

σ+
1

.
)
(x) given in [13]. Therefore, by using

these substitutions in the proof of the above theorem, the inequality (19) is obtained.

Remark 6. It can be noted that for µ = ν in (19), one can obtain Corollary 2.

Theorem 7. Let (ζi)i=1,.....,n be n positive increasing functions on [0, ∞). Then(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1

n

∏
i=1

ζi

)
(x; q) ≥

(
χ

µ

σ+
1
(x; q)

)1−n n

∏
i=1

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζi

)
(x; q), (20)

provided χ
µ

σ+
1
(x; q) 6= 0.

Proof. Clearly, for n = 1, we have an equality. For n ≥ 2 we use mathematical induction.
For n = 2, (20) holds true by using Theorem 5, as follows:(

k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1ζ2

)
(x; q) ≥

(
χ

µ

σ+
1
(x; q)

)−1(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1

)
(x; q)

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ2

)
(x; q).

Suppose that (20) holds true for n− 1(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1

n−1

∏
i=1

ζi

)
(x; q) ≥

(
χ

µ

σ+
1
(x; q)

)2−n n−1

∏
i=1

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζi

)
(x; q). (21)

Since (ζi)i=1,....,n are positive and increasing functions, it is easy to see that
(

∏n−1
i=1 ζi

)
(x; q) is

an increasing function. Hence, by applying Theorem 5 to the functions ∏n−1
i=1 ζi = ζ∗1 and

ζn = ζ∗2 , we obtain(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1

n

∏
i=1

ζi

)
(x; q) =

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ∗1 ζ∗2

)
(x; q) (22)

≥
(

χ
µ

σ+
1
(x; q)

)−1(k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ∗1

)
(x; q)

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ∗2

)
(x; q)

=
(

χ
µ

σ+
1
(x; q)

)−1
(

k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1

n−1

∏
i=1

ζi

)
(x; q)

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζn

)
(x; q).
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Using supposition (21) in (22), we obtain(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1

n

∏
i=1

ζi

)
(x; q) (23)

≥
(

χ
µ

σ+
1
(x; q)

)−1
((

χ
µ

σ+
1
(x; q)

)2−n n−1

∏
i=1

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζi

)
(x; q)

)(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζn

)
(x; q).

Hence (20) holds true for n.

Remark 7. Several new Chebyshev-type inequalities can be deduced from Theorem 7 for integral
operators given in [32] (Remark 1) with the help of the substitution of parameters. Furthermore,
Theorem 7 reproduces the Chebyshev-type inequalities for well-known integral operators. For
example, for k = 1, λ = q = σ1 = 0 and γ(x) = xz

z , we obtain ([16] Theorem 7), for k = 1,
λ = q = σ1 = 0 and γ(x) = xy+z

y+z , we obtain ([14] Theorem 2.3), for λ = q = σ1 = 0, we obtain
([15] Theorem 4.9).

Corollary 5. For γ(x) = x, k = 1 and λ = q = 0, we obtain the following result for the
Riemann–Liouville fractional integral:(

ξ
µ

σ+
1

n

∏
i=1

ζi

)
(x) ≥

(
(ξ

µ

σ+
1

1)(x)
)1−n n

∏
i=1

(
ξ

µ

σ+
1

ζi

)
(x).

Remark 8. It can be noted that if σ1 → 0, then one can obtain Theorem 3.

Corollary 6. The following result holds for a k-fractional conformable integral:(
k
zξ

µ

σ+
1

n

∏
i=1

ζi

)
(x) ≥

(
(k

zξ
µ

σ+
1

1)(x)
)1−n n

∏
i=1

(
k
zξ

µ

σ+
1

ζi

)
(x). (24)

Proof. For γ(x) = (x−σ1)
z

z , z ∈ R− {0} and λ = q = 0 in (6), we obtain the definition of

the left k-fractional conformable integral
(

k
zξ

µ

σ+
1

.
)
(x) given in [13]. Therefore, by using

these substitutions in the proof of the above theorem, the inequality (24) is obtained.

Theorem 8. Let ζ1 and ζ2 be two functions defined on [0, ∞), such that ζ1 is increasing, ζ2 is
differentiable and m := in fx∈[0,∞)ζ

′
2(x). Then(

k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1ζ2

)
(x; q) ≥

(
χ

µ

σ+
1
(x; q)

)−1(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1

)
(x; q)

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ2

)
(x; q) (25)

−m
(

χ
µ

σ+
1
(x; q)

)−1(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1

)
(x; q)

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
Id
)
(x; q)

+ m
(

k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
Id.ζ1

)
(x; q),

provided χ
µ

σ+
1
(x; q) 6= 0, where Id is the identity function.

Proof. We consider a function as follows:

h(x) := ζ2(x)−mId(x),

where Id(x) = x. Since ζ2 is a differentiable and increasing function, it is clear that h is
differentiable and it is increasing on [0, ∞). Then, using Theorem 5, we can write
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(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1h
)
(x; q) ≥

(
χ

µ

σ+
1
(x; q)

)−1(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1

)
(x; q)

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
h
)
(x; q) (26)

=

(
χ

µ

σ+
1
(x; q)

)−1(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1

)
(x; q)

[(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ2

)
(x; q)

−m
(

k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
Id
)
(x; q)

]
.

Since(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1h
)
(x; q) =

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
ζ1ζ2

)
(x; q)−m

(
k
γξ

α,ς,ρ,η
ω,µ,δ,λ,σ+

1
Id.ζ1

)
(x; q). (27)

Now, by using (27) in (26), the required inequality (25) is obtained.

Remark 9. Several new Chebyshev-type inequalities can be deduced from Theorem 8 for integral
operators given in [32] (Remark 1) with the help of the substitution of parameters. Furthermore,
Theorem 5 reproduces the Chebyshev-type inequalities for well-known integral operators. For
example, for k = 1, λ = q = σ1 = 0 and γ(x) = xz

z , we obtain ([16] Theorem 8), for k = 1,
λ = q = σ1 = 0 and γ(x) = xy+z

y+z , we obtain ([14] Theorem 2.4), for λ = q = σ1 = 0, we obtain
([15] Theorem 4.13).

Corollary 7. For γ(x) = x, k = 1 and λ = q = 0, we obtain the following result for the
Riemann–Liouville fractional integral:(

ξ
µ

σ+
1

ζ1ζ2

)
(x) ≥

(
(ξ

µ

σ+
1

1)(x)
)−1(

ξ
µ

σ+
1

ζ1

)
(x)
(

ξ
µ

σ+
1

ζ2

)
(x)

− mx
µ + 1

(
ξ

µ

σ+
1

ζ1

)
(x) + m

(
ξ

µ

σ+
1

xζ1

)
(x).

Remark 10. It can be noted that if σ1 → 0, then one can obtain Theorem 4.

Corollary 8. The following result holds for a k-fractional conformable integral:(
k
zξ

µ

σ+
1

ζ1ζ2

)
(x) ≥

(
(k

zξ
µ

σ+
1

1)(x)
)−1(

k
zξ

µ

σ+
1

ζ1

)
(x)
(

k
zξ

µ

σ+
1

ζ2

)
(x) (28)

− mx
µ + 1

(
k
zξ

µ

σ+
1

ζ1

)
(x) + m

(
k
zξ

µ

σ+
1

xζ1

)
(x).

Proof. For γ(x) = (x−σ1)
z

z , z ∈ R− {0} and λ = q = 0 in (6), we obtain the definition of

the left k-fractional conformable integral
(

k
zξ

µ

σ+
1

.
)
(x) given in [13]. Therefore, by using

these substitutions in the proof of the above theorem, the inequality (28) is obtained.

3. Conclusions

In this paper, we obtained Chebyshev-type inequalities for generalized k-integral
operators via the same monotonicity of functions. The outcomes of this paper provide
generalizations of Chebyshev-type inequalities for various well-known integral operators.
Several new Chebyshev-type inequalities can be deduced from the established results with
the help of the substitution of the parameters given in [32] (Remark 1). We leave this for
interested readers.
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