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Abstract: The generalized inverse has numerous important applications in aspects of the theoretic
research of matrices and statistics. One of the core problems of generalized inverse is finding the
necessary and sufficient conditions for the reverse (or the forward) order laws for the generalized
inverse of matrix products. In this paper, by using the extremal ranks of the generalized Schur
complement, some necessary and sufficient conditions are given for the forward order law for
A1{1, 2}A2{1, 2} . . . An{1, 2} ⊆ (A1 A2 . . . An){1, 2}.

Keywords: generalized inverse; reflexive inner inverse; forward order law; maximal and minimal
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1. Introduction

Throughout this paper, all matrices will be over the complex number field C. Cm×n

and Cm denote the set of m× n complex matrices and m-dimensional complex vectors,
respectively. For a matrix A in the set Cm×n of all m× n matrices over C, the symbols r(A)
and A∗ denote the rank and the conjugate transpose of the matrix A, respectively. As usual,
the identity matrix of order k is denoted by Ik, and the m× n matrix of all zero entries is
denoted by Om×n (if no confusion occurs, we will drop the subscript).

For various applications, we will introduce some generalized inverses of matrices.
Let A ∈ Cm×n and η ⊂ {1, 2, 3, 4} be nonempty sets. If X ∈ Cn×m satisfies the following
equations (i) for all i ∈ η:

(1) AXA = A; (2) XAX = X; (3) (AX)∗ = AX; (4) (XA)∗ = XA,

then X is said to be an η-inverse of A, which is denoted by X = Aη . The set of all η-inverses
of A is denoted by A{η}. For example, X is called a {1}-inverse or an inner inverse of
A if it satisfies Equation (1), which is always denoted by X = A(1) ∈ A{1}. An n× m
matrix X of the set A{1, 2} is called a {1, 2}-inverse or a reflexive inner inverse of A and
is denoted by X = A(1,2) ∈ A{1, 2}. The unique {1, 2, 3, 4}-inverse of A is denoted by
X = A(1,2,3,4) = A†, which is also called the Moore Penrose inverse of A. As is well-known,
each kind of η-inverse has its own properties and functions; see [1–4].

Theories and computations of the reverse (or the forward) order laws for generalized
inverse are important in many branches of applied sciences, such as in non-linear control
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theory [2], matrix analysis [1,4], statistics [5,6], and numerical linear algebra [1,5,7]. Suppose
that Ai ∈ Cm×m, i = 1, 2, . . . , n, and b ∈ Cm, the least squares problems (LS):

min
x∈Cm

‖(A1 A2 . . . An)x− b‖2

is used in many practical scientific problems, see [4–9]. If the above LS is consistent, then
any solution x for the above LS can be expressed as x = (A1 A2 . . . An)(1,j,k)b, where {j, k} ⊆
{2, 3, 4}. For example, the minimum norm solution x has the form x = (A1 A2 . . . An)(1,4)b.
The unique minimal norm least square solution x of the LS above is x = (A1 A2 . . . An)†b.

One of the core problems with the LS above is identifying the conditions under which
the following reverse order laws hold:

A(1,j,... ,k)
n A(1,j,... ,k)

n−1 . . . A(1,j,... ,k)
1 ⊆ (A1 A2 . . . An)

(1,j,... ,k) (1)

Another core problem with the LS above is identifying the conditions under which
the following forward order laws hold:

A(1,j,... ,k)
1 A(1,j,... ,k)

2 . . . A(1,j,... ,k)
n ⊆ (A1 A2 . . . An)

(1,j,... ,k) (2)

The reverse order laws for the generalized inverse of multiple matrix products (1)
yield a class of interesting problems that are fundamental in the theory of the generalized
inverse of matrices; see [1,4–6]. As a hot topic in current matrix research, the necessary
and sufficient conditions for the reverse order laws for the generalized inverse of matrix
products are useful in both theoretical study and practical scientific computing; hence, this
has attracted considerable attention and several interesting results have been obtained;
see [10–23].

The forward order law for the generalized inverse of multiple matrix products (2)
originally arose in the study of the inverse of multiple matrix Kronecker products; see [1,4].
Recently, Xiong et al. studied the forward order laws for some generalized inverses of
multiple matrix products by using the maximal and minimal ranks of the generalized Schur
complement; see [24–27]. To our knowledge, the forward order law for the reflexive inner
inverse of multiple matrix products has not yet been studied in the literature. In this paper,
by using the extremal ranks of the generalized Schur complement, we will provide some
necessary and sufficient conditions for the forward order law:

A1{1, 2}A2{1, 2} . . . An{1, 2} ⊆ (A1 A2 . . . An){1, 2}. (3)

As we all know, the most widely used generalized inverses of matrices, such as M-P
inverses, Drazin inverses, group inverses, etc., are some special {1, 2}-inverses. Therefore,
the forward order law for the {1, 2}-inverse of a multiple matrix product studied in this
paper is broad and general and contains the forward order laws for the above-mentioned
generalized inverses.

The main tools of the later discussion are the following lemmas.

Lemma 1 ([1]). Let A ∈ Cm×n and X ∈ Cn×m. Then,

X ∈ A{1, 2} ⇔ AXA = A and r(X) ≤ r(A).

Lemma 2 ([28]). Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, and D ∈ Cl×k. Then,

max
A(1,2)

r(D− CA(1,2)B) = min{r(A) + r(D), r(C, D), r
(

B
D

)
, r

(
A B
C D

)
− r(A)},

where A(1,2) ∈ A{1, 2}.



Axioms 2022, 11, 123 3 of 10

Lemma 3 ([27]). Let Ai ∈ Cm×m, i = 1, 2, . . . , n. Then,

(n− 1)m + r(A1 A2 . . . An) ≥ r(A1) + r(A2) + . . . + r(An).

Lemma 4 ([29]). Let A, B have suitable sizes. Then,

r(A, B) ≤ r(A) + r(B) and r(A, B) ≥ max{r(A), r(B)}.

2. Main Results

In this section, by using the extremal ranks of the generalized Schur complement,
we will give some necessary and sufficient conditions for the forward order law for the
reflexive inner inverse of multiple matrix products (3).

Let

SA1 A2 ...An = A1 A2 . . . An − A1 A2 . . . AnX1X2 . . . Xn A1 A2 . . . An, (4)

where Ai ∈ Cm×m, Xi ∈ Ai{1, 2}, i = 1, 2, . . . , n. From Lemma 1, we know that (3) holds if
and only if:

SA1 A2 ...An = 0 and r(X1X2 . . . Xn) ≤ r(A1 A2 . . . An), (5)

hold for any Xi ∈ Ai{1, 2}, i = 1, 2, . . . , n, which are respectively equivalent to the follow-
ing two identities:

max
X1,X2,... ,Xn

r(SA1 A2 ...An) = 0 (6)

and

max
X1,X2,... ,Xn

r(X1X2 . . . Xn) ≤ r(A1 A2 . . . An). (7)

Hence, we can present the equivalent conditions for the forward order law (3) if the
concrete expression of the maximal ranks involved in the identities in (6) and (7) are derived.
The relative results are included in the following three theorems.

Theorem 1. Let Ai ∈ Cm×m, Xi ∈ Ai{1, 2}, i = 1, 2, . . . , n and SA1 A2 ...An be as in (4). Then,

max
X1,X2,... ,Xn

r(SA1 A2 ...An)

= min{r(A1 A2 . . . An),

r(An An−1 . . . A1 − A1 A2 . . . An) + r(A1 A2 . . . An) + (n− 1)m−
n

∑
l=1

r(Al)}. (8)

Proof. Suppose that X0 = Im. For 1 ≤ i ≤ n− 1, we first prove the following:

max
Xn−i

1≤i≤n−1

r(An An−1 . . . An−i+1 − A1 A2 . . . AnX1X2 . . . Xn−i)

= min{r(A1 A2 . . . AnX1X2 . . . Xn−i−1, An An−1 . . . An−i+1),
r(An An−1 . . . An−i − A1 A2 . . . AnX1X2 . . . Xn−i−1) + m− r(An−i)}. (9)

In fact, by Lemma 2, we have the equations below:

max
Xn−i

r(An An−1 . . . An−i+1 − A1 A2 . . . AnX1X2 . . . Xn−i)

= min{r(An−i) + r(An An−1 . . . An−i+1),
r(A1 A2 . . . AnX1X2 . . . Xn−i−1, An An−1 . . . An−i+1),
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r
(

Im
An An−1 . . . An−i+1

)
,

r
(

An−i Im
A1 A2 . . . AnX1X2 . . . Xn−i−1 An An−1 . . . An−i+1

)
− r(An−i)}

= min{r(A1 A2 . . . AnX1X2 . . . Xn−i−1, An An−1 . . . An−i+1),
r(An An−1 . . . An−i − A1 A2 . . . AnX1X2 . . . Xn−i−1) + m− r(An−i)},

where the second equality holds, since by Lemma 4, we have:

r(A1 A2 . . . AnX1X2 . . . Xn−i−1, An An−1 . . . An−i+1)
≤ r(A1 A2 . . . AnX1X2 . . . Xn−i−1) + r(An An−1 . . . An−i+1)
≤ r(An−i) + r(An An−1 . . . An−i+1)

and

r(A1 A2 . . . AnX1X2 . . . Xn−i−1, An An−1 . . . An−i+1) ≤ m = r
(

Im
An An−1 . . . An−i+1

)
.

More specifically, when i = n− 1, we have the following:

max
X1

r(An An−1 . . . A2 − A1 A2 . . . AnX1)

= min{r(A1 A2 . . . An, An An−1 . . . A2),
r(An An−1 . . . A1 − A1 A2 . . . An) + m− r(A1)}. (10)

We now prove (8). Again, by Lemma 2, we have the following equations:

max
Xn

r(SA1 A2 ...An)

= max
Xn

r(A1 A2 . . . An − A1 A2 . . . AnX1X2 . . . Xn A1 A2 . . . An)

= min{r(An) + r(A1 A2 . . . An),
r(A1 A2 . . . AnX1X2 . . . Xn−1, A1 A2 . . . An),

r
(

A1 A2 . . . An
A1 A2 . . . An

)
,

r
(

An A1 A2 . . . An
A1 A2 . . . AnX1X2 . . . Xn−1 A1 A2 . . . An

)
− r(An)}

= min{r(A1 A2 . . . An),
r(An − A1 A2 . . . AnX1X2 . . . Xn−1) + r(A1 A2 . . . An)− r(An)}, (11)

where the third equality holds, since by Lemma 4, we have:

r
(

A1 A2 . . . An
A1 A2 . . . An

)
= r(A1 A2 . . . An) ≤ r(A1 A2 . . . AnX1X2 . . . Xn−1, A1 A2 . . . An)

and

r
(

A1 A2 . . . An
A1 A2 . . . An

)
= r(A1 A2 . . . An) ≤ r(An) + r(A1 A2 . . . An).

Combining (9) with (11) , we obtain the following equations:

max
Xn−1,Xn

r(SA1 A2 ...An )

= min{r(A1 A2 . . . An),
max
Xn−1

r(An − A1 A2 . . . AnX1X2 . . . Xn−1) + r(A1 A2 . . . An)− r(An)}

= min{r(A1 A2 . . . An),
r(A1 A2 . . . AnX1X2 . . . Xn−2, An) + r(A1 A2 . . . An)− r(An),
r(An An−1 − A1 A2 . . . AnX1X2 . . . Xn−2) + r(A1 A2 . . . An) + m− r(An−1)− r(An)}
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= min{r(A1 A2 . . . An),
r(An An−1 − A1 A2 . . . AnX1X2 . . . Xn−2) + r(A1 A2 . . . An) + m− r(An−1)− r(An)},

where the third equality holds, since by Lemma 4, we have:

r(A1 A2 . . . AnX1X2 . . . Xn−2, An) ≥ r(An).

In general, for 1 ≤ i ≤ n− 2, we have the equations below:

max
Xn−i ,Xn−i+1,... ,Xn

1≤i≤n−2

r(SA1 A2 ...An)

= min{r(A1 A2 . . . An),

r(An An−1 . . . An−i − A1 A2 . . . AnX1X2 . . . Xn−i−1) + r(A1 A2 . . . An) + im−
n

∑
l=n−i

r(Al)}. (12)

Equation (12) can be proved by using induction on i. In fact, for i = 1, the statement
in (12) is proved. Assuming the statement (12) is true for i− 1, that is:

max
Xn−i+1,Xn−i+2,... ,Xn

r(SA1 A2 ...An)

= min{r(A1 A2 . . . An),

r(An An−1 . . . An−i+1 − A1 . . . AnX1 . . . Xn−i) + r(A1 . . . An) + (i− 1)m−
n

∑
l=n−i+1

r(Al)}. (13)

We now prove that (12) is also true for i. By (9) and (13), we have the equations below:

max
Xn−i ,Xn−i+1,... ,Xn

r(SA1 A2 ...An)

= min{r(A1 A2 . . . An),

max
Xn−i

r(An . . . An−i+1 − A1 . . . AnX1 . . . Xn−i) + r(A1 . . . An) + (i− 1)m−
n

∑
l=n−i+1

r(Al)}

= min{r(A1 A2 . . . An),

r(A1 . . . AnX1 . . . Xn−i−1, An . . . An−i+1) + r(A1 . . . An) + (i− 1)m−
n

∑
l=n−i+1

r(Al),

r(An . . . An−i − A1 . . . AnX1 . . . Xn−i−1) + m + r(A1 . . . An)− r(An−i) + (i− 1)m

−
n

∑
l=n−i+1

r(Al)}.

From Lemma 4, we have the following:

r(A1 A2 . . . AnX1X2 . . . Xn−i−1, An An−1 . . . An−i+1) ≥ r(An An−1 . . . An−i+1)

and from Lemma 3, we have:

r(An An−1 . . . An−i+1) + (i− 1)m ≥ r(An−i+1) + r(An−i+2) + . . . + r(An).

Then, we recognize that (12) holds, that is, for 1 ≤ i ≤ n− 2:

max
Xn−i ,Xn−i+1,... ,Xn

r(SA1 A2 ...An)

= min{r(A1 A2 . . . An),

r(An . . . An−i − A1 . . . AnX1 . . . Xn−i−1) + r(A1 A2 . . . An) + im−
n

∑
l=n−i

r(Al)}.

When i = n− 2, we get the following from (12):
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max
X2,X3,... ,Xn

r(SA1 A2 ...An)

= min{r(A1 A2 . . . An),

r(An An−1 . . . A2 − A1 . . . AnX1) + r(A1 . . . An) + (n− 2)m−
n

∑
l=2

r(Al)}. (14)

Hence, by (10) and (14), we have:

max
X1,X2,... ,Xn

r(SA1 A2 ...An)

= min{r(A1 A2 . . . An),

max
X1

r(An . . . A2 − A1 . . . AnX1) + r(A1 . . . An) + (n− 2)m−
n

∑
l=2

r(Al)}

= min{r(A1 A2 . . . An),

r(A1 A2 . . . An, An An−1 . . . A2) + r(A1 . . . An) + (n− 2)m−
n

∑
l=2

r(Al),

r(An . . . A1 − A1 . . . An)− r(A1) + m + r(A1 . . . An) + (n− 2)m−
n

∑
l=2

r(Al)}

= min{r(A1 A2 . . . An),

r(An An−1 . . . A1 − A1 A2 . . . An) + r(A1 A2 . . . An) + (n− 1)m−
n

∑
l=1

r(Al)},

where the third equality holds, since by Lemma 4, we have:

r(A1 A2 . . . An, An An−1 . . . A2) ≥ r(An An−1 . . . A2)

and

r(An An−1 . . . A2) + (n− 2)m ≥
n

∑
l=2

r(Al).

The next theorem gives the expression in the ranks of the known matrices for:

max
Xn ,Xn−1,... ,X1

r(X1X2 . . . Xn),

where Xi varies over Ai{1, 2} for i = 1, 2, . . . , n.

Theorem 2. Let Ai ∈ Cm×m, Xi ∈ Ai{1, 2}, i = 1, 2, . . . , n. Then,

max
Xn ,Xn−1,... ,X1

r(X1X2 . . . Xn) = min{r(A1), r(A2), . . . , r(An)}. (15)

Proof. We will divide the proof of Theorem 2 into two parts: first, n = 2; second, n ≥ 3.
When n = 2, according to Lemma 2, with A = A1, B = X2, C = Im, and D = O,
we have the following equations:

max
X1

r(X1X2)

= min{r(A1), r(Im, O), r
(

X2
O

)
, r

(
A1 X2
Im O

)
− r(A1)}

= min{r(A1), m, r(X2), r(X2) + m− r(A1)}
= min{r(A1), r(X2)}. (16)
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Since X2 ∈ A2{1, 2}, then r(X2) = r(A2). Thus, by (16), we have the equation below:

max
X2,X1

r(X1X2) = min{r(A1), r(A2)}, (17)

i.e., Theorem 2 is true when n = 2.
When n ≥ 3, by Lemma 2, with A = A1, B = X2X3 . . . Xn, C = Im, and D = O, we

have:

max
X1

r(X1X2 . . . Xn)

= min{r(A1), r(Im, O), r
(

X2X3 . . . Xn
O

)
, r

(
A1 X2X3 . . . Xn
Im O

)
− r(A1)}

= min{r(A1), m, r(X2X3 . . . Xn), r(X2X3 . . . Xn) + m− r(A1)}
= min{r(A1), r(X2X3 . . . Xn)}. (18)

Again, by Lemma 2, with A = A2, B = X3X4 . . . Xn, C = Im, and D = O, we have:

max
X2,X1

r(X1X2 . . . Xn)

= min{r(A1), max
X2

r(X2X3 . . . Xn)}

= min{r(A1),

min{r(A2), r(Im, O), r
(

X3X4 . . . Xn
O

)
, r

(
A2 X3X4 . . . Xn
Im O

)
− r(A2)}}

= min{r(A1), min{r(A2), m, r(X3X4 . . . Xn), r(X3X4 . . . Xn) + m− r(A2)}}
= min{r(A1), r(A2), r(X3X4 . . . Xn)}. (19)

We claim that for 2 ≤ i ≤ n− 1:

max
Xi ,Xi−1,... ,X1

r(X1X2 . . . Xn)

= min{r(A1), r(A2), . . . , r(Ai), r(Xi+1Xi+2 . . . Xn)}. (20)

Equation (20) can be proved by using induction on i. In fact, for i = 2, the statement
in (20) has been proved. Assuming the statement in (20) is true for i− 1, that is:

max
Xi−1,Xi−2,... ,X1

r(X1X2 . . . Xn) = min{r(A1), r(A2), . . . , r(Ai−1), r(XiXi+1 . . . Xn)}. (21)

We now prove that (20) is also true for i. By (21) and Lemma 2, with A = Ai,
B = Xi+1Xi+2 . . . Xn, C = Im, and D = O, we have the following:

max
Xi ,Xi−1,... ,X1

r(X1X2 . . . Xn)

= min{r(A1), r(A2), . . . , r(Ai−1), max
Xi

r(XiXi+1 . . . Xn)}

= min{r(A1), r(A2), . . . , r(Ai−1),

min{r(Ai), r(Im, O), r
(

Xi+1Xi+2 . . . Xn
O

)
, r

(
Ai Xi+1Xi+2 . . . Xn
Im O

)
− r(Ai)}}

= min{r(A1), r(A2), . . . , r(Ai−1),
min{r(Ai), m, r(Xi+1Xi+2 . . . Xn), r(Xi+1Xi+2 . . . Xn) + m− r(Ai)}}

= min{r(A1), r(A2), . . . , r(Ai−1), min{r(Ai), r(Xi+1Xi+2 . . . Xn)}}
= min{r(A1), r(A2), . . . , r(Ai−1), r(Ai), r(Xi+1Xi+2 . . . Xn)}.

When i = n− 1, from (20), we have the following equations:

max
Xn−1,Xn−2,... ,X1

r(X1X2 . . . Xn) = min{r(A1), r(A2), . . . , r(An−1), r(Xn)}. (22)
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Since Xn ∈ An{1, 2}, then r(Xn) = r(An). Thus, by (22), we have the equation below:

max
Xn ,Xn−1,... ,X1

r(X1X2 . . . Xn) = min{r(A1), r(A2), . . . , r(An)}, (23)

i.e., Theorem 2 is true when n ≥ 3.

Based on Theorem 1 and 2, we can immediately obtain the main result of this paper.

Theorem 3. Let Ai ∈ Cm×m, i = 1, 2, . . . , n. Then, the following statements are equivalent:

(1) A1{1, 2}A2{1, 2} . . . An{1, 2} ⊆ (A1 A2 . . . An){1, 2};

(2) min{r(A1 . . . An), r(An . . . A1 − A1 . . . An) + r(A1 . . . An) + (n− 1)m−
n

∑
l=1

r(Al)} = 0

and min{r(A1), r(A2), . . . , r(An)} ≤ r(A1 A2 . . . An);

(3) A1 A2 . . . An = O or r(A1 . . . An − An . . . A1) + r(A1 . . . An) + (n− 1)m−
n

∑
l=1

r(Al) = 0

and min{r(A1), r(A2), . . . , r(An)} ≤ r(A1 A2 . . . An);

(4) A1 A2 . . . An = O or A1 . . . An = An . . . A1 and r(A1 . . . An) + (n− 1)m =
n

∑
l=1

r(Al)

and min{r(A1), r(A2), . . . , r(An)} ≤ r(A1 A2 . . . An);
(5) A1 A2 . . . An = O

or A1 . . . An = An . . . A1 and r(A1 . . . An−i) + (n− i− 1)m =
n−i

∑
l=1

r(Al), i = 0, . . . , n− 2,

and min{r(A1), r(A2), . . . , r(An)} ≤ r(A1 A2 . . . An).

Proof. (1)⇔ (2). From Lemma 1, we know that (3) holds if and only if Equations (6) and (7)
hold. Then, according to Equation (8) in Theorem 1 and Equation (15) in Theorem 2, we
have (1)⇔ (2) in Theorem 3.

(2)⇔ (3). In fact, r(A) = 0 if and only if A = O, so (2)⇔ (3) is obvious.
(3)⇔ (4). Since

r(A1 A2 . . . An − An An−1 . . . A1) ≥ 0

and from Lemma 3, we have:

r(A1 A2 . . . An) + (n− 1)m ≥
n

∑
l=1

r(Al),

it is easy to obtain (3)⇔ (4).
(4) ⇔ (5). In fact, (5) ⇒ (4) is obvious. We now show (4) ⇒ (5). In fact, for the

case of i = 0, the results in (4) are actually for (5). Assuming (5) holds for i − 1, where
1 ≤ i ≤ n− 2, i.e.,:

r(A1 A2 . . . An−i+1) + (n− i)m =
n−i+1

∑
l=1

r(Al). (24)

We now prove that (5) is also true for i. Based on Lemma 3, we know that:

r(A1 A2 . . . An−i+1) + m ≥ r(A1 A2 . . . An−i) + r(An−i+1). (25)

From (24) and (25), we have the following:

n−i

∑
l=1

r(Al) ≥ r(A1 A2 . . . An−i) + (n− i− 1)m. (26)

On the other hand, again by Lemma 3, we know the following:
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r(A1 A2 . . . An−i) + (n− i− 1)m ≥
n−i

∑
l=1

r(Al). (27)

Hence, from (26) and (27), we have:

n−i

∑
l=1

r(Al) = r(A1 A2 . . . An−i) + (n− i− 1)m. (28)

This means that (4)⇒ (5) hold.
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