Article

Forward Order Law for the Reflexive Inner Inverse of Multiple Matrix Products ${ }^{\dagger}$

Wanna Zhou, Zhiping Xiong * and Yingying Qin

School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, China; wannzhou@163.com (W.Z.); qyy04@163.com (Y.Q.)
* Correspondence: xzpwhere@163.com
\dagger This work was supported by the project for characteristic innovation of 2018 Guangdong University (No: 2018KTSCX234) and and the Natural Science Foundation of GuangDong (No: 2014A030313625) and the basic Theory and Scientific Research of Science and Technology Project of Jiangmen City, China (No: 2020JC01010, 2021030102610005049) and the joint research and development fund of Wuyi University, Hong Kong and Macao (No: 2019WGALH20).

Citation: Zhou, W.; Xiong, Z.; Qin, Y. Forward Order Law for the Reflexive Inner Inverse of Multiple Matrix Products. Axioms 2022, 11, 123. https: / /doi.org/10.3390/ axioms11030123

Academic Editor: Sergey V. Ludkovsky

Received: 10 December 2021
Accepted: 4 March 2022
Published: 10 March 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

The generalized inverse has numerous important applications in aspects of the theoretic research of matrices and statistics. One of the core problems of generalized inverse is finding the necessary and sufficient conditions for the reverse (or the forward) order laws for the generalized inverse of matrix products. In this paper, by using the extremal ranks of the generalized Schur complement, some necessary and sufficient conditions are given for the forward order law for $A_{1}\{1,2\} A_{2}\{1,2\} \ldots A_{n}\{1,2\} \subseteq\left(A_{1} A_{2} \ldots A_{n}\right)\{1,2\}$.

Keywords: generalized inverse; reflexive inner inverse; forward order law; maximal and minimal ranks; generalized schur complement

MSC: 15A09; 15A24; 47A05

1. Introduction

Throughout this paper, all matrices will be over the complex number field C. $C^{m \times n}$ and C^{m} denote the set of $m \times n$ complex matrices and m-dimensional complex vectors, respectively. For a matrix A in the set $C^{m \times n}$ of all $m \times n$ matrices over C, the symbols $r(A)$ and A^{*} denote the rank and the conjugate transpose of the matrix A, respectively. As usual, the identity matrix of order k is denoted by I_{k}, and the $m \times n$ matrix of all zero entries is denoted by $O_{m \times n}$ (if no confusion occurs, we will drop the subscript).

For various applications, we will introduce some generalized inverses of matrices. Let $A \in C^{m \times n}$ and $\eta \subset\{1,2,3,4\}$ be nonempty sets. If $X \in C^{n \times m}$ satisfies the following equations (i) for all $i \in \eta$:
(1) $A X A=A$;
(2) $X A X=X$;
(3) $(A X)^{*}=A X$;
(4) $(X A)^{*}=X A$,
then X is said to be an η-inverse of A, which is denoted by $X=A^{\eta}$. The set of all η-inverses of A is denoted by $A\{\eta\}$. For example, X is called a $\{1\}$-inverse or an inner inverse of A if it satisfies Equation (1), which is always denoted by $X=A^{(1)} \in A\{1\}$. An $n \times m$ matrix X of the set $A\{1,2\}$ is called a $\{1,2\}$-inverse or a reflexive inner inverse of A and is denoted by $X=A^{(1,2)} \in A\{1,2\}$. The unique $\{1,2,3,4\}$-inverse of A is denoted by $X=A^{(1,2,3,4)}=A^{\dagger}$, which is also called the Moore Penrose inverse of A. As is well-known, each kind of η-inverse has its own properties and functions; see [1-4].

Theories and computations of the reverse (or the forward) order laws for generalized inverse are important in many branches of applied sciences, such as in non-linear control
theory [2], matrix analysis [1,4], statistics [5,6], and numerical linear algebra [1,5,7]. Suppose that $A_{i} \in C^{m \times m}, i=1,2, \ldots, n$, and $b \in C^{m}$, the least squares problems (LS):

$$
\min _{x \in C^{m}}\left\|\left(A_{1} A_{2} \ldots A_{n}\right) x-b\right\|_{2}
$$

is used in many practical scientific problems, see [4-9]. If the above LS is consistent, then any solution x for the above LS can be expressed as $x=\left(A_{1} A_{2} \ldots A_{n}\right)^{(1, j, k)} b$, where $\{j, k\} \subseteq$ $\{2,3,4\}$. For example, the minimum norm solution x has the form $x=\left(A_{1} A_{2} \ldots A_{n}\right)^{(1,4)} b$. The unique minimal norm least square solution x of the LS above is $x=\left(A_{1} A_{2} \ldots A_{n}\right)^{\dagger} b$.

One of the core problems with the LS above is identifying the conditions under which the following reverse order laws hold:

$$
\begin{equation*}
A_{n}^{(1, j, \ldots, k)} A_{n-1}^{(1, j \ldots, k)} \ldots A_{1}^{(1, j, \ldots, k)} \subseteq\left(A_{1} A_{2} \ldots A_{n}\right)^{(1, j, \ldots, k)} \tag{1}
\end{equation*}
$$

Another core problem with the LS above is identifying the conditions under which the following forward order laws hold:

$$
\begin{equation*}
A_{1}^{(1, j, \ldots, k)} A_{2}^{(1, j, \ldots, k)} \ldots A_{n}^{(1, j, \ldots, k)} \subseteq\left(A_{1} A_{2} \ldots A_{n}\right)^{(1, j, \ldots, k)} \tag{2}
\end{equation*}
$$

The reverse order laws for the generalized inverse of multiple matrix products (1) yield a class of interesting problems that are fundamental in the theory of the generalized inverse of matrices; see [1,4-6]. As a hot topic in current matrix research, the necessary and sufficient conditions for the reverse order laws for the generalized inverse of matrix products are useful in both theoretical study and practical scientific computing; hence, this has attracted considerable attention and several interesting results have been obtained; see [10-23].

The forward order law for the generalized inverse of multiple matrix products (2) originally arose in the study of the inverse of multiple matrix Kronecker products; see [1,4]. Recently, Xiong et al. studied the forward order laws for some generalized inverses of multiple matrix products by using the maximal and minimal ranks of the generalized Schur complement; see [24-27]. To our knowledge, the forward order law for the reflexive inner inverse of multiple matrix products has not yet been studied in the literature. In this paper, by using the extremal ranks of the generalized Schur complement, we will provide some necessary and sufficient conditions for the forward order law:

$$
\begin{equation*}
A_{1}\{1,2\} A_{2}\{1,2\} \ldots A_{n}\{1,2\} \subseteq\left(A_{1} A_{2} \ldots A_{n}\right)\{1,2\} . \tag{3}
\end{equation*}
$$

As we all know, the most widely used generalized inverses of matrices, such as M-P inverses, Drazin inverses, group inverses, etc., are some special $\{1,2\}$-inverses. Therefore, the forward order law for the $\{1,2\}$-inverse of a multiple matrix product studied in this paper is broad and general and contains the forward order laws for the above-mentioned generalized inverses.

The main tools of the later discussion are the following lemmas.
Lemma 1 ([1]). Let $A \in C^{m \times n}$ and $X \in C^{n \times m}$. Then,

$$
X \in A\{1,2\} \Leftrightarrow A X A=A \text { and } r(X) \leq r(A)
$$

Lemma 2 ([28]). Let $A \in C^{m \times n}, B \in C^{m \times k}, C \in C^{l \times n}$, and $D \in C^{l \times k}$. Then,

$$
\begin{aligned}
& \max _{A^{(1,2)}} r\left(D-C A^{(1,2)} B\right)=\min \left\{r(A)+r(D), r(C, D), r\binom{B}{D}, r\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)-r(A)\right\}, \\
& \text { where } A^{(1,2)} \in A\{1,2\} .
\end{aligned}
$$

Lemma 3 ([27]). Let $A_{i} \in C^{m \times m}, i=1,2, \ldots, n$. Then,

$$
(n-1) m+r\left(A_{1} A_{2} \ldots A_{n}\right) \geq r\left(A_{1}\right)+r\left(A_{2}\right)+\ldots+r\left(A_{n}\right) .
$$

Lemma 4 ([29]). Let A, B have suitable sizes. Then,

$$
r(A, B) \leq r(A)+r(B) \text { and } r(A, B) \geq \max \{r(A), r(B)\}
$$

2. Main Results

In this section, by using the extremal ranks of the generalized Schur complement, we will give some necessary and sufficient conditions for the forward order law for the reflexive inner inverse of multiple matrix products (3).

Let

$$
\begin{equation*}
S_{A_{1} A_{2} \ldots A_{n}}=A_{1} A_{2} \ldots A_{n}-A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n} A_{1} A_{2} \ldots A_{n} \tag{4}
\end{equation*}
$$

where $A_{i} \in C^{m \times m}, X_{i} \in A_{i}\{1,2\}, i=1,2, \ldots, n$. From Lemma 1, we know that (3) holds if and only if:

$$
\begin{equation*}
S_{A_{1} A_{2} \ldots A_{n}}=0 \text { and } r\left(X_{1} X_{2} \ldots X_{n}\right) \leq r\left(A_{1} A_{2} \ldots A_{n}\right), \tag{5}
\end{equation*}
$$

hold for any $X_{i} \in A_{i}\{1,2\}, i=1,2, \ldots, n$, which are respectively equivalent to the following two identities:

$$
\begin{equation*}
\max _{X_{1}, X_{2}, \ldots, X_{n}} r\left(S_{A_{1} A_{2} \ldots A_{n}}\right)=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{X_{1}, X_{2}, \ldots, X_{n}} r\left(X_{1} X_{2} \ldots X_{n}\right) \leq r\left(A_{1} A_{2} \ldots A_{n}\right) . \tag{7}
\end{equation*}
$$

Hence, we can present the equivalent conditions for the forward order law (3) if the concrete expression of the maximal ranks involved in the identities in (6) and (7) are derived. The relative results are included in the following three theorems.

Theorem 1. Let $A_{i} \in C^{m \times m}, X_{i} \in A_{i}\{1,2\}, i=1,2, \ldots, n$ and $S_{A_{1} A_{2} \ldots A_{n}}$ be as in (4). Then,

$$
\begin{align*}
& \max _{X_{1}, X_{2}, \ldots, X_{n}} r\left(S_{A_{1} A_{2} \ldots A_{n}}\right) \\
= & \min \left\{r\left(A_{1} A_{2} \ldots A_{n}\right),\right. \\
& \left.r\left(A_{n} A_{n-1} \ldots A_{1}-A_{1} A_{2} \ldots A_{n}\right)+r\left(A_{1} A_{2} \ldots A_{n}\right)+(n-1) m-\sum_{l=1}^{n} r\left(A_{l}\right)\right\} . \tag{8}
\end{align*}
$$

Proof. Suppose that $X_{0}=I_{m}$. For $1 \leq i \leq n-1$, we first prove the following:

$$
\begin{align*}
& \max _{\substack{X_{n-i} \\
1 \leq i \leq n-1}} r\left(A_{n} A_{n-1} \ldots A_{n-i+1}-A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-i}\right) \\
& =\min \left\{r\left(A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-i-1}, A_{n} A_{n-1} \ldots A_{n-i+1}\right),\right. \\
& \left.\quad r\left(A_{n} A_{n-1} \ldots A_{n-i}-A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-i-1}\right)+m-r\left(A_{n-i}\right)\right\} . \tag{9}
\end{align*}
$$

In fact, by Lemma 2, we have the equations below:

$$
\begin{aligned}
& \max _{X_{n-i}} r\left(A_{n} A_{n-1} \ldots A_{n-i+1}-A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-i}\right) \\
= & \min \left\{r\left(A_{n-i}\right)+r\left(A_{n} A_{n-1} \ldots A_{n-i+1}\right),\right. \\
& r\left(A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-i-1}, \quad A_{n} A_{n-1} \ldots A_{n-i+1}\right),
\end{aligned}
$$

$$
\begin{gathered}
r\binom{I_{m}}{A_{n} A_{n-1} \ldots A_{n-i+1}}, \\
\left.r\left(\begin{array}{cc}
A_{n-i} \\
A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-i-1} & A_{n} A_{n-1} \ldots A_{n-i+1}
\end{array}\right)-r\left(A_{n-i}\right)\right\} \\
=\min \left\{r\left(A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-i-1}, A_{n} A_{n-1} \ldots A_{n-i+1}\right),\right. \\
\left.r\left(A_{n} A_{n-1} \ldots A_{n-i}-A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-i-1}\right)+m-r\left(A_{n-i}\right)\right\},
\end{gathered}
$$

where the second equality holds, since by Lemma 4, we have:

$$
\begin{aligned}
& r\left(A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-i-1}, \quad A_{n} A_{n-1} \ldots A_{n-i+1}\right) \\
& \leq r\left(A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-i-1}\right)+r\left(A_{n} A_{n-1} \ldots A_{n-i+1}\right) \\
& \leq r\left(A_{n-i}\right)+r\left(A_{n} A_{n-1} \ldots A_{n-i+1}\right)
\end{aligned}
$$

and

$$
r\left(A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-i-1}, \quad A_{n} A_{n-1} \ldots A_{n-i+1}\right) \leq m=r\binom{I_{m}}{A_{n} A_{n-1} \ldots A_{n-i+1}}
$$

More specifically, when $i=n-1$, we have the following:

$$
\begin{align*}
& \max _{X_{1}} r\left(A_{n} A_{n-1} \ldots A_{2}-A_{1} A_{2} \ldots A_{n} X_{1}\right) \\
= & \min \left\{r\left(A_{1} A_{2} \ldots A_{n}, A_{n} A_{n-1} \ldots A_{2}\right),\right. \\
& \left.r\left(A_{n} A_{n-1} \ldots A_{1}-A_{1} A_{2} \ldots A_{n}\right)+m-r\left(A_{1}\right)\right\} . \tag{10}
\end{align*}
$$

We now prove (8). Again, by Lemma 2, we have the following equations:

$$
\begin{align*}
& \max _{X_{n}} r\left(S_{\left.A_{1} A_{2} \ldots A_{n}\right)}\right. \\
= & \max _{X_{n}} r\left(A_{1} A_{2} \ldots A_{n}-A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n} A_{1} A_{2} \ldots A_{n}\right) \\
= & \min \left\{r\left(A_{n}\right)+r\left(A_{1} A_{2} \ldots A_{n}\right),\right. \\
& r\left(A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-1}, A_{1} A_{2} \ldots A_{n}\right), \\
& r\binom{A_{1} A_{2} \ldots A_{n}}{A_{1} A_{2} \ldots A_{n}}, \\
& \left.\quad r\left(\begin{array}{rr}
A_{n} & A_{1} A_{2} \ldots A_{n} \\
A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-1} & A_{1} A_{2} \ldots A_{n}
\end{array}\right)-r\left(A_{n}\right)\right\} \\
= & \min \left\{r\left(A_{1} A_{2} \ldots A_{n}\right),\right. \\
& \left.r\left(A_{n}-A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-1}\right)+r\left(A_{1} A_{2} \ldots A_{n}\right)-r\left(A_{n}\right)\right\}, \tag{11}
\end{align*}
$$

where the third equality holds, since by Lemma 4, we have:

$$
r\binom{A_{1} A_{2} \ldots A_{n}}{A_{1} A_{2} \ldots A_{n}}=r\left(A_{1} A_{2} \ldots A_{n}\right) \leq r\left(A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-1}, A_{1} A_{2} \ldots A_{n}\right)
$$

and

$$
r\binom{A_{1} A_{2} \ldots A_{n}}{A_{1} A_{2} \ldots A_{n}}=r\left(A_{1} A_{2} \ldots A_{n}\right) \leq r\left(A_{n}\right)+r\left(A_{1} A_{2} \ldots A_{n}\right)
$$

Combining (9) with (11), we obtain the following equations:

$$
\begin{aligned}
& \quad \max _{X_{n-1}, X_{n}} r\left(S_{\left.A_{1} A_{2} \ldots A_{n}\right)}\right. \\
& =\min \left\{r\left(A_{1} A_{2} \ldots A_{n}\right),\right. \\
& \left.\quad \max _{X_{n-1}} r\left(A_{n}-A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-1}\right)+r\left(A_{1} A_{2} \ldots A_{n}\right)-r\left(A_{n}\right)\right\} \\
& =\min \left\{r\left(A_{1} A_{2} \ldots A_{n}\right),\right. \\
& \quad r\left(A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-2}, A_{n}\right)+r\left(A_{1} A_{2} \ldots A_{n}\right)-r\left(A_{n}\right), \\
& \left.\quad r\left(A_{n} A_{n-1}-A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-2}\right)+r\left(A_{1} A_{2} \ldots A_{n}\right)+m-r\left(A_{n-1}\right)-r\left(A_{n}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & \min \left\{r\left(A_{1} A_{2} \ldots A_{n}\right),\right. \\
& \left.r\left(A_{n} A_{n-1}-A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-2}\right)+r\left(A_{1} A_{2} \ldots A_{n}\right)+m-r\left(A_{n-1}\right)-r\left(A_{n}\right)\right\},
\end{aligned}
$$

where the third equality holds, since by Lemma 4, we have:

$$
r\left(A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-2}, \quad A_{n}\right) \geq r\left(A_{n}\right)
$$

In general, for $1 \leq i \leq n-2$, we have the equations below:

$$
\begin{align*}
& \max _{X_{n-i,}, X_{n-i+1, \ldots, X_{n}} \leq i \leq n-2} r\left(S_{A_{1} A_{2} \ldots A_{n}}\right) \\
= & \min \left\{r\left(A_{1} A_{2} \ldots A_{n}\right),\right. \\
& \left.r\left(A_{n} A_{n-1} \ldots A_{n-i}-A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-i-1}\right)+r\left(A_{1} A_{2} \ldots A_{n}\right)+i m-\sum_{l=n-i}^{n} r\left(A_{l}\right)\right\} . \tag{12}
\end{align*}
$$

Equation (12) can be proved by using induction on i. In fact, for $i=1$, the statement in (12) is proved. Assuming the statement (12) is true for $i-1$, that is:

$$
\begin{align*}
& \max _{X_{n-i+1}, X_{n-i+2} \ldots, X_{n}} r\left(S_{A_{1} A_{2} \ldots A_{n}}\right) \\
= & \min \left\{r\left(A_{1} A_{2} \ldots A_{n}\right),\right. \\
& \left.r\left(A_{n} A_{n-1} \ldots A_{n-i+1}-A_{1} \ldots A_{n} X_{1} \ldots X_{n-i}\right)+r\left(A_{1} \ldots A_{n}\right)+(i-1) m-\sum_{l=n-i+1}^{n} r\left(A_{l}\right)\right\} . \tag{13}
\end{align*}
$$

We now prove that (12) is also true for i. By (9) and (13), we have the equations below:

$$
\begin{aligned}
& \max _{X_{n-i}, X_{n-i+1, \ldots, X_{n}} r\left(S_{A_{1} A_{2} \ldots A_{n}}\right)}^{=} \quad \min \left\{r\left(A_{1} A_{2} \ldots A_{n}\right),\right. \\
& \left.\max _{X_{n-i}} r\left(A_{n} \ldots A_{n-i+1}-A_{1} \ldots A_{n} X_{1} \ldots X_{n-i}\right)+r\left(A_{1} \ldots A_{n}\right)+(i-1) m-\sum_{l=n-i+1}^{n} r\left(A_{l}\right)\right\} \\
= & \min \left\{r\left(A_{1} A_{2} \ldots A_{n}\right),\right. \\
& r\left(A_{1} \ldots A_{n} X_{1} \ldots X_{n-i-1}, A_{n} \ldots A_{n-i+1}\right)+r\left(A_{1} \ldots A_{n}\right)+(i-1) m-\sum_{l=n-i+1}^{n} r\left(A_{l}\right), \\
& r\left(A_{n} \ldots A_{n-i}-A_{1} \ldots A_{n} X_{1} \ldots X_{n-i-1}\right)+m+r\left(A_{1} \ldots A_{n}\right)-r\left(A_{n-i}\right)+(i-1) m \\
& \left.\quad-\sum_{l=n-i+1}^{n} r\left(A_{l}\right)\right\} .
\end{aligned}
$$

From Lemma 4, we have the following:

$$
r\left(A_{1} A_{2} \ldots A_{n} X_{1} X_{2} \ldots X_{n-i-1}, \quad A_{n} A_{n-1} \ldots A_{n-i+1}\right) \geq r\left(A_{n} A_{n-1} \ldots A_{n-i+1}\right)
$$

and from Lemma 3, we have:

$$
r\left(A_{n} A_{n-1} \ldots A_{n-i+1}\right)+(i-1) m \geq r\left(A_{n-i+1}\right)+r\left(A_{n-i+2}\right)+\ldots+r\left(A_{n}\right) .
$$

Then, we recognize that (12) holds, that is, for $1 \leq i \leq n-2$:

$$
\begin{aligned}
& \quad \max _{X_{n-i}, X_{n-i+1}, \ldots, X_{n}} r\left(S_{A_{1} A_{2} \ldots A_{n}}\right) \\
& =\min \left\{r\left(A_{1} A_{2} \ldots A_{n}\right)\right. \\
& \left.\quad r\left(A_{n} \ldots A_{n-i}-A_{1} \ldots A_{n} X_{1} \ldots X_{n-i-1}\right)+r\left(A_{1} A_{2} \ldots A_{n}\right)+i m-\sum_{l=n-i}^{n} r\left(A_{l}\right)\right\} .
\end{aligned}
$$

When $i=n-2$, we get the following from (12):

$$
\begin{align*}
& \max _{X_{2}, X_{3}, \ldots, X_{n}} r\left(S_{A_{1} A_{2} \ldots A_{n}}\right) \\
= & \min \left\{r\left(A_{1} A_{2} \ldots A_{n}\right)\right. \\
& \left.r\left(A_{n} A_{n-1} \ldots A_{2}-A_{1} \ldots A_{n} X_{1}\right)+r\left(A_{1} \ldots A_{n}\right)+(n-2) m-\sum_{l=2}^{n} r\left(A_{l}\right)\right\} . \tag{14}
\end{align*}
$$

Hence, by (10) and (14), we have:

$$
\begin{aligned}
& \max _{X_{1}, X_{2}, \ldots, X_{n}} r\left(S_{\left.A_{1} A_{2} \ldots A_{n}\right)}=\right. \\
& \min \left\{r\left(A_{1} A_{2} \ldots A_{n}\right),\right. \\
& \left.\max _{X_{1}} r\left(A_{n} \ldots A_{2}-A_{1} \ldots A_{n} X_{1}\right)+r\left(A_{1} \ldots A_{n}\right)+(n-2) m-\sum_{l=2}^{n} r\left(A_{l}\right)\right\} \\
= & \min \left\{r\left(A_{1} A_{2} \ldots A_{n}\right),\right. \\
& \quad r\left(A_{1} A_{2} \ldots A_{n}, A_{n} A_{n-1} \ldots A_{2}\right)+r\left(A_{1} \ldots A_{n}\right)+(n-2) m-\sum_{l=2}^{n} r\left(A_{l}\right), \\
& \left.\quad r\left(A_{n} \ldots A_{1}-A_{1} \ldots A_{n}\right)-r\left(A_{1}\right)+m+r\left(A_{1} \ldots A_{n}\right)+(n-2) m-\sum_{l=2}^{n} r\left(A_{l}\right)\right\} \\
= & \min \left\{r\left(A_{1} A_{2} \ldots A_{n}\right),\right. \\
& \left.r\left(A_{n} A_{n-1} \ldots A_{1}-A_{1} A_{2} \ldots A_{n}\right)+r\left(A_{1} A_{2} \ldots A_{n}\right)+(n-1) m-\sum_{l=1}^{n} r\left(A_{l}\right)\right\},
\end{aligned}
$$

where the third equality holds, since by Lemma 4, we have:

$$
r\left(A_{1} A_{2} \ldots A_{n}, \quad A_{n} A_{n-1} \ldots A_{2}\right) \geq r\left(A_{n} A_{n-1} \ldots A_{2}\right)
$$

and

$$
r\left(A_{n} A_{n-1} \ldots A_{2}\right)+(n-2) m \geq \sum_{l=2}^{n} r\left(A_{l}\right)
$$

The next theorem gives the expression in the ranks of the known matrices for:

$$
\max _{X_{n}, X_{n-1}, \ldots, X_{1}} r\left(X_{1} X_{2} \ldots X_{n}\right),
$$

where X_{i} varies over $A_{i}\{1,2\}$ for $i=1,2, \ldots, n$.
Theorem 2. Let $A_{i} \in C^{m \times m}, X_{i} \in A_{i}\{1,2\}, i=1,2, \ldots, n$. Then,

$$
\begin{equation*}
\max _{X_{n}, X_{n-1}, \ldots, X_{1}} r\left(X_{1} X_{2} \ldots X_{n}\right)=\min \left\{r\left(A_{1}\right), r\left(A_{2}\right), \ldots, r\left(A_{n}\right)\right\} \tag{15}
\end{equation*}
$$

Proof. We will divide the proof of Theorem 2 into two parts: first, $n=2$; second, $n \geq 3$. When $n=2$, according to Lemma 2, with $A=A_{1}, B=X_{2}, C=I_{m}$, and $D=O$, we have the following equations:

$$
\begin{align*}
& \max _{X_{1}} r\left(X_{1} X_{2}\right) \\
= & \min \left\{r\left(A_{1}\right), r\left(I_{m}, O\right), r\binom{X_{2}}{O}, r\left(\begin{array}{cc}
A_{1} & X_{2} \\
I_{m} & O
\end{array}\right)-r\left(A_{1}\right)\right\} \\
= & \min \left\{r\left(A_{1}\right), m, r\left(X_{2}\right), r\left(X_{2}\right)+m-r\left(A_{1}\right)\right\} \\
= & \min \left\{r\left(A_{1}\right), r\left(X_{2}\right)\right\} . \tag{16}
\end{align*}
$$

Since $X_{2} \in A_{2}\{1,2\}$, then $r\left(X_{2}\right)=r\left(A_{2}\right)$. Thus, by (16), we have the equation below:

$$
\begin{equation*}
\max _{X_{2}, X_{1}} r\left(X_{1} X_{2}\right)=\min \left\{r\left(A_{1}\right), r\left(A_{2}\right)\right\} \tag{17}
\end{equation*}
$$

i.e., Theorem 2 is true when $n=2$.

When $n \geq 3$, by Lemma 2 , with $A=A_{1}, B=X_{2} X_{3} \ldots X_{n}, C=I_{m}$, and $D=O$, we have:

$$
\begin{align*}
& \max _{X_{1}} r\left(X_{1} X_{2} \ldots X_{n}\right) \\
= & \min \left\{r\left(A_{1}\right), r\left(I_{m}, O\right), r\binom{X_{2} X_{3} \ldots X_{n}}{O}, r\left(\begin{array}{cc}
A_{1} & X_{2} X_{3} \ldots X_{n} \\
I_{m} & O
\end{array}\right)-r\left(A_{1}\right)\right\} \\
= & \min \left\{r\left(A_{1}\right), m, r\left(X_{2} X_{3} \ldots X_{n}\right), r\left(X_{2} X_{3} \ldots X_{n}\right)+m-r\left(A_{1}\right)\right\} \\
= & \min \left\{r\left(A_{1}\right), r\left(X_{2} X_{3} \ldots X_{n}\right)\right\} . \tag{18}
\end{align*}
$$

Again, by Lemma 2, with $A=A_{2}, B=X_{3} X_{4} \ldots X_{n}, C=I_{m}$, and $D=O$, we have:

$$
\begin{align*}
& \max _{X_{2}, X_{1}} r\left(X_{1} X_{2} \ldots X_{n}\right) \\
= & \min \left\{r\left(A_{1}\right), \max _{X_{2}} r\left(X_{2} X_{3} \ldots X_{n}\right)\right\} \\
= & \min \left\{r\left(A_{1}\right),\right. \\
& \left.\quad \min \left\{r\left(A_{2}\right), r\left(I_{m}, O\right), r\binom{X_{3} X_{4} \ldots X_{n}}{O}, r\left(\begin{array}{cc}
A_{2} & X_{3} X_{4} \ldots X_{n} \\
I_{m} & O
\end{array}\right)-r\left(A_{2}\right)\right\}\right\} \\
= & \min \left\{r\left(A_{1}\right), \min \left\{r\left(A_{2}\right), m, r\left(X_{3} X_{4} \ldots X_{n}\right), r\left(X_{3} X_{4} \ldots X_{n}\right)+m-r\left(A_{2}\right)\right\}\right\} \\
= & \min \left\{r\left(A_{1}\right), r\left(A_{2}\right), r\left(X_{3} X_{4} \ldots X_{n}\right)\right\} . \tag{19}
\end{align*}
$$

We claim that for $2 \leq i \leq n-1$:

$$
\begin{align*}
& \max r\left(X_{1} X_{2} \ldots X_{n}\right) \\
= & \min \left\{r\left(A_{1}\right), r\left(A_{2}\right), \ldots, r\left(A_{i}\right), r\left(X_{i+1} X_{i+2} \ldots X_{n}\right)\right\} . \tag{20}
\end{align*}
$$

Equation (20) can be proved by using induction on i. In fact, for $i=2$, the statement in (20) has been proved. Assuming the statement in (20) is true for $i-1$, that is:

$$
\begin{equation*}
\max _{X_{i-1}, X_{i-2}, \ldots, X_{1}} r\left(X_{1} X_{2} \ldots X_{n}\right)=\min \left\{r\left(A_{1}\right), r\left(A_{2}\right), \ldots, r\left(A_{i-1}\right), r\left(X_{i} X_{i+1} \ldots X_{n}\right)\right\} . \tag{21}
\end{equation*}
$$

We now prove that (20) is also true for i. By (21) and Lemma 2, with $A=A_{i}$, $B=X_{i+1} X_{i+2} \ldots X_{n}, C=I_{m}$, and $D=O$, we have the following:

$$
\begin{aligned}
& \max r\left(X_{1} X_{2} \ldots X_{n}\right) \\
&= X_{i}, X_{i-1}, \ldots, X_{1} \\
& \min \left\{r\left(A_{1}\right), r\left(A_{2}\right), \ldots, r\left(A_{i-1}\right), \max _{X_{i}} r\left(X_{i} X_{i+1} \ldots X_{n}\right)\right\} \\
&= \min \left\{r\left(A_{1}\right), r\left(A_{2}\right), \ldots, r\left(A_{i-1}\right),\right. \\
&\left.\quad \min \left\{r\left(A_{i}\right), r\left(I_{m}, O\right), r\binom{X_{i+1} X_{i+2} \ldots X_{n}}{O}, r\left(\begin{array}{ll}
A_{i} & X_{i+1} X_{i+2} \ldots X_{n} \\
I_{m} & O
\end{array}\right)-r\left(A_{i}\right)\right\}\right\} \\
&= \min \left\{r\left(A_{1}\right), r\left(A_{2}\right), \ldots, r\left(A_{i-1}\right),\right. \\
&\left.\min \left\{r\left(A_{i}\right), m, r\left(X_{i+1} X_{i+2} \ldots X_{n}\right), r\left(X_{i+1} X_{i+2} \ldots X_{n}\right)+m-r\left(A_{i}\right)\right\}\right\} \\
&= \min \left\{r\left(A_{1}\right), r\left(A_{2}\right), \ldots, r\left(A_{i-1}\right), \min \left\{r\left(A_{i}\right), r\left(X_{i+1} X_{i+2} \ldots X_{n}\right)\right\}\right\} \\
&= \min \left\{r\left(A_{1}\right), r\left(A_{2}\right), \ldots, r\left(A_{i-1}\right), r\left(A_{i}\right), r\left(X_{i+1} X_{i+2} \ldots X_{n}\right)\right\} .
\end{aligned}
$$

When $i=n-1$, from (20), we have the following equations:

$$
\begin{equation*}
\max _{X_{n-1}, X_{n-2}, \ldots, X_{1}} r\left(X_{1} X_{2} \ldots X_{n}\right)=\min \left\{r\left(A_{1}\right), r\left(A_{2}\right), \ldots, r\left(A_{n-1}\right), r\left(X_{n}\right)\right\} . \tag{22}
\end{equation*}
$$

Since $X_{n} \in A_{n}\{1,2\}$, then $r\left(X_{n}\right)=r\left(A_{n}\right)$. Thus, by (22), we have the equation below:

$$
\begin{equation*}
\max _{X_{n}, X_{n-1}, \ldots, X_{1}} r\left(X_{1} X_{2} \ldots X_{n}\right)=\min \left\{r\left(A_{1}\right), r\left(A_{2}\right), \ldots, r\left(A_{n}\right)\right\}, \tag{23}
\end{equation*}
$$

i.e., Theorem 2 is true when $n \geq 3$.

Based on Theorem 1 and 2, we can immediately obtain the main result of this paper.
Theorem 3. Let $A_{i} \in C^{m \times m}, i=1,2, \ldots, n$. Then, the following statements are equivalent:
(1) $A_{1}\{1,2\} A_{2}\{1,2\} \ldots A_{n}\{1,2\} \subseteq\left(A_{1} A_{2} \ldots A_{n}\right)\{1,2\}$;
(2) $\min \left\{r\left(A_{1} \ldots A_{n}\right), r\left(A_{n} \ldots A_{1}-A_{1} \ldots A_{n}\right)+r\left(A_{1} \ldots A_{n}\right)+(n-1) m-\sum_{l=1}^{n} r\left(A_{l}\right)\right\}=0$ and $\min \left\{r\left(A_{1}\right), r\left(A_{2}\right), \ldots, r\left(A_{n}\right)\right\} \leq r\left(A_{1} A_{2} \ldots A_{n}\right)$;
(3) $A_{1} A_{2} \ldots A_{n}=O$ or $r\left(A_{1} \ldots A_{n}-A_{n} \ldots A_{1}\right)+r\left(A_{1} \ldots A_{n}\right)+(n-1) m-\sum_{l=1}^{n} r\left(A_{l}\right)=0$ and $\min \left\{r\left(A_{1}\right), r\left(A_{2}\right), \ldots, r\left(A_{n}\right)\right\} \leq r\left(A_{1} A_{2} \ldots A_{n}\right) ;$
(4) $A_{1} A_{2} \ldots A_{n}=\mathrm{O}$ or $A_{1} \ldots A_{n}=A_{n} \ldots A_{1}$ and $r\left(A_{1} \ldots A_{n}\right)+(n-1) m=\sum_{l=1}^{n} r\left(A_{l}\right)$ and $\min \left\{r\left(A_{1}\right), r\left(A_{2}\right), \ldots, r\left(A_{n}\right)\right\} \leq r\left(A_{1} A_{2} \ldots A_{n}\right) ;$
(5) $A_{1} A_{2} \ldots A_{n}=O$
or $A_{1} \ldots A_{n}=A_{n} \ldots A_{1}$ and $r\left(A_{1} \ldots A_{n-i}\right)+(n-i-1) m=\sum_{l=1}^{n-i} r\left(A_{l}\right), i=0, \ldots, n-2$, and $\min \left\{r\left(A_{1}\right), r\left(A_{2}\right), \ldots, r\left(A_{n}\right)\right\} \leq r\left(A_{1} A_{2} \ldots A_{n}\right)$.

Proof. (1) $\Leftrightarrow(2)$. From Lemma 1, we know that (3) holds if and only if Equations (6) and (7) hold. Then, according to Equation (8) in Theorem 1 and Equation (15) in Theorem 2, we have $(1) \Leftrightarrow(2)$ in Theorem 3.
(2) $\Leftrightarrow(3)$. In fact, $r(A)=0$ if and only if $A=O$, so $(2) \Leftrightarrow(3)$ is obvious.
$(3) \Leftrightarrow(4)$. Since

$$
r\left(A_{1} A_{2} \ldots A_{n}-A_{n} A_{n-1} \ldots A_{1}\right) \geq 0
$$

and from Lemma 3, we have:

$$
r\left(A_{1} A_{2} \ldots A_{n}\right)+(n-1) m \geq \sum_{l=1}^{n} r\left(A_{l}\right)
$$

it is easy to obtain $(3) \Leftrightarrow(4)$.
$(4) \Leftrightarrow(5)$. In fact, $(5) \Rightarrow(4)$ is obvious. We now show $(4) \Rightarrow(5)$. In fact, for the case of $i=0$, the results in (4) are actually for (5). Assuming (5) holds for $i-1$, where $1 \leq i \leq n-2$, i.e.,:

$$
\begin{equation*}
r\left(A_{1} A_{2} \ldots A_{n-i+1}\right)+(n-i) m=\sum_{l=1}^{n-i+1} r\left(A_{l}\right) \tag{24}
\end{equation*}
$$

We now prove that (5) is also true for i. Based on Lemma 3, we know that:

$$
\begin{equation*}
r\left(A_{1} A_{2} \ldots A_{n-i+1}\right)+m \geq r\left(A_{1} A_{2} \ldots A_{n-i}\right)+r\left(A_{n-i+1}\right) \tag{25}
\end{equation*}
$$

From (24) and (25), we have the following:

$$
\begin{equation*}
\sum_{l=1}^{n-i} r\left(A_{l}\right) \geq r\left(A_{1} A_{2} \ldots A_{n-i}\right)+(n-i-1) m \tag{26}
\end{equation*}
$$

On the other hand, again by Lemma 3, we know the following:

$$
\begin{equation*}
r\left(A_{1} A_{2} \ldots A_{n-i}\right)+(n-i-1) m \geq \sum_{l=1}^{n-i} r\left(A_{l}\right) \tag{27}
\end{equation*}
$$

Hence, from (26) and (27), we have:

$$
\begin{equation*}
\sum_{l=1}^{n-i} r\left(A_{l}\right)=r\left(A_{1} A_{2} \ldots A_{n-i}\right)+(n-i-1) m . \tag{28}
\end{equation*}
$$

This means that $(4) \Rightarrow(5)$ hold.

Author Contributions: All authors have equally contributed to this work. All authors read and approved the final manuscript.

Funding: This work was supported by the project for characteristic innovation of 2018 Guangdong University (No: 2018KTSCX234) and the Natural Science Foundation of GuangDong (No: 2014A030313625) and the basic Theory and Scientific Research of Science and Technology Project of Jiangmen City, China (No: 2020JC01010, 2021030102610005049) and the joint research and development fund of Wuyi University, Hong Kong and Macao (No: 2019WGALH20).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors would like to thank Leila Zhang and the anonymous reviewers for their very detailed comments and constructive suggestions, which greatly improved the presentation of this paper.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ben-Israel, A.; Greville, T.N.E. Generalized Inverses Theory and Applications; John Wiley: New York, NY, USA, 2003.
2. Moore, E.H. On the reciprocal of general algebraic matrix (Abstract). Bull. Am. Math. Soc. 1920, 26, 394-395.
3. Penrose, R. A generalized inverse for matrix. Proc. Camb. Philos. Soc. 1955, 51, 406-413. [CrossRef]
4. Wang, G.R.; Wei, Y.M.; Qiao, S.Z. Generalized Inverses Theory and Computations; Science Press: Beijing, China, 2004.
5. Campbell, S.L.; Meyer, C.D. Generalized Inverses of Linear Transformations; Dover: New York, NY, USA, 1979.
6. Rao, C.R.; Mitra, S.K. Generalized Inverses of Matrices and its Applications; Wiley: New York, NY, USA, 1971.
7. Bjerhamar, A. Application of calculus of matrices to method of least squares with special reference to geodetic calculations. Trans. R. Inst. Technol. 1951, 49, 88-93.
8. Simeon, B.; Fuhrer, C.; Rentrop, P. The Drazin inverse in multibody system dynamics. Numer. Math. 1993, 64, 521-539. [CrossRef]
9. Staninirovic, R.; Tasic, M. Computing generalized inverses using LU factorrization of matrix product. Int. Comput. Math. 2008, 85, 1865-1878. [CrossRef]
10. Cvetkovic-IIic, D.S.; Milosevic, J. Reverse order laws for $\{1,3\}$-generalized inverses. Linear Multilinear Algebra 2019, 67, 613-624. [CrossRef]
11. Djordjevic, D.S. Futher results on the reverse order law for generalized inverses. SIAM J. Matrix. Anal. Appl. 2007, 29, 1242-1246. [CrossRef]
12. Greville, T.N.E. Note on the generalized inverses of a matrix products. SIAM Rev. 1966, 8, 518-521. [CrossRef]
13. Hartwing, R.E. The reverse order law revisited. Linear Algebra Appl. 1986, 76, 241-246. [CrossRef]
14. Liu, D.; Yan, H. The reverse order law for $\{1,3,4\}$-inverse of the product of two matrices. Appl. Math. Comput. 2010, 215, 4293-4303. [CrossRef]
15. Liu, X.; Huanga, S.; Cvetkovic-Ilic, D.S. Mixed-tipe reverse-order law for $\{1,3\}$-inverses over Hilbert spaces. Appl. Math. Comput. 2012, 218, 8570-8577.
16. Nikolov Radenkovic, J. Reverse order law for multiple operator product. Linear Multilinear Algebra 2016, 64, 1266-1282. [CrossRef]
17. Shinozaki, N.; Sibuya, M. The Reverse order law $(A B)^{-}=B^{-} A^{-}$. Linear Algebra Appl. 1974, 9, 29-40. [CrossRef]
18. Tian, Y.G. Reverse order laws for generalized inverses of multiple matrix products. Linear Algebra Appl. 1994, 211, 85-100. [CrossRef]
19. Wei, M. Reverse order laws for generalized inverse of multiple matrix products. Linear Algebra Appl. 1999, 293, 273-288. [CrossRef]
20. Wei, M.; Gao, W. Reverse order laws for least squares g -inverses and minimum-norm g-inverses of products of two matrices. Linear Algebra Appl. 2002, 342, 117-132. [CrossRef]
21. Xiong, Z.P.; Zheng, B. The reverse order laws for $\{1,2,3\}$ - and $\{1,2,4\}$ - Inverses of a two-matrix product. Appl. Math. Lett. 2008, 21, 649-655. [CrossRef]
22. Xiong, Z.P.; Liu, Z.S. The Forward Order Law for Least Square g-Inverse of Multiple Matrix Products. Mathematics 2019, 7, 277. [CrossRef]
23. Xiong, Z.P.; Qin, Y.Y. Reverse order law for weighted Moore-Penrose inverses of multiple matrix products. Math. Inequal. Appl. 2014, 17, 121-135. [CrossRef]
24. Liu, Z.S.; Xiong, Z.P. The forward order laws for $\{1,2,3\}$ - and $\{1,2,4\}$-inverses of a three matrix products. Filomat 2018, 32, 589-598. [CrossRef]
25. Liu, Z.S.; Xiong, Z.P.; Qin, Y.Y. A note on the forward order law for least square g-inverse of three matrix products. Comput. Appl. Math. 2019, 38, 48. [CrossRef]
26. Qin, Y.Y.; Xiong, Z.P.; Zhou, W.N. On the Drazin inverse and M-P inverse for sum of matrices. Oper. Matrices 2021, 15, $209-223$. [CrossRef]
27. Xiong, Z.P.; Zheng, B. Forward order law for the generalized inverses of multiple matrix products. J. Appl. Math. Comput. 2007, 25, 415-424. [CrossRef]
28. Tian, Y.G. More on maximal and minimal ranks of Schur complements with applications. Appl. Math. Comput. 2004, 152, 675-692. [CrossRef]
29. Marsaglia, G.; Styan, G.P. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 1974, 2, 269-292. [CrossRef]
