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Abstract: In this paper, we propose and study a diffusive HIV infection model with infected cells
delay, virus mature delay, abstract function incidence rate and a virus diffusion term. By introducing
the reproductive numbers for viral infection Ry and for CTL immune response number R; , we show
that Ry and R; act as threshold parameter for the existence and stability of equilibria. If Ry < 1,
the infection-free equilibrium Ej is globally asymptotically stable, and the viruses are cleared; if
R; <1 < R, the CTL-inactivated equilibrium E; is globally asymptotically stable, and the infection
becomes chronic but without persistent CTL response; if Ry > 1, the CT L-activated equilibrium E;
is globally asymptotically stable, and the infection is chronic with persistent CTL response. Next,
we study the dynamic of the discreted system of our model by using non-standard finite difference
scheme. We find that the global stability of the equilibria of the continuous model and the discrete
model is not always consistent. That is, if Ry < 1, or Ry < 1 < Ry, the global stability of the two

f::edcgtfg; kinds model is consistent. However, if Ry > 1, the global stability of the two kinds model is not
Citation: Liu, X.-L.; Zhu, C.-C. A consistent. Finally, numerical simulations are carried out to illustrate the theoretical results and show
Non-Standard Finite Difference the effects of diffusion factors on the time-delay virus model.
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In the past few years, host-virus dynamics models have been developed to explain
the interactions between virus and target T cells, much attention has been given to the
role of the immune response to human immunodeficiency virus (HIV) infection. Many
different mechanisms of immune system, defenses against viral infections are of interest
because lots of the diseases caused by them, e.g., hepatitis B and AIDS, are chronic and
incurable [1,2]. With the new coronavirus epidemic rages around the world [3-5], virus
dynamics has become a hot spot again. In the immune response mechanism in vivo for viral

infections, the cytotoxic T lymphocyte (CTL) plays a particularly important role, therefore
many authors have examined various CTL dynamics.

A virus must take over host cells and use them to replicate because it can not replicate
on its own. HIV targets the CD4TT cells, often referred to as “helper” T cells, when it
This article is an open access article  itvades the body. These cells can be considered “messengers” , or the command centres of
distributed under the terms and  the immune system. They send signal to other immune cells that an invader is to be fought.
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CTL response is also striking in that it sometime does damage to the body when it tries to
clear the virus. Over half the tissue damage caused by hepatitis is actually caused by the
CTL response [1,6].

If the immune system is functioning normally, these components work together
efficiently and an infection is eliminated quickly, causing only temporary discomfort
to the host. However, over time HIV is able to deplete the population of CD4™ T cells.
What remains unknown is the exact mechanism by which this occurs, but several models
have been suggested. For a variety of different hypotheses of how this occurs, we refer the
reader to papers [7-9]. The natural killer cells may be fit to eliminate infection, but they are
never deployed, which is the the impact of the depletion of CD4™ T cells on the host. This
then culminates in a clinical problem wherein the patient becomes vulnerable to infections
that a healthy immune system would normally handle.

Quite a lot of mathematical models of HIV have been set up. The classical model is
a system with three ordinary differential equations [10,11]. To better understanding the
dynamics of these infections, many mathematical models have been proposed by using
different kinds of differential equations, see [12-16] and references therein. For example,
Yang et al. [15] studied the following model

M) — A —dy T(x,£) — BrT(x, E)V(x, 1),
ML) — BT (x, )V (x, ) — dol(x, 1), (1)
Wt _ gAY (x, ) + Y1 (x, t) — d3V (x, 1),

where T(x,t),1(x,t) and V(x,t) denote the densities of uninfected cells, infected cells and
free virus cells at position x at time t, respectively. A stands for the recruitment rate of the
uninfected cells; 1 is the virus-to-cell infection rate; dy, d» and d3 represent death rates of
uninfected cells, infected cells and free viruses; 7 stands for the recruitment rate for free
viruses; d stands for the diffusion coefficient and A is the Laplacian operator.

To help the body heal, cytotoxic T-lymphocyte effectors (CTLe) of the immune system
will remove the infected cells to prevent further viral replications. To model these extra
dynamics, researchers have studied the model of viral interaction with CTL response [10,17]

X =A—dx— Bxy,
Y= pxy —ay —pyz, )
z=cyz— bz

where variables x, y and z denote the density of the healthy cells, the infected cells, and
the CTLs populations, respectively. Healthy cells are produced at rate A and their natural
mortality is dx; these cells may come into contact with the virus and become infected cells
at rate Bxy, infected cells’s natural mortality is ay, and they are removed by CTLs at rate
pyz; the CTL population increases at the rate cyz and they are removed at the rate bz.

In [18,19], researchers studied a mathematical model for HIV-1 infection with both
intracellular delay and cell-mediated immune response:

foé; = A —dx(t) — Bxv,
;i(tt) = e "px(t — T)u(t — 1) —ay(t) — py(H)z(t), 3)

= ky(t) — po(t),
U — cy(£)z(t) — b(t).

Researchers obtain the global stability of the infection-free equilibrium and give many
conditions for the local stability of the two infection equilibria: one without CTLs being
activated and the other with. There are many references in the dynamics of HIV-1 infection
with CTLs response (see, e.g., [17,20-22] and the references therein).

However, there is no diffusion term and only one delay in (3). As we know, the virus is
not stationary in space, the movement of the virus in space leads to the spatial spread of the
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disease, and mostly with general nonlinear incidence rate. Fickian diffusion can reasonably
describe the spread of this virus in space and this diffusion process is often represented
by the Laplace operator. Inspired by [16,23], in this paper, we extend the classic model of
virus dynamics to a diffusive infection model with intracellular delay and cell-mediated
immune response, with two delays and general nonlinear incidence rate, as follows

aTE()atc,t) =A—diT(x,t) — ﬁlT(x,t)f(V(x,t)) - [SZT(x,t)g(I(x,t)>,

Wot) — et (ByT(x t =) f (Vi b =1) ) + BaT(x,t = 7)g(I(x,t = 71)))
—d2I(x,t) = p11(x, 1) Z(x, t), (4)
WL — DAV (x,) + pae 1221 (x,t — 1) — d3V (x, 1),

SZN) — g1(x, £)Z(x, 1) — daZ(x, t),

here T(x,t),I(x,t),V(x,t) and Z(x,t) stand for the densities of uninfected cells, infected
cells, virus cells and CTLs at position x at time ¢, respectively. A and d; denote the natural
produce and mortality rate of uninfected cells, and uninfected cells are infected with a rate
B2; and B is the virus-to-cell infection rate; and B; is the virus-to-cell infection rate; the
natural mortality rate of the infected cells are d; and are killed by CTL with a rate p; (Note
that d; reflects the combined effects of natural death rate of uninfected cells, d1, and any
additional cytotoxic effects the virus may have); y; represents the death rate for infected
but not yet virus-producing cells, 7; represents the latent delay, i.e., the time period from
being infected to becoming productive infected cells. Therefore, the probability of surviving
from time t — Ty to time t is e#17; the probability of survival of immature virus is denoted
by e7#2™2 and the average life time of an immature virus is % ; where T represents the time
necessary for the newly produced virus to become mature; D is the diffusion coefficient
and A is the Laplacian operator; p; is the recruitment rate for free viruses. Virus particles
are removed from the system at rate d3; g stands for the CTL responsiveness and d4 denotes
decay rate for CTLs in the absence of stimulation.

Here, the incidences are assumed to be the nonlinear responses to the concentrations
of virus particles and infected cells, using the forms 1 Tf(V) and B, Tg(I), where f(V) and
g(I) are the force of infection by virus particles and infected cells and satisfy the following
properties [24]:

£(0) =8(0) =0, f(V) > 0,¢'(I) >0, f"(V) <0,8"(I) <0. (A1)
It follows from (A7) and the Mean Value Theorem that
FV < FV) S POV, <) <O for,V 20, (As)

Epidemiologically, condition (A7) implies that : (1) the disease cannot spread if there
is no infection; (2) the incidences B1Tf(V) and B,Tg(I) become faster when the densities
of the virus particles and infected cells increase; (3) the per capita infection rates by virus
particles and infected cells will slow down as certain inhibiting effect since (A;) implies
that (L‘}’))’ < 0 and (@ )’ < 0. The incidence rate with condition (A1) contains the
bilinear and the saturation incidences.

In this paper, we will consider the system (4) with initial conditions

T(x,s) = ¢1(x,s) >0,1(x,s) = ¢2(x,5) >0, i 5)
V(x,s) = ¢3(x,s) >0,Z(x,s) = ¢pa(x,s) >0,(x,s5) € Q x [-71,0]

and homogeneous Neumann boundary conditions

W =0,t>0,x € (6)
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where T = max{7, 72} and Q is a bounded domain in R* with smooth boundary 0(), and
%—‘rf stands for the outward normal derivative on 9Q).

Usually, the exact solution for a system as (1) is difficult or even impossible to be
determined. Hence, researchers seek numerical ones instead. However, how to choose
the proper discrete scheme so that the global dynamics of solutions of the corresponding
continuous models can be efficiently preserved is still an open problem [25]. Mickens has
made an attempt in this connection, by presenting a robust non-standard finite difference
(NSFD)scheme [26], which has been widely employed in the study of different epidemic
models [23,25-32]. For example, Yang et al. [30] applied the NSFD scheme to discretize
system (1) and found that the dynamical behaviors of the discrete model are consistent
with the original system. Motivated by the work of [23,25-32], we apply the NSFD scheme
to discretize system (4) and obtain:

m_m
ITIT = A= T = BTV — BT (1),
A T e tn (IB1Trrln—m1+1f(Vr]ln—ml) + IBZT;T—ml—i—lg(Irrln—ml))
—dZI’T_~_1m:1 pll:ﬁ_lzgi] (7)
V;ilA;VJ" _ DVn+1 _?X%%“‘Vnﬂ + pzefﬂzrzlgimfrl —dzV"
m_om
Z”HAt = Al Zn —daZil .

—a

Here, we assume that x € Q = [a, 1], let At > 0 be the time step size and Ax = bT
be the space step size with N a positive integer. Suppose that there exist two inte-
gers my,my € R with 17 = mjAt, 7p = mpAt. Denote the mesh grid point as {(x, ts),
m=20,1,2,---,N,n € N} with x,, = a4+ mAx and t,, = nAt. At each point, we use approx-
imations of <T(xm, E), I(xm, £0), V(Xm, tn), Z(xm, tn)) by (T, I, V', ZI"). We set all the
approximation solutions at the time t, by the N + 1-dimensional vector
u, = o, ug,-.., uMT, where U,(l') € {(Ty, I, Vy, Zy)} and the notation (-)7T is the
transposition of a vector. U, > 0 means that all components of a vector U, are nonnegative.
The discrete initial conditions of system (7) are given as

T = ¢1(xm, ts) > 0, 17" = o (xm, ts) >0, ®)
Vi = ¢3(xm, ts) > 0,2 = pa(xm, ts) >0,

foralls = —I,—1+1,---,0, I =max{mj,my}, and the discrete boundary conditions are
Vil =V0,UN = VNTL for ne X

The main purpose of this paper is to investigate the asymptotic stability of system (4)
and (7). Another purpose of this paper is to discuss , whether the discretized system (7)
that derived by using NSFD scheme can efficiently preserves the global asymptotic stability
of the equilibria to the original system (4) or not.

The paper is organized as follows. In Section 2.1, the model is introduced, and, under
some assumptions, positivity and boundedness properties of the solutions are proved by
using nonlinear functional analysis methods. In Section 2.2, we consider the existence of
infection-free equilibrium, CTL-inactivated equilibrium and infection equilibrium with
immunity. In Section 2.3, by introducing the reproductive numbers for viral infection Ry and
for CTL immune response number R; , we show that Ry and R; act as threshold parameter
for the existence and stability of equilibria. If Ry < 1, the infection-free equilibrium Eg
is globally asymptotically stable, and the viruses are cleared; if Ry < 1 < Ry, the CTL-
inactivated equilibrium E; is globally asymptotically stable, and the infection becomes
chronic but without persistent CTL response; if Ry > 1, the CT L-activated equilibrium E;
is globally asymptotically stable, and the infection is chronic with persistent CTL response.
In Section 3, we investigate the global dynamics of discrete system (7) correponding to
the continuous system (4), by using nonstandard finite difference scheme. We find that
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the global stability of the equilibria of the continuous model and the discrete model is not
always consistent. That is, if Rg < 1, or Ry < 1 < Ry, the global stability of the two kinds
model is consistent. However, if R; > 1, the global stability of the two kinds model is not
consistent. In Section 4, some numerical simulations are given to illustrate the theoretical
results and show the effects of diffusion factors on the time-delay virus model. The paper
ends with a discussion in Section 5.

2. Dynamical Behaviors of Continuous System
2.1. Positivity and Boundedness of Solutions

In order to study positivity and boundedness of solutions to system (4), we first
introduce some notations.

Assume X = C(Q), R*) be the space of continuous functions from the topological space
Q into the space R*. Let C = C([—T,0], X) be the Banach space of continuous functions
from [—7,0] into X with the usual supremum normal. ¢ € C is defined by

$(x,8) = ¢(s) (x).

Define x;(s) = x(t +s),s € [—7,0], where x(+) : [-T,0) — X is a continuous function from
[0,0) to C.

Theorem 1. Forany ¢ € C,
(a) system (4)—(6) has a unique solution defined on [0, +o0) ; and
(b) the solution of (4)—(6) is nonnegative and bounded for all t > 0.

Proof. For any ¢ = (¢1, ¢, ¢3,¢4)" € Cand x € O, assume
F = (Fl,Fz,F3,F4) :C— X
by

Fi(9)(x) = A = di1(x,0) = 191 (x,0)f (95(x,0) ) — o (x,0)3(2(x,0) ),

B(9)(x) = e717 |1 (x,—) f (¢3(x, —1) ) + Bt (v, —71)g (#2(x, —71) )
—da2(x,0) — p1¢a(x,0)¢a(x,0),

F3(¢)(x) = pae "2 %k¢a(x, —12) — dagp3(x,0),

Fy(¢)(x) = q¢2(x,0)¢a(x,0) — dagps(x,0).

Then system (4)—(6) can be rewritten as following form

{ U'(t) = AU + F(Uy), t > 0, )
u@)=¢ecX

where U = (T,1,V, Z)T,qb = (¢1,¢2, ¢3,¢4)T and AU = (0,0,dAv,0)T. Tt is clear that the
operator F is locally Lipschitz in space X. From [27,32-36], we conclude that system (9)
has a unique local solution on t € [0, Tyax), where Ty,x is the maximal existence time for
solution of system (4). In addition, it follows from 0 is a sub-solution of each equation of
system (4) that T(x,t) > 0,I(x,t) >0,V (x,t) > 0,Z(x,t) > 0.

Next, we prove the boundedness of solutions. Let

Gi(x,t) = e MAT(x,t — 1) + I(x,£) + %Z(x, b,
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then
%f't) = Ade MU —die MOT(x,t —1y) —dpl(x,t) — plqd4Z(x, t)

< A- le(x/ t)/

where d = min{dy,dy,dy}, then

Gi(x,1) < m{i mazeea {e 91 (v 1) + 92(x,0) + Elga(x, o>}} =,

so T(x,t),I(x,t) and Z(x,t) are bounded.
From the boundedness of I(x, t) and system (4)(6), V (x, t) satisfies the following system

W — DAV < ppe 2% —d3V,
v

on = 0, (2)
V(x,0) = ¢3(x,0) > 0.

Assume Vj(t) be a solution to the ordinary differential equation
®)

dt

{ DL = paet2%g) — d Vi,
V1(0) = max,ea$s(%,0),

e H2T2
Vi(t) < max{p2 i gl,maxxeﬁgbg,(x, 0)}, Vt € [0, Trnax)-

It follows from the comparison principle [37] that V(x,t) < V;(t). Therefore

then

e 22 -

Vi t) < max{pzdiagl,maxxe()gbg(xﬂ)} — &, V(o) € O x [0, Tyar).
From the above, T(x,t),I(x,t),V(x,t) and Z(x,t) are bounded in Q) x [0, Tyax)
Furthermore, it follows from the standard theory for semilinear parabolic systems [38] that

Tiaxy = +oo. [

2.2. Existence of Equilibria
It is clear that system (4) always has an infection-free equilibrium

EO - (TOI 0/ 0/ O)/

where Ty = %, corresponding to the maximal level of healthy CD, T cells. It is the only

biologically meaningful equilibrium if
Ry = AT (Bipaf 1 4 Bodag’(0)) _
" dydads /

where Ry is basic reproduction number.
At an equilibrium of model (4), we have

et (ﬁle(V) + ,BzTg(I)) = I+ p1Z,
pae 122] =d3V,
qlZ = d,Z,

(4)
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if Z = 0, then a short calculation

dodre1TtH2T dret22
A—diT = LV,I:LV,
p2 p2
which implies that in order to have T > 0 and V > 0 at an equilibrium, then

Ve (0, dde;;%}' From the second equation of (4), we have
2083
dodzetr1tinm

T (BLf (V) + Bag(B522 V) ) '

then substituting T into the first equation of (4)

NS X%) H1TL T2 T2
A= dqdydse v+ d2d3Ve V= H(V)

pa(B1f (V) + pag (2222 V) &

According to (A;), for all V > 0, we have

dydydetr Tt (ﬁl (f(V) - Vf’(V)) + B2 <g(d3f;‘2m V) - dge;;Tz Vg/(d:;i;’zzﬁ V)))

H’(V) = L 5
P2(B1f (V) + pag(Bo22 V)

d2d3e}11’ﬁ U2
P2

>0,

further, from (A7)

. dydadzet1 I A
1 H(V) = = 5
P HOV) = B 7(0) + dapacag (0) — Ry
and A d
P2 _ 1
dadyer i) =M =

ﬁlf(m) + .Bzg(dzeﬂm )

this implies that there exists a CT L-inactivated equilibrium E; = (Ty, I, V1,0) when Rg > 1.
Define

Ao (B (B2 4 o))
dod, (dl + ﬁlf(%) T ﬁzg(%))

which stands for the immune response activation number and determines whether a
persistent immune response can be established or not. If Z # 0, then from (4), we have

1=

T, = A L=

2T A+ Bif (Vo) + ag(l) P g

szw 7o = dZ(Rl—l)
dsq 1

then, the infection equilibrium with immunity E; = (T, I, V3, Z;) exists if Ry > 1. From
the above, we have the following result.

Lemma 1. For system (4),

(1) if Ry < 1, then there exists a unique infection-free equilibrium Ey .
(2) if Ry <1 < Ry, then there exists a unique infection equilibrium without immunity E, besides E.
(3)  if Ry > 1, then there exists a unique infection equilibrium with immunity E, besides Eg and E;.
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2.3. Global Asymptotic Stability

In this section, we will investigate the global asymptotic stability of the system (4).
Assume ¢(u) = u —1—Inu for u € (0,+00), then ¢(x) > ¢(1) = 0.

Theorem 2. For system (4), if Ry < 1, the infection-free equilibrium Ey is globally asymptotically stable.

Proof. Define the Lyapunov function as follows

Ly = /Q{Toq’(;;)—i-eﬂml-o- B1p2Toe 1272 £'(0) /tth I(s)ds ﬁlTOf( )

Rods Rod3

pleﬂlTl t

n Z+ [ﬁlT(s)f(V(s)) +52T(s)g(1(s))}ds}dx,

t—Tl

then Ly >0, calculatlng T Ly along the solutions of system (4) and using A = d;Tj, we have

Y
=
I

= Ja{ (1 ofty) (0107t - AT (V1)

—  BaT(x,t) ( ))+,51Txt—T1)f(V(x,t—T1))
BT (x,t—11)g ( (x,t— T1)) —dyet T (x,t) — pr1ef1TI(x, t) Z(x,t)
Bl [DAV(x, £ + pae 2RI (x,t — 1) — d3V(x, t)}
W’“ 1 9106 HZ(x,t) = daZ(x,1)| + BiT(x, ) f (V1))
ﬁzT(x,t)g(I( 1) =BTt =) f (Ve t-m))

— BoT(x,t— Tl)g(l(x,t — 71)) + MTO;_—;W [I(x,t) —I(x,t— Tz)} }dx,

+ o+ 4+ o+

043

_— {leo (2- 7 = ) + (5 = 1) [B TG (V)

+ BoT(x, t)g(l(x,t))} — dyet1m1(x, 1) + BREO DAV (1, 1)
+ B1Tof' (O )Pzef”ﬂzl(x,t 1) - lng%f[;( )V(x,t) P1d4;”1 1 Z(x,t)

Rods
+ BT f (V) +BaT(x g (1(x, 1)) + LRI 22 ()

Rods

BT P22 13t — 1) bebx,
from [, AV (x,t)dx = 0 and condition (A;) , we obtain

dem _ B1p2Tof 2 BaTog’(0)
2 Rods Ry '

therefore
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@ = Ja {leO 22— 7 = TG ] + BiTof (V1)) + BaTog (10, 1)
— dyet T (x,t) — ﬁlT?{:(O) V- pld‘*;Wl Z(x,t)

" w—mfmj(x,t) dx.

Rods

IN

I {d1T0 2 iy = TG0 + B O v (x, 1) (Ro — 1)

+ B0 (4, 1)(Ro — 1) — B 7(x, 1) }dx.

It is follows from Ry < 1 that dLl < 0. Furthermore, the largest invariant set of

{dL1 = 0} is the singleton {Eg}. Then, the classical LaSalle’s invariance principle implies
that E is globally asymptotically stable. This completes the proof. [

Theorem 3. For system (4), if Ry < 1 < Ry, the CTL-inactivated infection equilibrium E; is
globally asymptotically stable.

Proof. Define the Lyapunov function as follows

Lo = fo{Tw(% ) +enhg(f) + SR () + 2
T@O)f{V(6) (0)g| 1(6)
t t
+ BiTif(V1) ft,ﬁ QD(Tf((\/l)))de + p2Tig(h) ftf'r] ¢(wﬂ)>d9
+ BT e (1(9))d9}dx

The Lyapunov derivative along system (4) is

iy _ f0{< i ) [A = T t) = BT D (V1)) = BT, g (1(x1))

+ (1 l(xt ) [,Bﬂ"(x t— )f(V(x,t— Tl)) + BT (x,t — T1)g(1(x,t - Tl))}
— dpeM M (x,t) — ple?‘ml(x t)Z(x,1)]
+ AL/ (1 e )) {DAV(x t) + pae 22 (x,t — 1) — d3V(x, t)}

pae 12721
b (N2 (5,8~ diZ(x, )]
n ﬁlTlf(Vl)[T(x,t;]ff((;(;c,t)) B T(x,tn;ff((\;l(;,tq))
T(xt—71)f( V(xt—m1) rete (108
T(x:‘)fEV(x,t))Tl )} + B2Tig(hh) [ng((h))

T(x,t—11)g (I(x,tf'q))

- Tyg(11) +in

4+ In

T(x,tfﬁ)g(l(x,tfﬁ)) }
T(xt)g (I(x,t))

1

+ BiTif(V; )[ 160 _ ’("'3T2)+1n1<x'§1T2)}}dx.

According to the equilibrium conditions of E;, that
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also recall [, AV(x,t)dx = 0and fQ

A=diTy + B1Tif (V1) + B2Tig (),
BiTif (V1) + ﬁleg(h) = dpe! I, pre 1221 = d3V,

dx = /4 %dx, we have

fo{dﬂo—m "48) (1 oty s+ it

BT (xt f(v x1)) =BT (08 (10x,1)) |

(1- &) [ﬁlT(x t=m)f(Viwt =) + BTt —1)g(10et—7))]
( ) % <ﬁ1T1f(V1) + 52T18(11))

plemm(x,t)z(x,t) + Pt Z(x ) + BT (V) (1 - iy ) (10
V(Vxl’t)> + p1eM I (x, ) Z(x,t) — wz(x,t)

BT () [T(x,tT)ff((“il(;c,t)) 3 T(x’t_n;ffg;(;’t_ﬁo I T(X;:;;;E:Ez:)nO]
lnglg([l) [T(x,iig((;(;c,to B T(x,h‘rﬁfg((jf;f,t—ﬁ)) tin T(x;:ti Eji:;;)) ]

BiTuf(va) [ 1) — 1) 4 in 16 ;ﬂ]}dx

Ty f(V1) DV, VV(xp)|?
51p211f]e ﬁlzfz 1 f I E ;H dx

o Jam (1 1) 1

T Vil(i-n)
) +ﬁ1T1f(V1)[ ~TED T RV

T(x,t—1)f | V(x,t—71) | I T(x,t—1)f | V(x,t—1)[(x,t—12)
Tf(g)l(xt) ) + fwy ~ % +In ( >]
A 1 ! T(xb)f V(x,t))l(x,t)
T(x,t—'ﬁ)g([(x,t—ﬁ))ll T(:(,t—'ﬁ)g(l(x,t—'q))
BoTig(h) |2 — -0 — +1In
! [ T(xf) Tig(h)I(x1) T(“)g<1<xlt))

g(h)

T, f (V1) DV, VV(x,t)|?
ﬁlpzllfli 1#272 f fQ I (( ;H dx

Jo (1 o) 1

T(xt—1)f V(x,tf‘(l))Il
q’( YAER)

O N T Wﬁtz(x,t)}dx

) +/51T1f(V1)[ q)(T(Txl,t)>

—p(Yllsiom)) | AV V() g [V
) - o (") + +In )

LV(xth) Vi) f(V Xt | vy
B _ g(l(x,t) I(x f)
B2Tig(l1)| — ¢( Txl )—¢ Txt—n)g(lut-m)h - =T
[ T(xt) ( Tlg(ll)l(x,t)) $th) "
mM] + et (L — L) Z(x,t) pdx
gl I(xt) ) I
Ty f(V1) DV [VV (xt
ﬁlp;lfle 1]4272 1 fQ I 2((* I dx

fQ{lel< T(er)>(

60 + BT ()] - o(riiy) — o (W)

o oz - (4752 - s~ )

pelis(h| () — o (2 2y ~ o (i)

(g(;((zz)> B [(;(1/[)> <l - g(gI((,Ix])))” + p1e (I — L) Z(x, t) ydx

T, f(V1)DV; vv
51p211ji£ 1;42721fg I ( )H dx.
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It follows from (A) that

f(V0) v )
( fn) W )(1_f(v(x1,t)>)'

As ¢(u) > 0 for u > 0, similar to [23], sgn(l; — I) = sgn(Ry — 1), then dstz <0,
therefore E; is stable, and % = Oholdsifand only if T(x,t) = Ty, I(x,t) = I, V(x,t) =V,
and Z(x,t) = Owhen Ry < 1, or T(x,t) = Ty, I(x,t) = I, V(x,t) = V; when Ry = 1.
The largest invariance set of {dL2 = 0} is the singleton {E; }. It follows from the classical
LaSalle’s invariance principle that E is globally asymptotically stable when Ry <1 < R,.
This completes the proof. [

Theorem 4. For system (4), if Ry > 1, the interior equilibrium E is globally asymptotically stable.

Proof. Define the Lyapunov function as follows

= [ ek oot + B g

pZIZe H2T2
+ ple:ﬁzw( )+ BiTof (V. )/ttT1<P(T(gJ;%Z(f)))d9

T(0)3(1(0))

ng(lz) )d9+181T2f(V2) /tirzq)<l(lf))d9}dxl

t
+ PaTag(l2) / (P<

t—1
calculating dd% along the solutions of system (4) , we have

i = fg{( i) (A= dT0ot) = BT 0f (V1)) = paT(x ) (106,1)))

+ (1 - ﬁ) {ﬂlT(x,t — Tl)f(V(x,t — 71)) + BT (x,t — Tl)g(l(x,t — Tl)”
— e (1 - %) [dzl(x,t) — pil(x,D)Z(x, t)}
+  Bibf(V) (1 s )) [AV(x t) + poe 2RI (x, t — 1) — d3V(x, t)}

lezf M2

+ Ple;m (1_ ﬁ) [ql( HZ(x, )—d4Z(x,t)}

. Tzf(vz) [ (x,t;i‘f((;(;c,t)) B T(x,tﬁ;jfg;(;c,tﬁ)) I T(x,;(;jjé:i:;)ﬂ)) }
e

+

,Bszf(VZ)[ 2) I(Xt ) +In (X(;t")fz)}}dxl

using the equilibrium conditions of E;, then

A=diTr+ B1Tof(V2) + BaTog(lr), pae 122I, = dsVs,
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d
B1T2f (V2) + B2Tag(l2) = e (dola + p112Z2), I = ;4,
also recall [, AV (x,t)dx =0and [, A‘;/tht) dx = |4 %dx we have
VolI(xf—
o= da{am( ) (- >+wwwprfﬁ%%
T(x,t— T])f(V(‘Ct ) ) H <V(xt> T(x, t—Tl)f(V(x,t—T1)> I(t—12)
- Taf (V2)I(xt) ( T(xt)f(V(x,t))I(x,t) ]
T, T(x,t— T1)g I(xt—11) | I gl I(x,t) I(x
+ Palag(B)[2 - 1y — — g+ e — 5
e T(xt—11)g (I(x,t‘fl))} dx — BiTof( VZ, 1T)V2 f HVV (x,1)]? dx
T(xb)g (I(x t)) paheTi2 )

= JoltiTa(1 - o2y ) = T + BiTaf (V2) |~ olrizy) — (gt

T(xt—11)f (V(x,tf‘rl)> I f (V(x,t)) V( 3
- _ [
o(— ) T +In fAPES ]
T T(x,t—11)g I(x,tf’ﬁ) I
+ baTag() [~ o) — (e )

g(l(x,t))

o S e S e R o S
= ol (1 =ty ) () im0 o (ety) o ()
0 <T(x,tg)ff(gz\;;zit)rﬁ)lz) _ (p( f(2)V(xt) ) + (f(}/((va;,;)) _ vg;)) (1  fw) )}

Vof (V(x,t)) f (V(x,t))

o ] oofy) o) -2

- g(I(xh))

N (‘*’(;;IZ;)) 1) (1- 802 >]}dx_ﬁ1T2f£Zz)DV2 o LSHGE gy

from (A7), it is easy to see that

(f(V(x,t>) V(x,f)) (1- f(f<V1>) <0

f(») Vi V(x,t)/) =
sU(m) 1wty g(h)
(S 1) imy) =@

As ¢(u) > 0 for u > 0, then déf < 0. The largest invariant set of {dL3 = 0} is the
single point {E, }, similar to the proof of Theorem 3, E; is globally asymptotically stable.
This completes the proof. [

3. Dynamical Behaviors of Discrete System

In preceding section, by introducing Lyapunov functions, we have shown by using
continuous Lyapunov functionals that the global asymptotic stability of the equilibria of
the continuous system (4) is completely determined by the basic reproduction number. Ry
and R; act as threshold parameter for the existence and stability of equilibria. This arises a
natural question that whether the global asymptotic stability of the equilibria of the discrete
system (7) can be preserved. In this section, we will discuss this problem.

Obviously, the discrete system (7) has the same equilibria as system (4). Similarly,
Ey = (To,0,0,0) is the infection-free equilibrium, E; = (Ty, I, V4,0) stands for the CTL-
inactivated equilibrium and E; = (T, I, V5, Z5) is the CT L-activated equilibrium.
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Rewriting the discrete system (7) yields
™ — AAEHT
nHl T LRAKdy - f (Vi +Pag ()
I’” _ I:anrAte 1 (ﬁlT;'Lml+1f(V1;'L7n] )+182T;[m1+1g([i71n—ml )
n+l — T+ AHdy+p1 ZI) ’, 5)
AVypq = Vi + Atpre™ 122 Ln—my+1,
m (AL ) o
Zy't1 = —Trad, Zn-

where the square matrix A of dimension (N + 1) x (N + 1) is given by

c1 €2 o --- 0 0 0
Chr €3 Cp --- 0 0 0
0 ¢ cg -~~~ 0 0 O
0 0 0 -+ 3 o O
0 0 o - Cr (€3 (2
0 0 o --- 0 c (1

with c; = 1+ DAt/ (Ax)? 4+ d3At,c; = —DAt/(Ax)?,c5 = 1+ 2DAt/ (Ax)? + d3At. Ttis
clear that A is strictly diagonally dominant matrix, therefore A is non-singular. From the
third equation of the above system, we have

Virr = AN (Vi + Atppe 220, 1q).

Theorem 5. For any At > 0, Ax > 0, the solutions of the system (7) remain nonnegative and
bounded for all n € N.

Proof. Since all parameters in (7) are positive, then using the induction, it is easy to deduce
from (5) that all solutions of system (7) remain nonnegative provided that the initial value
are nonnegative, for all n € .

Next, we establish the boundedness of solutions. Define a sequence G, as follows

n—1 )
Gif = T+ I+ Lz ar Y [Buf (V) + g (1) e ),

j=n—m

then

G =Gl = AHA=dTy = BT f(VE) = BT (1)
+ A (BT f (V) + BTy 18T,

1
=l =z | - Bz - 4z

n

oA} [51f(Vj"’)+Bzg(l}")}Tjﬁle*mm(nfjﬂ)
j:n*ml+1

n—1

- At ) [Blf(ij) + /32g(1;”)} T oAt ()
J=n—my
- At{)\ — Tl —dol — plTILIZZZH

v (e Y BV + pag (1) Tﬁle-mﬂﬂ”—””}
=n—1imy

IN

AHA —EGIy),
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At;zl 1

where & = min{dy,dy, dy, ¢ }, then we have

1 AA
m < m
1S TEARO" T 1T A

it follows from the induction that
1 A 1
m (= yneom Mg (2 yn
G < (T a) G0 + g[l (T ar) J
therefore
limsup G} < =, for all me {0,1,---,N},

n—oo

this implies that { G, } is bounded, then {T,,},{I,} and {Z, } are bounded.
From the third equation of system (7)

N 1
Z_: n+1 1+d3At< Z VI + Atppe™ HoTo 2 m m2+1)

since {1, } is bounded, then there exists 7 > 0 such that I}}} <y foralln € {—my, —my +
1,---,0,1,---}, me{0,1,---,R}, then

1 N _
Z n+l =1 +d At|: Z Vriln +Atp2€ PlZTzn(N_i_l)},
m=0

by induction, we have

. 1 - pae 22 (N +1) 1
m < m _
LVi' < drgman mgo Yo a5 ! 1 +d3At)"}

N —WT
he (N+ 1)
< Y+t d’73 ,

therefore {V,} is bounded. This completes the proof. [

Global Stability
In this section, we will study the global stability of the equilibria of system (7) .

Theorem 6. For system (7), if Ry < 1, the infection-free equilibrium E is globally asymptotically stable.

Proof. Define the discrete Lyapunov function as follows

N1 T B2Tog' (0) B1Tof'(0)

— - _n_ H1T m F120) \M) m
Wi mZO{At [TO(P( T0)+e ( AR e Rper1m )I” + dsRo (1+Atd3)Vn
e n—1
+ B (o) zi]+ E (B + a1 T
j=n—my

‘BlpzTOf/—yzrz n—1 "

T Redy e g
J=n—ni

It follows from u# — 1 > Inu for all u > 0, that W,, > O for all n € N. Then, along the
trajectory of (7)
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m

+ et (1 + At'BzToig()) (In+1 Im)

=) At T RoeiT

n+1

+ ’512{{,0(0)(1 + Atds ) (Vg = V) + Pleqm(l—kAtd4> (zm—2)]

No[1 - T!
Wiy — Wi = Z *{ n+1 -1+ Toln ——

n

+r (B + Bag() TH,

j=n—mi+1
n—1

- X (ﬁlf(Vm)+ﬁzg(1m)) i1

j=n—m
ﬁlpzTOf/_P‘ZTZ n
+ Rnd { Z ]+1 Z ]711] ’
043 j=n—mp+1 j=n—myp

using the equilibrium condition of Ey, we have

Woi1 =W, < ﬁ{(l—ﬁf)(leo—le,:"H—(ﬁlﬂvmwzg(m) w)

m=0 n+1
+ (1 +At‘B§QT07‘O;151)) ('81 m1+1f( n— ml) +IB2 m1+1g( n— m1)>

+ e?‘lﬂ(l—kAt;{ (T))( dal plLZ”HZn’")

1 m—1

B1Tof'(0) VI =2V + VY

=2 714+ Atdy)D
d3Ry ( + 3) (Ax)?

B1Tof'(0)
+ W <1 + Atd?,) (pze.”ZTZIZLijLl — d3V1T+l)

P (1 ) (2 — dazia) + (B + Bag ) i

= (B V) + Bo8 () ) To

BipaTof/—H2m2
T Reds (I;TH - I;Tfmfrl)

3 To T m "
= ) leo(Z— T, )+,31T0f(Vn ) + BaTog(I)
m=0 n+1
L BT e BP0 e
Ro n Ry n q n
BiTof'(0)D i
t R (R v v Vi)
N !
_ To _ ntl ,BlTof( ) B
< n;ﬂ{dlfro(z - TO) of v (Ro 1)
Pt O0To (g _q) _ dapre™
+ R, P28 o) 0 m (R 1) .

the last inequality is deduced from condition (A5), if Ryg < 1, then W, 1 — W,, <0, for
all n € X, therefore, {W, } is monotone decreasing sequence. It follows from W,, > 0 that
limy, 0o W, > 0, then

lm (W — Wy) =0,

n—o0

therefore
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(1) If Rp < 1, then limy_se0(Wy11 —

Wy) = 0 implies that limy 0 T} = T,

limy e V! =0, limy, 00 Z)} = 0, limy, o0 I} = 0.

(2) If Rg = 1, then limy_yoo (W, 11 —

W,) = 0 implies that lim, . T} = Tp ,

limy, 00 ZI' = 0, from system (7), we obtain limy, . I]} = 0, lim, e V' = 0.
Hence, Ey is globally asymptotically stable when Ry < 1. This completes the proof. O

Theorem 7. For system (7), if Ry <1 < Ry, the CTL-inactivated infection equilibrium E; of is
globally asymptotically stable .

Proof. Define the discrete Lyapunov function as follows

W = i{At

m

+ ATf(V) )

_|_

B1Tif (V1)

Ty 4 emm BTV, Vit et
[1(p(T) ellq)(l)+p2eﬂzrzllvl(vl)+ p Z}
(U 8(17)
UitAYY T
—————— ) 4+ B2Tig(h) Jriery 7
j—n—ml(P( Tf(V1) ) p2Tig(h) nz " ( Tig 11) )

nz ( ]+1> + :B Tlf(vl) (_;((“//m;) + ,BZTlg(Il) (g((llkf)) ) }

Sinceu —1 > Inu for all u > 0, then Wn > 0 for all n € R. The Lyapunov derivative

along (7) is

Wn+1 - I7\[11

m

N
1 T
)y { o [Tiy — T+ Tiln =

Im
e (I — I+ I o)

%(Vnﬁ»l VI +Viln ;/”1" )+ Ple;m (22— 20)]
sl % oChiei) - £ oChfet)
s £ oCrar) - £, o)
ﬁlTlf(Vl)[] nimzﬂq)(lfgl) jizlmz"’(lﬁl)}
S <f i m>) i)

:
oS- 4
E{éﬁlfﬁcwzﬂ)wm 0 ()
e " n+1

B1Tif (V1) ( Vi ) (Vm

pze—yzrz Il ym n+1

— V) + W %z
n+1

e =20

lnglf(Vl)[(P( n+1f(Vn’”)> 7¢<T;"_m1+1f( niml)ﬂ

) TV)
m m Tﬂl In "
ST I R
IW]
pv ot - ot
VR g
Sy v+>1 RSl
s gp)

g(Ly)
B[Sy — Gy g(I,TH)]}'
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As E; satisfies
A=diTy + B1Tif (V1) + B2Tag(h),

B1Tif (V1) + B2Tig(l) = e M Tdy Iy, pre™ M0 L = d3 V7,
then

_ _ N
Wn+1 — Wy

IN

{lel (1 - T%) (1 - Til? ) + (1 - %) (.BlTlf(Vl) +,82T1g(11))

m=0

- (1- T,,, L) (BT FV) + BaTitag (1)

+ ( I'" )( n— m1+1f i m )+ BT} m]Hg(I””Lml ))
(1 - Im ) 52T18(11)1%1 (1— 17{171)

V I 1 vm 1dgetn T
+ B T1f(V1)(1 - 7‘/»11 )(7n 2 LH) i Zln

- /51T1f(V1)I

L 1% q
n f(Vm) T’:n*ml f(V;iml)
+  BiTif(V1) {‘P( THf(Vl) ) ( TLl’(Vl) )]
m (M) Ty 18I0y
+  BTig(h) {90( Tt;g([l )_ ( T1§11) )]
+  BiTif(Vr) [(l’( ) ( & ;ZZH)}

f(v; 1)7f(Vy?’)+ fvr )
fn)  f(n) fVia)

sty g {eE)

gh) g " <1,1+1>)}

N Ty f(V1)D 1%

m=0 ’72‘51-1161[%(&})&)2 (1 a Vii’;l 1 ) (V’:n;rll B 2V7:”+1 N Vr:il-])

S O ] e

+ .BlTlf<Vl)(

+ 52T18(11)(

m=0 1+1 n+l
_ Tn ml+1f( Vi ml)ll f(V::rl) _ VJLY«IH +In Ty "!1+1f Vit rm)lg m2+1]
Tlf(Vl) n+1 f(Vl) V Tm 1f( n+1> n+1
Tl T;rn—m +1g< n—niy )Il g(l, +1)
+  B2Tig(h) - ! + ==
§ { T Tig ()L g(h)
_ trﬂnﬂ +1n Tr’t’,—n11+lg( r't”—ml)}
h T8 (L)
_ opdgeino, | BTF(V)D =1 (VA = v )?
g 7T phe o (Ax)? Vi,
N
T T T
= Ty (1- =) (1- 22 ) + B Tf (V) | — o )
Zo{ (=) (- 50) oo,

3 (T:Lmlﬂf(vfxn—ml)ll ) B (Vl oy 41 ) n fVi) Vi

T (Vi) v h f(\) i
f(Vm) n+'l T T m1+1g(1;1n L
+ f(vm Wi }+ﬁ2T1g(11)[7"’(T,7'H>’ ( Tyg(h)I™, )
g<1n’+1) In1 g(Im)I;xn+l
+ Sy S e
g(l) n " gIt)h ]
_ opdgenno, L BITIf(V)D v Z LV )
q M pehe R (Ax)2 T = viATym
N
T T Ji
= Ty 1- +BTif(V1)| — ()
Efam- o) 0- ) [~ ol
_ ( T rr11+lf(vn Wll) )74](‘/1[11 mz+1)
Tlf Vi), Vil
_ ( n+1) (f( Vi) _ Vn+1)(1_ SV OV )]
Vﬂl)Vl fn) Vi fVMVEL
g(In m )Il (I")I
+ T e(1 n my+1 1 _ n+1
patig(i o) —o( Feir, ) (i)
L{CHE I ) g(l) prdgen™
+ - 1- A
( (L) I )( g(l;”ﬂ))] q nt+1

_ __ATAOD | NV Vi)t

p2liemt22 (Ax)? 7 i Vv,
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Similar to the proof of Theorem 3, we have

<f<v<x, 1) v<x,t>) (1- f(f(Vﬁ) <0,

f(») Vi V(x,t))
(1) I(xb) g(h)
ey 1) giem) <©

It follows from ¢ (1) > 0 that (W, il — Wy) <0, for all n € R, this implies that {W,, }
is monotone decreasing sequence. As W, > 0, then limy_co W, > 0, hmn%oo(wnﬂ
Wn) = 0, so that lim, . T}’ = T1. Combined with system (7), we obtain lim, . I} = 1,

limy, 00 V" = Vj and limy,_y00 ZI" = 0, for all m € {0,1,- - -

,N}, then E; of system (7) is

globally asymptotically stable. This completes the proof. [

Theorem 8. For system (7),if Ry > 1, the interior equilibrium Ey is not globally asymptotically stable .

Proof. Define the discrete Lyapunov function as follows

= £ (e () By )
4 et Zz(P(ZZ'T) +AtP1€’“T1122m} Jrﬁszf(Vz)]_nni_lm1 @(W)
+ BaTug(ly) ; (]TZf()))H%szf(Vz) f 90(1%1)

j=n—my

f(VJI")

+ 51T2f(V2)¢(f<V) ) +ﬁ2T2g(12)<p(g( ") )},

it follows from u — 1 > Inu that W,, > 0 for all n € R. Then, along the trajectory of (7)

WnJrl - Wn

mio { Alt {T'TH T+ T2ln Tﬁl +efm (I,T ~I"+ hln I,Zl)
>< -21)
s B oCR) - T o)
BaTog (1) L_ném qo(w) ) /_:Zlml , <Tiﬁ(fi> )
PiT2f(V2) []_nimm sv(ljr;f) j_?mz qv(I’mj)}
prrar () (T’ ~ kg e )

(

g sy 8(Ly)
BaTag (L) g(zf (k) ““g(l,’lil))}
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%O{Alt[@— TZH)(T;Z”H Tm>+em (1 171112 )(U{‘H Im)

" n+1
B (1- ) (Vi - )

P (1 ) (= 22) oty (2~ 21
ps o ()~ o)
paiste o () o (i)

pin o) - o522
(

) (v fvi)

ﬁlTZf(VZ)( f(V2)1 ~ f(n) +1nf(V£”+1))
g(I™) (I g1

'BZng(b)( g(I;—)1 a g(Ir) +lng(I;T+1)>}'

From the equilibrium condition of E;, we have

then

Wn+1

— Wy

B1T2f (V2) + BaTag(l2) = e (dola + p1 12 Z2), I = e

A=diTr+ B1Tof(V2) + PaTog(lr), pre 122D, = d3Vs,

dy

mio {dsz(l - Bay e ) (pmercvn

n+1

BaTog()) - (1—TT)(ﬁ1 (Vi) + BT g (1))

(1 - IT> (:Bl n— m1+1f( n— ml) + ﬁZT:lnfml+1g(Irrzn—m1))

dpe" Iy — pre L 20+ BiTof (Vo) + B2 Tag(ha)
p1e"" M Zy + pr1e L2 + pret M L (2 — Z)
VZ I;n—m +1 Vn+1
B1Taf (V2) = -
(=) - 55)

11T T m P1d4e”m m
pre 1 Zn — q Zys1 =P

m.zm

kst n+1-n

1€ Z2 ——m
n+1

pu iz s o (Vi) o (i )

n n=m - ml)
B2Tag(I2) [ ( ;1;[2 ) (%ﬂ

pisstfo(522) - oot
f(Vi)
V) S )))
gl

ﬁszf(V2)< f(‘n;)l f(Vz) fvy
paTag(h) ( ;( )1) (3*“ i )>>}

( n+1
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1
DVap1 Tof (V2) NZ (Va1 = Vita)?
pae 122 I (Ax)? = ymtlym

n+1 “n+l
3 m
TZ Tn+1 TZ VZIVI "
= leZ 11— —= 1— n ’31T2f(V2) - 2
";0 { < T ) ( & > [ T Vil
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Similar to the proof of Theorem 3, we have

(f(V(x,t)) V)(1 f(f(Vl)t) 0,

fy)y W V(x, 1))
g(x,t))  I(x,t)\r,  &(h)
( 2(h) I )@ 2UI(x, t))) <0,

this implies that {W,} is a monotone decreasing sequence, then W, > 0, lim;_cc Wy,
> 0, therefore

n—00

According to the system (7), we claim that the CTL-activated equilibrium Ej is not
globally asymptotically stable. In fact, if the CTL-activated equilibrium E; is globally
asymptotically stable, from the above inequality, we have

0< _d2€l41Tl I — p1€y1T1Z212 <0,
this is a contradiction. This completes the proof. [

4. Numerical Simulation

In this section, we choose f(V) =V, g(I) = I, some numerical results of system (4) are
presented for supporting our analytic results. Based on biological meanings of virus dynamics
model from papers [39,40], we have estimated the values of our model parameters as follows:
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If we choose D = 3, then we can give a numerical simulation of the stability of system (4).
Using the data in Table 1, we first show in a simulation that the interior equilibrium is stable

(see Figure 1).

Table 1. State variables and parameters of HIV-1 infection model.

Parameter Description

A 0.9 References [40]
dq 0.03 Reference [39]
dy 0.5 Reference [39]
ds 0.1 Reference [40]
dy 0.3 Reference [40]
B1 0.3 Reference [40]
B2 04 Reference [40]
1 0.08 day_1 Estimate

P2 0.5day ! Reference [40]
q 0.4 Estimate

Distance x

Figure 1. When D = 3, Ry > 1, the interior equilibrium E; is globally asymptotically stable.

1
Distance x

0

0

-100

-100

0
Time t

Time t

100

Distance x

Distance x

0

0

-100

-100

Time t

100

Time t

From Figure 1, we can see that the population has gradually stabilized after a

sharp fluctuation.

If we choose 1 = 0.0003 and ; = 0.004, then Ry < 1. We can simulate that the
infection-free equilibrium is globally asymptotically stable (see Figure 2).
From Figure 2 , we can see that the number of infected cells, virus and CTLs tends to

zero, except uninfected cells.

If we choose g4 = 0.000004 and p, = 0.9, then Ry < 1 < Ry. This moment the
CTL-inactivated equilibrium is globally asymptotically stable (see Figure 3).
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Distance x 0 100 Time t Distance x L Time t

Z(x,t)
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2
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1
0
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Figure 2. When D = 3, Ry < 1, the infection-free equilibrium Ej is globally asymptotically stable.

Distance x 0 100 Time t Distance x £ =100 Time t

100 100

Distance x & =00 Time t Distance x & =i Time t
Figure 3. When D = 3,R; <1 < Ry, the CT L-inactivated equilibrium E; is globally asymptotically stable.

From Figure 3, we can see that the population in the compartment CTLs tends to 0.
In addition, except for CTLs, the number of uninfected cells, infected cells, virus tends to
certain constants.

The novelty of this paper is that we consider the effects of diffusion, time delay, and
abstract functions on the spread of viruses. In order to see the impact of proliferation on
the spread of the virus more intuitively, we first choose g4 = 0.04. Next, we select D = 0
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and D = 300 decibels to simulate the image of I while other parameters keep the values in
the Table 1.

The left image in Figure 4 is an image without time delay, and the right image is an
image with time delay equal to 300. Since we are simulating long-term dynamic behavior,
from the overall image of the two figures, there is no obvious difference in either the stable
position or the growth rate. So where is the effect of diffusion reflected? We believe that
the effect of diffusion should be reflected in the growth of I. Therefore, we project the two
graphs in Figure 4 on the time-quantity axis (Figure 5).

Distance x 0 20 Time t Distance x 0 -20 Time t

Figure 4. Comparison of compartment I at D = 0 and D = 300.

10 20 30 40 50 -10 0 10 20 30 40 50
Time t Time t

Figure 5. Comparison projection of compartment  when D = 0 and D = 300.

From the left image of Figure 5, we can clearly see that when there is no time delay, the
image rises smoothly and the curve is smooth. When the time lag is equal to 300, the image
is not a smooth curve, which shows that the proliferation brings about the proliferation of
infected cells and the uneven fluctuation.

5. Conclusions and Discussion

It is necessary to understand the dynamics model for HIV infection since these infected
cells usually cause a CTL response from the immune system. In this paper, we first devel-
oped a diffusive infection model (4) with general nonlinear incidence rate and two delays
on the base of model (3), we show that the global stability of equilibria is completely deter-
mined by the reproductive numbers for viral infection Ry and for CTL immune response Rj.
Second, we considered the corresponding discretization of the continuous model by using
nonstandard finite difference scheme, and then studied the global stability of the discrete
system. Some numerical simulations were also presented to support our analytic results.
In general, systems of PDE cannot be solved explicitly, and numerical solutions have to be
studied instead. By using the NSFD scheme, we showed that the proposed discrete model
partly preserves the global stability of equilibria of the corresponding continuous model.
We plan to address how other diffusive terms (for infected and uninfected cells) affect the
model in future work.
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