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Abstract: This paper is centered around the creation of new fuzzy connectives using automorphism
functions. The fuzzy connectives theory has been implemented in many problems and fields. In
particular, the N-negations, t-norms, S-conorms and I-implications concepts played crucial roles
in forming the theory and applications of the fuzzy sets. Thus far, there are multiple strategies
for producing fuzzy connectives. The purpose of this paper is to provide a new strategy that is
more flexible and fast in comparison with the rest. In order to create this method, automorphism
and additive generator functions were utilized. The general formulas created with this method can
provide new fuzzy connectives. The main conclusion is that new fuzzy connectives can be created
faster and with more flexibility with our strategy.

Keywords: fuzzy connectives; fuzzy negations; t-norms; S-conorms; fuzzy implications; automorphisms

MSC: 03B52

1. Introduction

Fuzzy connectives play a crucial role in many applications of fuzzy logic, such as
approximate reasoning, formal methods of proof, inference systems, and decision support
systems. Recognizing the above importance, many methods of creating fuzzy connectives
have been discovered. Most of them refer to the t-norms and I-implications fuzzy con-
nectives. These methods, as well as the fuzzy connectives they produce, are visible in
Figure 1.

Figure 1. The history and evolution of t-norms.

In 1942, Menger, in his paper “Statistical metrics”, was the first to use the concept
of t-norms [1]. Schweizer B. and Sklar A., in work published in 1958, 1960, 1961 and
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1983 [2], defined the axioms of ordinary rules and presented the results that occurred during
development. Then, Ling C.H., in 1965 [3], built upon B. Schweizer’s and A. Sklar’s work
and defined the Archimedean t-norms. Frank M.J., in 1979 [4], defined the parameterized
families of t-norms. Finally, Navara M. in 1999 [5], Gottwald S. in 2000 [6] and Klement E.P.
in 2001 [7] introduced the method of producing t-norms via automorphism and additive
generator functions.

Kerre E., Huang C. and Ruan D. discovered the modus ponens and modus tollens
in 2004 [8]; Trillas E., Mas M., Monserrat M. and Torrens J., in 2008, discovered different
implications with varying properties [9]. Thereafter, in 2004, Kerre E. and Nachtegael
M. formed the fuzzy mathematical morphology [10]. Furthermore, Bustince H. et al., in
2006, discovered fuzzy measures and image processing [11]. Moreover, Baczyński M. and
Jayaram B., as well as Mas M., Monserrat M., Torrens J. and Trillas E., in 2007, created the
first strategy, which generates (S,N)-implications [12,13]; Fodor J.C. and Roubens M., in
1994, created the second strategy, which generates R-Implications [14]. The third strategy,
which generates QL and D-operations, was created by Mas M., Monserrat M. and Torrens
J. in 2006 [15]. In 2004, Yager R.R. created the fourth strategy, which generates f- and
g-implications [16]. Finally, Bustince H., Burillo P. and Soria F. in 2003 [17], as well as
Callejas C., Marcos J. and Bedregal B. in 2012, created the fifth strategy, which generates
any fuzzy implication [18].

Since 2012, there has been no further research focused on the fuzzy connectives. There-
fore, this paper was created in order to build upon the previous discoveries and improve
them by creating a faster and more flexible strategy for producing fuzzy connectives, which,
in turn, produces more flexible results.

2. Literature Review

In the Introduction, a review of milestones achieved by other researchers in the field
of fuzzy connectives was given. However, this section is dedicated to the presentation of
published research of other researchers in the field of the generalization of fuzzy connectives.
The goal of this presentation is the exploration of other viewpoints on the subject of this
paper. In the following table, the research published for every primary category of fuzzy
connectives is presented:

The field of the generalization of fuzzy connectives has been explored by many
researchers over the years. As a result, the four main categories of fuzzy connectives have
been the subject of many research papers which contributed to the development of the field.

The published research of the negation connectives category (see Table 1) offered
many contributions to the field of the generalization of fuzzy connectives. To be more
specific, the book Fuzzy Preference Modelling and Multicriteria Decision Support (see [14]) and
paper “Related Connectives for Fuzzy Logics” (see [19]) contributed by offering definitions,
properties and theorems. The paper “A treatise on many-valued logics” (see [6]) contributed
by offering a new strategy for generalizing fuzzy connectives via automorphisms.

Similarly, for the conjunction connectives: The paper “A Treatise on Many-Valued Log-
ics” (see [6]) contributed by offering new methods for generalizing conjunction connectives.
The paper “Triangular norms” (see [7]) contributed by offering new methods for construct-
ing t-norms as well as t-norm families. The paper “Characterization of Measures Based
on Strict Triangular Norms” (see [5]) contributed by offering new strategies for producing
t-norms and especially Frank’s t-norms. The paper “The best interval representations of
t-norms and automorphisms” (see [20]) contributed by offering new methods of producing
t-norms, especially interval t-norms and interval automorphisms.

Similarly, for the disjunction connectives: The paper “Connectives in Fuzzy Logic”
(see [21]) contributed by offering new triples of t-norms, t-conorms and n-negations, which
prove multiple theorems. The book Fuzzy Implications (see [22]) contributed by offering a
complete presentation of the published research until 2008. The paper “A treatise on many-
valued logics” (see [6]) contributed by offering a combination of t-norms and t-conorms,
which proves multiple theorems. The paper “Triangular norms” (see [7]) contributed
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by offering a combination of t-norms and t-conorms, which proves multiple definitions
and properties.

Table 1. Published research of every fuzzy connectives category.

Category Published Research

Negation Connectives Fuzzy Preference Modelling and
Multicriteria Decision Support [14]

“Nilpotent Minimum and
Related Connectives for Fuzzy Logics” [19]

“A treatise on many-valued logics” [6]

Conjunction Connectives “A treatise on many-valued logics” [6]
“Triangular norms” [7]

“Characterization of Measures Based
on Strict Triangular Norms” [5]

“The best interval representations
of t-norms and automorphisms” [20]

Disjunction Connectives “Connectives in Fuzzy Logic” [21]
Fuzzy Implications [22]

“A treatise on many-valued logics” [6]
“Triangular norms” [7]

Implication Connectives “Fuzzy Implications” [22]
“Automorphisms, negations and

implication operators” [17]
“Actions of Automorphisms on Some Classes

of Fuzzy Bi-implications” [18]

Finally, for the implication connectives: The book Fuzzy Implications (see [22]) con-
tributed by offering a complete presentation of the published research until 2008. The paper
“Automorphisms, negations and implication operators” (see [17]) contributed by offering
a new strategy for constructing implications via automorphisms. The paper “Actions
of Automorphisms on Some Classes of Fuzzy Bi-implications” (see [18]) contributed by
offering a new class of implications, using automorphisms, the bi-implications class.

3. Preliminaries

In this section, the definitions and basic properties of the negation, conjunction, disjunc-
tion and implication operators in fuzzy logic are provided. The concepts of automorphism
and conjugate are used throughout the whole paper.

3.1. Fuzzy Negations

Some definitions retrieved from the literature can be found in the following references:
(Baczyński M., 1.4.1–1.4.2 Definitions, pp. 13–14, [22]), (Bedregal B.C., p. 1126, [23]), (Fodor
J., 1.1–1.2 Definitions, p. 3, [14]), (Gottwald S., 5.2.1 Definition, p. 85, [6]), (Weber S., 3.1
Definition, p. 121, [24]) and (Trillas E., p. 49, [25]).

Definition 1. A function N : (0, 1)→ [0, 1] is called a Fuzzy negation if
(N1) N(0) = 1, N(1) = 0;
(N2) N is decreasing.
A fuzzy negation N is called strict if, in addition to the former properties, the following apply:
(N3) N is strictly decreasing;
(N4) N is continuous.
A fuzzy negation N is called strong if the following property is satisfied:
(N5) N(N(x)) = x, x ∈ [0, 1].

The following table presents two well-known families of fuzzy negations. Those fuzzy
negations can be found in the work by Baczyński M., p. 15, [22].
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3.2. Triangular Norms (Conjunctions)

The history and evolution of t-norms was already explored in a previous section
(see Figure 1). Therefore, in this subsection the definition and properties of t-norms will
be provided.

The following definition can be found in: (Klement E.P et al., 1.1 Definition, pp. 4–10, [7]),
(Baczyński M., 2.1.1, 2.1.2 Definitions, pp. 41–42, [22]), (Weber S., 2.1 Definition, pp. 116–117, [24])
and (Yun s., p. 16, [26]).

Definition 2. A function T : [0, 1]2 → [0, 1] is called a triangular norm, shortly, t-norm, if it
satisfies, for all x, y ∈ [0, 1], the following conditions:
(T1) T(x, y) = T(y, x), (commutativity);
(T2) T(x, T(y, z)) = T(T(x, y), z), (associativity);
(T3) i f y ≤ z, then T(x, y) ≤ T(x, z), (monotonicity);
(T4) T(x, 1) = x, (boundary condition).

In the following table, three well-known t-norms are presented. Those t-norms can be
found in: (Baczyński M., p. 42, [22]).

3.3. Triangular Conorms (Disjunctions)

The t-conorm or S-conorm are a dual concept. Both ideas allow for the generalization
of the union in a lattice or disjunction in logic. The following definition can be found
in: (Klement E.P et al., 1.13 Definition, p. 11, [7]), (Baczyński M., 2.2.1, 2.2.2 Definitions,
pp. 45–46, [22]) and (Yun s., p. 22, [26]).

Definition 3. A function S : [0, 1]2 → [0, 1] is called a triangular conorm (shortly t-conorm) if it
satisfies, for all x, y ∈ [0, 1], the following conditions:
(S1) : S(x, y) = S(y, x) (commutativity);
(S2) : S(x, S(y, z)) = S(S(x, y), z) (associativity);
(S3) : If y ≤ z, then S(x, y) ≤ S(x, z) (monotonicity);
(S4) : S(x, 0) = x (neutral element 0).

In the following Table 2, three well-known t-conorms are presented. Those t-conorms
can be found: (Baczyński M., p. 46, [22]).

Table 2. Basic t-conorms.

Designation Equation

Maximum or Gödel t-conorm SM(x, y) = max{x, y}
Product t-conorm, probabilistic sum SP(x, y) = x + y− x · y

Lukasiewicz t-conorm, bounded sum SL(x, y) = min(x + y, 1)

Drastic Sum SD(x, y) =

{
1, if x, y ∈ (0, 1]
max(x, y), otherwise

3.4. Fuzzy Implications

The fuzzy implication functions are probably some of the main functions in fuzzy
logic. They play a similar role to that played by classical implications in crisp logic. The
fuzzy implication functions are used to execute any fuzzy “if-then” rule on fuzzy systems.
The following definition can be found: (Baczyński M., p. 2, [22]), (Yun s., p. 5, [26]) and
(Fodor J., p. 299, [27]).
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Definition 4. A binary operator I : [0, 1]2 → [0, 1] is said to be an implication function, or an
implication, if, for all x, y ∈ [0, 1], it satisfies:
(I1) : I(x, z) ≥ I(y, z) when x ≤ y, the f irst place antitonicity;
(I2) : I(x, y) ≤ I(x, z) when y ≤ z, the second place isotonicity;
(I3) : I(0, 0) = 1, boundary condition;
(I4) : I(1, 1) = 1, boundary condition;
(I5) : I(1, 0) = 0, boundary condition.

A function I : [0, 1]2 → [0, 1] is called a fuzzy implication only if it satisfies (I1)–(I5).
The set of all these fuzzy implications will be denoted by FI.

3.5. Automorphism Functions

Automorphism functions play an instrumental role in fuzzy connectives. This is the
case because they are necessary for their generalization.

The following definition can be found in: (Bedregal B., p. 1127, [23]), (Bustince H, B.,
p. 211, [17]) and (Yun s., p. 13, [26]).

Definition 5. A mapping ϕ :[a, b]→ [a, b] ([a, b]⊂ R) is an automorphism of the interval [a, b] if it
is continuous and strictly increasing and satisfies the boundary conditions: ϕ(a) = a and ϕ(b) = b.
If ϕ is an automorphism of the unit interval, then ϕ−1 is also an automorphism of the unit interval.

Definition 6. By Φ, we denote the family of all increasing bijections from [0, 1] to [0, 1]. We say
that functions f , g : [0, 1]n → [0, 1] are Φ-conjugate if there exists a φ ∈ Φ such that g = fφ,
where fφ(x1, . . . , xn) := φ−1( f (φ(x1), . . . , φ(xn))), x1, . . . , xn ∈ [0, 1].

4. Materials and Methods

In this section, the methods used in this paper are presented in detail.
The following theorem presents the general form of fuzzy negations using automor-

phism functions. The researchers (J.C. Fodor and M. Roubens, Theorem 1.1, p. 4, [14]),
(Gottwald S., Theorem 5.2.1 p. 86, [6]) and (Fodor J., p. 2077, [19]) have worked with
functions of this type, but they focused mainly on natural negations. The general formula
(1) can be used in order to generate new fuzzy negations (see Example 1i.).

Theorem 1. Let Nϕ : [0, 1]→ [0, 1] be a function. Nϕ is a strong negation if and only if there is
another strong negation N and an automorphism ϕ such that:

Nϕ(x) = ϕ−1(N(ϕ(x))), ∀x ∈ [0, 1] (1)

Proof of Theorem 1. (⇒)
It is easy to see that the function Nϕ is defined by (1) and is an involution with the

properties Nϕ(0) = 1 and Nϕ(1) = 0. In addition, it is strictly decreasing. Hence, Nϕ is a
strong negation function (see Bedregal B.C., Proposition 3.2, p. 1127, [23]).

(⇐)
We will prove that a strong negation Nϕ(x) is written in the form (1).
Let be a function Nϕ : [0, 1]→ [0, 1] be a strong negation and satisfy the following:
Nϕ ↓ [0, 1], is strictly decreasing,
Nϕ(0) = 1,
Nϕ(1) = 0,
Nϕ, is continuous, and
Nϕ(Nϕ(x)) = x.
Suppose there is a fixed point x0 ∈ (0, 1) : Nϕ(x0) = x0.
Additionally assume there is a strictly increasing, bijective function

h : [0, x0]→ [0, ϕ(x0)], h(0) = 0, h(x0) = ϕ(x0), h(1) = 1.
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Let a function N be a strong negation in [0, 1] with N(h(x)) = h(x).
We define a function ϕ : [0, 1]→ [0, 1] with formula

ϕ(x) =
{

h(x), x ∈ [0, x0]
N(h(Nϕ(x))), x ∈ (x0, 1]

We will prove that ϕ is an automorphism function.
Indeed:
If ϕ(x) = h(x), then h(x) is a strictly increasing function.
If x ∈ (x0, 1], then Nϕ is a strictly decreasing function and h is a strictly increasing

function. Then h(Nϕ(x)) is a strictly decreasing function. Thus, N(h(Nϕ(x))) is a strictly
increasing function in [0, 1].

Therefore, ϕ is a strictly increasing function in [0, 1].

ϕ(1) = N(h(Nϕ(1))) = N(h(0)) = N(0) = 1.

ϕ(0) = N(h(Nϕ(0))) = N(h(1)) = N(1) = 0.

Therefore, ϕ is an automorphism function.
We define the inverse function with the formula:

ϕ−1(x) =
{

h−1(x), x ∈ [0, ϕ(x0)]
Nϕ(h−1(N(x))), x ∈ (ϕ(x0), 1]

If x ∈ [0, ϕ(x0)], then

ϕ−1(N(ϕ(x))) = Nϕ(h−1(N(ϕ(x)))) = Nϕ(h−1(N(h(x)))) = Nϕ(h−1(h(x))) = Nϕ(x)

If x ∈ (ϕ(x0), 1], then

ϕ−1(N(ϕ(x))) = h−1(N(ϕ(x))) = h−1(N(N(h(Nϕ(x))))) = h−1(h(Nϕ(x))) = Nϕ(x)

Consequently, Formula (1) applies.

The following theorem presents the general form of t-norms using an automorphism
function. Researchers (see René B. et al., Theorem 2.3, p. 372, [20]) and (Gottwald S.,
Theorem 5.1.3, p. 82, [6]) worked with such functions, but they focused mainly on the
specific forms of t-norms (see Table 3). Formula (2) can be used to generate new t-norms
(see Example 1ii).

Table 3. Basic fuzzy negations classes.

Designation Equation

Sugeno class Nλ(x) = 1−x
1+λx , λ ∈ (−1,+∞)

Yager class NW(x) = (1− xw)
1
w , w ∈ (0,+∞)

Theorem 2. Let Tϕ : [0, 1]→ [0, 1] be a function. Tϕ is a strict and Archimedean t-norm if and
only if there is another strict and Archimedean t-norm T and an automorphism ϕ such that:

Tϕ(x, y) = ϕ−1(T(ϕ(x), ϕ(y))), ∀x, y ∈ [0, 1] (2)

Proof of Theorem 2. (⇒)
We will prove that Formula (2) is a strict and Archimedean t-norm.

Tϕ(x, y) = ϕ−1(T(ϕ(x), ϕ(y))) = ϕ−1(T(ϕ(y), ϕ(x))) = Tϕ(y, x)
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Therefore, the function Tϕ is commutative.

Tϕ(x, Tϕ(y, z)) = ϕ−1(T(ϕ(x), ϕ(Tϕ(y, z)))) = ϕ−1(T(ϕ(x), ϕ(ϕ−1(T(ϕ(y), ϕ(z)))))) =
ϕ−1(T(ϕ(x), T(ϕ(y), ϕ(z)))) = ϕ−1(T(T(ϕ(x), ϕ(y)), ϕ(z)))

Tϕ(Tϕ(x, y), z) = ϕ−1(T(ϕ(Tϕ(x, y)), ϕ(z))) = ϕ−1(T(ϕ(ϕ−1(T(ϕ(x), ϕ(y)), ϕ(z))))) =
ϕ−1(T(T(ϕ(x), ϕ(y)), ϕ(z)))

Therefore, the function Tϕ is associative.

∀ y ≤ z⇔ ϕ(y) ≤ ϕ(z)⇔ T(ϕ(x), ϕ(y)) ≤ T(ϕ(x), ϕ(z))⇔
ϕ−1(T(ϕ(x), ϕ(y))) ≤ ϕ−1(T(ϕ(x), ϕ(z)))

Therefore, the function Tϕ is monotonous with respect to the second variable.

Tϕ(x, 1) = ϕ−1(T(ϕ(x), ϕ(1))) = ϕ−1(T(ϕ(x), 1)) = ϕ−1(ϕ(x)) = x.

Therefore, the function Tϕ satisfies the boundary condition.
The function Tϕ is continuous with respect to the two variables.

∀ x < 1⇔ Tϕ(x, x) < Tϕ(x, 1)⇔ Tϕ(x, x) < x

Therefore, the function Tϕ is Archimedean.
Consequently, the function given by Formula (2) is a strict and Archimedean t-norm.
(⇐)
From the theorem of the additive generator, we obtain: T(x, y) = f (−1)( f (x) + f (y)),

where the function f is a strictly decreasing function, f (0) = b, b ∈ R0 and f (1) = 0 (see
Baczyński M., Theorem 2.1.5, p. 43, [22]) and (Gottwald S., Theorem 5.1.2, p. 78, [6]).

We define the function h : [0, 1]→ [0, 1] with the formula:

h(x) = − e−b

1− e−b +
e− f (x)

1− e−b ,

where h is a strictly increasing function in [0, 1], h(0) = 0 and h(1) = 1.
The function h is inverted with the inverse:

h−1(x) = f−1(− ln(x(1− e−b) + e−b)) = f (−1)(− ln(x(1− e−b) + e−b))

h(T(x, y)) = h( f (−1)( f (x) + f (y))) =
h( f (−1)(− ln(h(x)(1− e−b) + e−b)− ln(h(y)(1− e−b) + e−b))) =

h(h−1(T(h(x), h(y))) = T(h(x), h(y))

Consequently, Tϕ(x, y) = h−1(T(h(x), h(y))).

Theorems 3–5 produce the same t-conorm. To be more specific, Theorem 3 presents
the general form of t-conorms using an automorphism function. Formula (3) can be used to
generate new t-conorms (see Example 1iii).

Theorem 3. Let Sϕ : [0, 1]→ [0, 1] be a function which is a strict and Archimedean t-conorm if
and only if there is another strict and Archimedean S t-conorm and an automorphism ϕ such that:

Sϕ(x, y) = ϕ−1(S(ϕ(x), ϕ(y))), ∀x, y ∈ [0, 1] (3)

Proof of Theorem 3. (⇒)
We will prove that Formula (3) is a strict and Archimedean t-conorm.

Sϕ(x, y) = ϕ−1(S(ϕ(x), ϕ(y))) = ϕ−1(S(ϕ(y), ϕ(x))) = Sϕ(y, x), ∀x, y ∈ [0, 1]
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Therefore, the function Sϕ is commutative.

Sϕ(x, Sϕ(y, z)) = ϕ−1(S(ϕ(x), ϕ(Sϕ(y, z)))) = ϕ−1(S(ϕ(x), ϕ(ϕ−1(S(ϕ(y), ϕ(z)))))) =
ϕ−1(S(ϕ(x), S(ϕ(y), ϕ(z)))) = ϕ−1(S(S(ϕ(x), ϕ(y)), ϕ(z)))

Sϕ(Sϕ(x, y), z) = ϕ−1(S(ϕ(Sϕ(x, y)), ϕ(z))) = ϕ−1(S(ϕ(ϕ−1(S(ϕ(x), ϕ(y)), ϕ(z))))) =
ϕ−1(S(S(ϕ(x), ϕ(y)), ϕ(z)))

Therefore, the function Sϕ is associative.
I f x ≤ z and y ≤ u ⇒ Sϕ(ϕ(x), ϕ(y)) ≤ Sϕ(ϕ(z), ϕ(u)), then it is monotonous.
I f x ≤ z⇔ ϕ(x) ≤ ϕ(z)
I f y ≤ u⇔ ϕ(y) ≤ ϕ(u)

If x ≤ z and y ≤ u ⇔ S(ϕ(x), ϕ(y)) ≤ S(ϕ(z), ϕ(u))⇔
ϕ−1(S(ϕ(x), ϕ(y))) ≤ ϕ−1(S(ϕ(z), ϕ(u)))⇔ Sϕ(ϕ(x), ϕ(y)) ≤ Sϕ(ϕ(z), ϕ(u))

Therefore, the function Sϕ is monotonous.
The boundary condition applies to the function Sϕ.
Consequently, the function Sϕ is a t-conorm.
The function Sϕ is continuous with respect to the two variables.
For a continuous t-conorm Sϕ, the Archimedean property is given by the simpler

condition Sϕ(x, x) > x , x ∈ (0, 1).
Indeed,

Sϕ(x, x) > x ⇔ ϕ−1(S(ϕ(x), ϕ(x))) > x ⇔ ϕ(ϕ−1(S(ϕ(x), ϕ(x)))) > ϕ(x)⇔
S(ϕ(x), ϕ(x)) > ϕ(x)

holds because the function S is Archimedean. Therefore, the function Sϕ is Archimedean.
Consequently, the function Sϕ given by Formula (3) is a strict and Archimedean t-conorm.

(⇐)
From the theorem of additive generators, we obtain: S(x, y) = g(−1)(g(x) + g(y)),

where the function is strictly increasing, g(0) = 0, g(1) = b and b ∈ R0 (see Baczyński M.,
Theorem 2.2.6, p. 47, [22]).

We define the function h : [0, 1]→ [0, 1] with the formula h(x) = eg(x)−1
eb−1

, where h is a
strictly increasing function in [0, 1], h(0) = 0 and h(1) = 1.

The function h is inverted with inverse:

h−1(x) = g−1(ln(x(eb − 1) + 1)) = g(−1)(ln(x(eb − 1) + 1))

h(S(x, y)) = h(g(−1)(g(x) + g(y))) =
h(g(−1)(ln(h(x)(eb − 1) + 1) + ln(h(y)(eb − 1) + 1))) =

h(h−1(S(h(x), h(y))) = S(h(x), h(y))

Consequently, Sϕ(x, y) = h−1(S(h(x), h(y))).

The following theorem presents the general form of t-conorms using an automorphism
function according to the equation S(x, y) = 1− T(1− x, 1− y) (see Klement E.P., Proposi-
tion 1.15, p. 11 [7]), (Alsina C., Definition 3.3, p. 2, [21]) and (see Baczyński M., Proposition
2.2.3, p. 46, [22]). Formula (4) can be used to generate new t-conorms (see Example 1iv).

Theorem 4. If there exists a continuous (Archimedean, strict, nilpotent) t-norm and an automor-
phism ϕ such that Sϕ : [0, 1]→ [0, 1] is defined by

Sϕ(x, y) = 1− ϕ−1(T(ϕ(1− x), ϕ(1− y))), ∀x, y ∈ [0, 1] (4)

then Sϕ is a continuous (Archimedean, strict, nilpotent) t-conorm.
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Proof of Theorem 4. From (Klement E.P., Proposition 1.15 , p. 11 [7]), (Alsina C., Definition 3.3,
p. 2, [21]) and (Baczyński M., Proposition 2.2.3, p.46, [22]),

S(x, y) = 1− T(1− x, 1− y)⇔ Sϕ(x, y) = 1− Tϕ(1− x, 1− y)⇔
Sϕ(x, y) = 1− ϕ−1(T(ϕ(1− x), ϕ(1− y)))

Sϕ(x, y) = 1− ϕ−1(T(ϕ(1− x), ϕ(1− y))) = 1− ϕ−1(T(ϕ(1− y), ϕ(1− x))) = Sϕ(y, x).

Therefore, the function Sϕ satisfies the commutativity property.

Sϕ(x, Sϕ(y, z)) = 1− ϕ−1(T(ϕ(1− x), ϕ(1− Sϕ(y, z)))) =
1− ϕ−1(T(ϕ(1− x), ϕ(1− 1 + ϕ−1(T(ϕ(1− y), ϕ(1− z)))))) =

1− ϕ−1(T(ϕ(1− x), T(ϕ(1− y), ϕ(1− z)))) =
1− ϕ−1(T(T(ϕ(1− x), ϕ(1− y)), ϕ(1− z)))

Sϕ(Sϕ(x, y), z) = 1− ϕ−1(T(ϕ(1− Sϕ(x, y), ϕ(1− z)))) =
1− ϕ−1(T(ϕ(1− 1 + ϕ−1(T(ϕ(1− x), ϕ(1− y), ϕ(1− z)))))) =

1− ϕ−1(T(T(ϕ(1− x), ϕ(1− y)), ϕ(1− z)))

Therefore, the function Sϕ satisfies the associativity property.

∀ x, y, z, u ∈ [0, 1] with x ≤ z and y ≤ u apply:
Sϕ(ϕ(x), ϕ(y)) ≤ Sϕ(ϕ(z), ϕ(u))⇔

1− ϕ−1(T(ϕ(1− x), ϕ(1− y))) ≤ 1− ϕ−1(T(ϕ(1− z), ϕ(1− u)))⇔
ϕ−1(T(ϕ(1− x), ϕ(1− y))) ≥ ϕ−1(T(ϕ(1− z), ϕ(1− u)))⇔

T(ϕ(1− x), ϕ(1− y)) ≥ T(ϕ(1− z), ϕ(1− u))⇔{
ϕ(1− x) ≥ ϕ(1− z)
ϕ(1− y) ≥ ϕ(1− u)

⇔
{

1− x ≥ 1− z
1− y ≥ 1− u

⇔
{

x ≤ z
y ≤ u

Therefore, the function Sϕ satisfies the monotonicity property.

Sϕ(x, 0) = 1− ϕ−1(T(ϕ(1− x), ϕ(0))) = 1− ϕ−1(T(ϕ(1− x), 0)) =
1− ϕ−1(ϕ(1− x)) = 1− 1 + x = x

Therefore, the function Sϕ satisfies the boundary condition.
We observe that the function Sϕ is a t-conorm.
In addition, the function Sϕ is continuous because it is continuous in both arguments.
The function Sϕ is Archimedean if Sϕ(x, y) > x.
Suppose that

Sϕ(x, y) > x ⇔ ϕ−1(N(T(N(ϕ(x)), N(ϕ(y))))) > x ⇔
N(T(N(ϕ(x)), N(ϕ(y)))) > ϕ(x)⇔ T(N(ϕ(x)), N(ϕ(y))) < N(ϕ(x)

applies because the t-norm T is Archimedean.
The function Sϕ is strict because it is continuous and strictly monotonous.
The function Sϕ is nilpotent because, if Sϕ is continuous and Archimedean, then there

exist some x, y ∈ (0, 1) such that Sϕ(x, y) = 1.
Ιndeed,

Sϕ(x, y) = 1⇔ ϕ−1(N(T(N(ϕ(x)), N(ϕ(y))))) = 1⇔
N(T(N(ϕ(x)), N(ϕ(y)))) = ϕ(1)⇔ N(T(N(ϕ(x)), N(ϕ(y)))) = 1⇔

T(N(ϕ(x)), N(ϕ(y))) = 0

applies, because the t-norm T is continuous, strict and Archimedean; therefore, there are
x, y ∈ (0, 1) such that T(x, y) = 0 (see Klement E.P., Theorem 2.18, p. 33, [7]).

Theorem 5 presents the general form of t-conorms using an automorphism function,
according to the equation S(x, y) = N(T(N(x), N(y))) (see Gottwald S., Proposition 5.3.1,
p. 90, [6]). Formula (5) can be used to generate new t-conorms (see Example 1v).
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Theorem 5. If there exists a continuous (Archimedean, strict, nilpotent) t-conorm Sϕ : [0, 1]→
[0, 1], a (strong negation) Nϕ : [0, 1]→ [0, 1], a continuous (Archimedean, strict, nilpotent) t-norm
Tϕ : [0, 1]→ [0, 1] and an automorphism ϕ such that it is defined by

Sϕ(x, y) = ϕ−1(N(T(N(ϕ(x)), N(ϕ(y))))), ∀x, y ∈ [0, 1] (5)

then Sϕ is a continuous (Archimedean, strict, nilpotent) t-conorm.

Proof of Theorem 5. From (Gottwald S., Proposition 5.3.1, p. 90, [6]),

Sϕ(x, y) = Nϕ

(
Tϕ

(
Nϕ(x), Nϕ(y)

))
, ∀x, y ∈ [0, 1] =

ϕ−1(N(ϕ(Tϕ

(
Nϕ(x), Nϕ(y)

)
))) = ϕ−1(N(ϕ(ϕ−1(T(ϕ(Nϕ(x), ϕ(Nϕ(y)))))) =

ϕ−1(N(T(ϕ(ϕ−1(N(ϕ(x))), ϕ(ϕ−1(N(ϕ(y)))))) =
ϕ−1(N(T(N(ϕ(x)), N(ϕ(y)))))

Sϕ(x, y) = ϕ−1(N(T(N(ϕ(x)), N(ϕ(y))))) = ϕ−1(N(T(N(ϕ(y)), N(ϕ(x))))) = Sϕ(y, x)

Therefore, the function Sϕ satisfies the commutativity property.

Sϕ(x, Sϕ(y, z)) = ϕ−1(N(T(N(ϕ(x)), N(ϕ(Sϕ(y, z)))))) =
ϕ−1(N(T(N(ϕ(x)), N(ϕ(ϕ−1(N(T(N(ϕ(y)), N(ϕ(z)))))))))) =

ϕ−1(N(T(N(ϕ(x)), T(N(ϕ(y)), N(ϕ(z)))))) =
ϕ−1(N(T(N(ϕ(x)), N(ϕ(y)), T(N(ϕ(z)))))) =

Sϕ(Sϕ(x, y), z)

Therefore, the function Sϕ satisfies the associativity property.

∀ x, y, z, u ∈ [0, 1] with x ≤ z and y ≤ u apply:
Sϕ(ϕ(x), ϕ(y)) ≤ Sϕ(ϕ(z), ϕ(u))⇔

ϕ−1(N(T(N(ϕ(x)), N(ϕ(y))))) ≤ ϕ−1(N(T(N(ϕ(z)), N(ϕ(u)))))⇔
N(T(N(ϕ(x)), N(ϕ(y)))) ≤ N(T(N(ϕ(z)), N(ϕ(u))))⇔

T(N(ϕ(x)), N(ϕ(y))) ≥ T(N(ϕ(z)), N(ϕ(u)))⇔{
N(ϕ(x)) ≥ N(ϕ(z))
N(ϕ(y)) ≥ N(ϕ(u))

⇔
{

ϕ(x) ≤ ϕ(z)
ϕ(y) ≤ ϕ(u)

⇔
{

x ≤ z
y ≤ u

Therefore, the function Sϕ satisfies the monotonicity property.

Sϕ(x, 0) = ϕ−1(N(T(N(ϕ(x)), N(ϕ(0))))) =
ϕ−1(N(T(N(ϕ(x)), N(0)))) = ϕ−1(N(T(N(ϕ(x)), 1))) = ϕ−1(N(T(N(ϕ(x)), 1))) =

ϕ−1(N(N(ϕ(x)))) = ϕ−1(ϕ(x)) = x

Therefore, the function Sϕ satisfies the boundary condition.
We observe that the function Sϕ is a t-conorm.
In addition, the function Sϕ is continuous because it is continuous in both arguments.
The function is Archimedean if Sϕ(x, y) > x applies.
Suppose that

Sϕ(x, y) > x ⇔ ϕ−1(N(T(N(ϕ(x)), N(ϕ(y))))) > x ⇔
N(T(N(ϕ(x)), N(ϕ(y)))) > ϕ(x)⇔ T(N(ϕ(x)), N(ϕ(y))) < N(ϕ(x)

applies because the t-norm T is Archimedean.
The function Sϕ is strict because it is continuous and strictly monotonous.
The Sϕ function is continuous and Archimedean, so it is nilpotent. Therefore, some

x, y ∈ (0, 1) exist such that Sϕ(x, y) = 1.
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Ιndeed,

Sϕ(x, y) = 1⇔ ϕ−1(N(T(N(ϕ(x)), N(ϕ(y))))) = 1⇔
N(T(N(ϕ(x)), N(ϕ(y)))) = ϕ(1)⇔ N(T(N(ϕ(x)), N(ϕ(y)))) = 1⇔

T(N(ϕ(x)), N(ϕ(y))) = 0

applies because the t-norm T is continuous, strict and Archimedean; therefore, x, y ∈ (0, 1)
such that T(x, y) = 0 exist (see Klement E.P., Theorem 2.18, p. 33, [7]).

Theorem 6 presents the general form of I-implications using an automorphism func-
tion, according to the equation I(x, y) = N(T(x, N(y))) (see Corollary 2.5.31, p. 87, [22]).
Formula (6) can be used to generate new I-implications (see Example 1vi).

Theorem 6. If there exists a function Iϕ : [0, 1]→ [0, 1], a strong negation Nϕ : [0, 1]→ [0, 1], a
t-norm Tϕ : [0, 1]→ [0, 1] and an automorphism ϕ such that the function Iϕ is fuzzy implication is
defined by:

Iϕ(x, y) = ϕ−1(N(T(ϕ(x), N(ϕ(y))))) (6)

Proof of Theorem 6. Property (I1):

∀ x1, x2 ∈ [0, 1] with x1 ≤ x2 ⇔ Iϕ(x1, y) ≥ Iϕ(x2, y)⇔
ϕ−1(N(T(ϕ(x1), N(ϕ(y))))) ≥ ϕ−1(N(T(ϕ(x2), N(ϕ(y)))))⇔

N(T(ϕ(x1), N(ϕ(y)))) ≥ N(T(ϕ(x2), N(ϕ(y))))⇔
T(ϕ(x1), N(ϕ(y))) ≤ T(ϕ(x2), N(ϕ(y)))⇔

ϕ(x1) ≤ ϕ(x2)⇔ x1 ≤ x2

Therefore, the function Iϕ satisfies the property (I1).
Property (I2):

∀ y1, y2 ∈ [0, 1] with y1 ≤ y2 ⇔ Iϕ(x, y1) ≤ Iϕ(x, y2)⇔
ϕ−1(N(T(ϕ(x), N(ϕ(y1))))) ≤ ϕ−1(N(T(ϕ(x), N(ϕ(y2)))))⇔

N(T(ϕ(x), N(ϕ(y1)))) ≤ N(T(ϕ(x), N(ϕ(y2))))⇔
T(ϕ(x), N(ϕ(y1))) ≥ T(ϕ(x), N(ϕ(y2)))⇔

N(ϕ(y1)) ≥ N(ϕ(y2))⇔ ϕ(y1) ≤ ϕ(y2)⇔ y1 ≤ y2

Therefore, the function Iϕ satisfies the property (I2).
Property (I3):

Iϕ(0, 0) = ϕ−1(N(T(ϕ(0), N(ϕ(0))))) = ϕ−1(N(T(0, N(0)))) =
ϕ−1(N(T(0, 1))) = ϕ−1(N(0)) = ϕ−1(1) = ϕ−1(ϕ(1)) = 1

Therefore, the function Iϕ satisfies the property (I3).
Property (I4):

Iϕ(1, 1) = ϕ−1(N(T(ϕ(1), N(ϕ(1))))) = ϕ−1(N(T(1, N(1)))) =
ϕ−1(N(T(1, 0))) = ϕ−1(N(0)) = ϕ−1(1) = ϕ−1(ϕ(1)) = 1

Therefore, the function Iϕ satisfies the property (I4).
Property (I5):

Iϕ(1, 0) = ϕ−1(N(T(ϕ(1), N(ϕ(0))))) = ϕ−1(N(T(1, N(0)))) =
ϕ−1(N(T(1, 1))) = ϕ−1(N(1)) = ϕ−1(0) = ϕ−1(ϕ(0)) = 0

Therefore, the function Iϕ satisfies the property (I5).
Consequently, the function Iϕ satisfies the properties of the family of fuzzy implications.
The set of all fuzzy implications will be denoted by FI.
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Example 1. Let f be a automorphism function f (x) = xn, x ∈ [0, 1], n ∈ N∗

The function f is a strictly increasing in [0, 1] with f (0) = 0, f (1) = 1.
(i). Let N be a strong fuzzy negation of the Sugeno class: N(x) = 1−x

1+λx , λ ∈ (−1,+∞)
From Formula (1) of Theorem 1:

Nϕ(x) = n

√
1− xn

1 + λxn , λ ∈ (−1,+∞), n ∈ N∗. (7)

(ii). Let TM be a strict t-norm TM(x, y) = min{x, y}.
From Formula (2) of Theorem 2:

Tϕ(x, y) = n
√

min{xn, yn}, ∀x, y ∈ [0, 1], n ∈ N∗. (8)

(iii). Let SM be a strict t-conorm SM(x, y) = max{x, y}.
From Formula (3) of Theorem 3:

Sϕ(x, y) = n
√

max{xn, yn}, ∀x, y ∈ [0, 1], n ∈ N∗. (9)

(iv). Alternatively, the S-conorm can be defined from Formula (4) of Theorem 4:

Sϕ(x, y) = 1− n
√

min{(1− x)n, (1− y)n}, ∀x, y ∈ [0, 1], n ∈ N∗. (10)

(v). In addition, the S-conorm can be defined from Formula (5) of Theorem 5:

Sϕ(x, y) = n

√√√√√ 1−min{ 1−xn

1+λxn , 1−yn

1+λyn }

1 + λ min{ 1−xn

1+λxn , 1−yn

1+λyn }
, ∀x, y ∈ [0, 1], λ ∈ (−1,+∞), n ∈ N∗. (11)

(vi). Let N be a strong fuzzy negation of the Sugeno class N(x) = 1−x
1+λx , λ ∈ (−1,+∞),

and TM be a strict t-norm TM(x, y) = min{x, y}.
From Formula (6) of Theorem 6:

Iϕ(x, y) = n

√√√√√ 1−min{xn, 1−yn

1+λyn }

1 + λ min{xn, 1−yn

1+λyn }
, ∀x, y ∈ [0, 1], λ ∈ (−1,+∞), n ∈ N∗. (12)

(i). It is easy to see that a function defined by (7) is an involution with the following
properties: Nϕ(0) = 1 and Nϕ(1) = 0. It is also strictly decreasing. Hence, Nϕ is a strong
negation function.

The Figure 2 is shown below.
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Figure 2. Fuzzy negations generated from Sugeno class using an automorphism function.

(ii). It is easy to see that a function defined by (8) is a strict and Archimedean t-norm.
The function Tϕ is commutative and associative and it satisfies the boundary condition.

The Figure 3 is shown below.

Figure 3. t-norm generated from TM using an automorphism function.

(iii). It is easy to see that a function defined by (9) is a strict and Archimedean t-
conorm. The function is commutative, associative and monotonous and it satisfies the
boundary condition.

The graph is shown below.
(iv). It is easy to see that a function defined by (10) is a strict and Archimedean t-

conorm. The function Sϕ is commutative, associative and monotonous and it satisfies the
boundary condition.

The graph is shown below.
(v). It is easy to see that a function defined by (11) is a strict and Archimedean

t-conorm.
The function Sϕ is commutative, associative and monotonous and it satisfies the

boundary condition.
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The graph is shown below.

Remark 1. Figures 4–6 are observed to have the same graph. Therefore, we conclude that the S
t-conorms given by Theorems 3–5 express the same S t-conorm.

Figure 4. S-conorm generated from SM using an automorphism function.

Figure 5. S-conorm generated from S(x, y) = 1− T(1− x, 1− y) using an automorphism function.
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Figure 6. S-conorm generated from S(x, y) = N(T(N(x), N(y))) using an automorphism function.

(vi). The function Iϕ satisfies the properties of the family of fuzzy implications.
The Figure 7 is shown below.

Figure 7. I-implication generated from I(x, y) = N(T(x, N(y))) using an automorphism function.

5. Results

The result of this paper is an improved method of generalizing fuzzy connectives. The
way this strategy improves on previous strategies is by being capable of generalizing any
fuzzy connective instead of a select few. The conclusion drawn from the creation of this
new method is that any fuzzy connective can be generalized (see Equations (1)–(6)).

The motivation behind this paper is the fact that the field of the generalization of
fuzzy connectives has been inactive since 2012. Furthermore, the development of the
approximate reasoning field, by producing new fuzzy connectives, was another motivation
behind our research.

6. Discussion

The field of research of fuzzy connectives has been explored by multiple researchers
over the years. As a result, multiple strategies for generalizing fuzzy connectives have been
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discovered. This paper focused on their limitations and provided solutions, which resulted
in the creation of a new strategy. The various applications of this new method, as well a
their results, are visible in the following paragraphs.

To be more specific, fuzzy connectives using the natural negation have been gener-
ated in the past (see J.C. Fodor and M. Roubens, Theorem 1.1, p. 4, [14]), (Gottwald S.,
Theorem 5.2.1 p. 86, [6]) and (Fodor J., p. 2077, [19]). However, the limitation is that this
strategy involves only the natural negation in the process of generalizing the fuzzy con-
nectives. The strategy presented in this paper, though, is capable of replacing the natural
negation with any strong negation. This allows for the creation of new fuzzy connectives
capable of involving all negations in the process of generalization.

Furthermore, fuzzy connectives using the T-Minimum, T-Product and T-Lukasiewicz
t-norms have been generated in the past (see René B. et al., Theorem 2.3, p. 372, [20]).
In addition, Gottwald S., Theorem 5.1.3, p. 82, [6] worked with such functions, but they
focused mainly on the specific forms of t-norms (see Table 4). However, the limitation is
that this strategy involves only these specific t-norms in the process of generalizing the
fuzzy connectives. The strategy presented in this paper, though, is capable of replacing
the T-Minimum, T-Product and T-Lukasiewicz t-norms with any t-norm. This allows
for the creation of new fuzzy connectives capable of involving all t-norms in the process
of generalization.

Table 4. Basic t-norms.

Designation Equation

Minimum TM(x, y) = min{x, y}
Algebraic product Tp(x, y) = x · y

Lukasiewicz TLK(x, y) = max(x + y− 1, 0)

Moreover, this paper presents the generalization of fuzzy connectives using S-conorms.
The prospect of incorporating S-conorms in the process of generalizing fuzzy connectives
has not been explored in the past. In order to achieve this, the new strategy is based on the
strategies mentioned before.

In addition, a strategy employing S-conorms, t-norms as well N-negations in the
process of generalizing fuzzy connectives is explored in this paper. Such a strategy has not
been implemented by someone else before.

Finally, a strategy for generalizing the classes of the I-implications was discovered in
the past (see Bustince H., Burillo P. and Soria F. in 2003 ( [17]). Callejas C., Marcos J. and
Bedregal B., in 2012, created the fifth strategy (see Figure 8), which generates any fuzzy
implication ([18]). In this paper, however, a new method of generalizing I- implications
with a combination of N-negations and t-norms is presented. This method will play a
crucial role in future research, as it allows for the generalization of I-implications, which, in
conjunction with weather data, can provide a better understanding of climate change.
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Figure 8. The history and evolution of fuzzy implications.

7. Conclusions

The objective of this paper was to create a new strategy for generalizing fuzzy connec-
tives which is more flexible and faster in comparison with the rest. The way this objective
was achieved was by solving the limitations of previous methods. To be more specific, with
this new strategy, a wider range of fuzzy connectives and automorphisms is utilized in the
process of generalization.
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