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Abstract: In this research study, a novel computational algorithm for solving a second-order singular
functional differential equation as a generalization of the well-known Lane–Emden and differential-
difference equations is presented by using the Bessel bases. This technique depends on transforming
the problem into a system of algebraic equations and by solving this system the unknown Bessel
coefficients are determined and the solution will be known. The method is tested on several test
examples and proves to provide accurate results as compared to other existing methods from the
literature. The simplicity and robustness of the proposed technique drive us to investigate more of
their applications to several similar problems in the future.

Keywords: Bessel polynomials; collocation points; differential-difference equation; functional
differential equation; singular Lane–Emden type equation

1. Introduction

The primary concern of this research work is to develop a computationally effec-
tive technique, which relies on novel Bessel polynomials and a set of collocation points
to find the solutions of the following second-order singular functional differential equa-
tions (SFDEs)

d2

dx2 w(ax + b) +
µ

x
d

dx
w(cx + d) + r(x)w(ex + f ) = p(x), 0 < x ≤ `, (1)

where the constants a, b, c, d, e, f , and µ are in R. Moreover, ` is a positive real number and
r(x), p(x) are given real-valued functions. The above SFDEs are accompanied with the
initial conditions

w(0) = w0,
d

dx
w(0) = w1. (2)

The study of the singular functional differential equations (SFDEs) is one of the most
important areas of study with a variety of applications in engineering and science topics.
The researcher community is continuously investigating the possible applications of these
types of equations and numerous fields are reported including electrodynamics [1], models
of infectious diseases [2], population growth models [3], the simulation of tumor growth [4],
the processing of chemical systems [5], understanding the gene system [6], and viral
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infectious models [7]. These models have attracted the attention of many scientists with
their singularity at the origin or other points. One of the most important models that has this
type of equation is the well-known Lane–Emden type equations (LEE) that have been used
since they was named after the famous astrophysicists Jonathan Homer Lane and Robert
Emden back in 1870. The Lane–Emden equations have some applications in the field of
models of thermal explosion [8], models of isothermal gas spheres [9], stellar structure [10],
and the study of thermionic current. These potential and important applications have
motivated researchers to investigate the solution of these models more.

Finding the approximate solution of the LEE is one of the most interesting subjects
for scientists and researchers. For obtaining the results for the solutions of these types of
problems, some numerical and analytical techniques have been adapted, acquiring good
results. For example, Mirazaee et al. in [11] investigated a Fibonacci polynomials based
method for solving this problem. Moreover, Kadalbajoo et al. [12] adapted a method with
Taylor series expansion for solving a similar type of equation. The asymptotic solutions
are analyzed in [13] for a class of nonlinear singular perturbed equations. Sabir et al. [14]
performed a neuro-swarm intelligent computing algorithm for solving a second-order type
equation. Other reported methods can be found in [15–19] and references therein with
multiple other applications of this problem. All of the above-mentioned methods, either
analytical or numerical, have some advantages and disadvantages in terms of errors or
computational costs. Thus, we searched for a suitable collocation based method to adapt
and acquire more accurate results which urges us to use the Bessel collocation method.

The appearance of new Bessel functions related to the Bessel functions of the first type
was systematically shown in a seminal paper [20]. Since then, many research papers have
been devoted to discovering many characteristics of these polynomials from the algebraic
point of view; for more details, see [20–26]. In recent years, the study of different models
with the aid of these polynomials has witnessed a large increase of research due to their
simplicity and the ability to provide good results. For the recent applications of the Bessel
polynomials, we draw your attention to some recent works we have done in [27–29]. The
main goal of this research work is to propose a spectral approach based on a combination
of novel Bessel bases as well as some appropriate collocation points for an approximate
treatment of the SFDEs in (1). Supposedly, the underlying model problem has a solution in
terms of the Bessel series expansion on [0, `], the proper representations of the unknowns
and their derivatives yield to find the unknown series coefficients, through solving an
algebraic system of equations. Indeed, the explicit and original representation of the Bessel
functions is

Bm(ξ) =
m

∑
σ=0

2−σ (m + σ)!
σ!(m− σ)!

ξσ, m = 0, 1, . . . . (3)

It can be obviously observed that the coefficients of Bm(ξ) are all positive. Contrary to
the Bessel functions of the first kind [30], the novel Bessel functions Bm(ξ) are the unique
solutions of the following differential equation [27–29]

ξ2 B′′m(ξ) + (2ξ + 2)B′m(ξ) = m(m + 1)Bm(ξ).

The main capability of of the proposed Bessel spectral algorithm is that it converts
the SFDEs (1) to a system of algebraic equations while reducing computational complexity.
Usages of the proposed technique but with different bases such as Legendre, Chebyshev,
Chelyshkov, alternative Bessel, and Jacobi functions can be found in [31–40].

The outline of this study is structured as follows. The next section provides the method-
ology of the Bessel matrix procedure for the SFDEs in an elegant manner. In Section 3, three
test examples are solved in order to evaluate the reliability and accuracy of the presented
matrix technique. In Section 4, we present a summary and conclusion.
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2. The Bessel Matrix Technique

In order to utilize the Bessel functions on [0, `], we first make a change of variable
in (3). We take ξ = x/` where ` > 0 in (3). Henceforth, the shifted Bessel functions
will be denoted by Bm,`(x), which are orthogonal with respect to g`(x) := exp(−2`/x);
see [20,27]. Suppose that the unknown solution w(x) of (1) can be expanded in the Bessel
polynomials form

wN(x) =
N

∑
m=0

cm Bm,`(x), 0 ≤ x ≤ `. (4)

Now, the ultimate goal is to seek the coefficients cm for m = 0, 1, . . . , N. To proceed,
we introduce the unknown vector

CCCN = [c0 c1 . . . cN ]
T ,

and the vector containing the shifted Bessel functions of order m = 0 to m = N as

VVVN(x) = [B0,`(x) B1,`(x) . . . BN,`(x)].

Thus, on the other hand, we have the following expression for wN(x) in (4) in the form

wN(x) = VVVN(x)CCCN . (5)

Next, we introduce the following Bessel matrix L, which has a low-triangular structure
and is of size (N + 1)× (N + 1)

LLL =



1 0 0 . . . 0 0
1 1 0 . . . 0 0
1 3 3 . . . 0 0
...

...
. . . . . . . . .

...

1 2−1 N!
`1 (N−2)! 1!

2−2 (N+1)!
`2 (N−3)! 2! . . . 21−N (2N−2)!

`N−10! (N−1)! 0

1 2−1 (N+1)!
`1 (N−1)! 1!

2−2 (N+2)!
`2 (N−2)! 2! . . . 21−N (2N−1)!

`N−1 1! (N−1)!
2−N (2N)!
`N 0! N!


(N+1)×(N+1)

.

This allows us to write further the vector VVVN(x) in (5) in the product representation
form

VVVN(x) = ΞΞΞN(x) LLLT , (6)

where ΞΞΞN(x) =
[
1 x x2 . . . xN] stands for the vector of monomials.

Finally, we place relation (6) into (5) to arrive at the following form of approximate
solution wN(x) in (4) as

wN(x) = VVVN(x)CCCN = ΞΞΞN(x) LLLT CCCN . (7)

We now mention a pertinent result about the convergence of Bessel functions. The
following theorem asserts that the approximate solution wN(x) is exponentially convergent
(in the weighed L2 norm) to the exact solution w(x) if we let N tend to infinity.

Theorem 1. Let us denote by wN(x) = VVVN(x)CCCN the best square approximation to w(x) and
also we have w(x) ∈ CN+1(0, `]. Then, the following error estimate holds

‖w(x)− wN(x)‖g`
≤ `N+ 3

2√
2N + 3

e−1 K∞

(N + 1)!
,

where K∞ := maxx∈(0,`] |w(N+1)(x)|.

Proof. For a similar proof, we refer interested readers to [27,30].
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We now associate a sequence of collocation points {xq}N
q=0 on [0, `] to our approxima-

tion algorithm. In this respect, the following grid points are employed

xq = ξ +
(`− ξ)q

N
, q = 0, 1, . . . , N, 0 < ξ < `. (8)

Once the preceding collocation points are placed into the relation (7), we get the matrix
expression for the unknown solution itself as

WWW = χχχ LLLT CCCN , χχχ =


ΞΞΞN(x0)
ΞΞΞN(x1)

...
ΞΞΞM(xN)

, WWW =


wN(x0)
wN(x1)

...
wN(xN)

. (9)

In order to express w(α x + β) and its derivatives in the matrix forms, we state and
prove the next theorem.

Theorem 2. For any constants α and β, the matrix representations of w(α x + β), d
dx w(α x + β),

and d2

dx2 w(α x + β) at the collocation points (8) can be represented as

WWWα,β = χχχ HHHT
α,β LLLT CCCN , (10)

ẆWWα,β = χχχ HHHT
α,β BBBT LLLT CCCN , (11)

ẄWWα,β = χχχ HHHT
α,β (BBB

T)2 LLLT CCCN . (12)

Here, the matrix BBB is defined in (15) and the matrix HHHα,β is given at (14). Moreover, we have

WWWα,β =


wN(α x0 + β)
wN(α x1 + β)

...
wN(α xN + β)

, ẆWWα,β =


w′N(α x0 + β)
w′N(α x1 + β)

...
w′N(α xN + β)

, ẄWWα,β =


w′′N(α x0 + β)
w′′N(α x1 + β)

...
w′′N(α xN + β)

.

Proof. According to (7), we may write

wN(α x + β) = ΞΞΞN(α x + β) LLLT CCCN . (13)

Our aim is to express ΞΞΞN(α x + β) in terms of ΞΞΞN(x), which is defined in (6). With the
help of the binomial expansion,

(α x + β)n =
n

∑
j=0

(
n
j

)
αjβn−j xj,

we can represent the vector ΞΞΞN(α x + β) as follows

ΞΞΞN(α x + β) = ΞΞΞN(x)HHHT
α,β, (14)
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where the matrix HHHT
α,β is dependent on two parameters α and β and is defined as

HHHT
α,β =



(0
0)α

0 β0 (1
0)α

0 β1 (2
0)α

0 β2 . . . (N
0 )α

0 βN

0 (1
1)α

1 β0 (2
1)α

1 β1 . . . (N
1 )α

1 βN−1

0 0 (2
2)α

2 β0 . . . (N
2 )α

2 βN−2

...
...

...
. . .

...

0 0 0 . . . (N
N)α

N β0


.

Now, we combine the relations (13) and (14) to obtain

wN(α x + β) = ΞΞΞN(x)HHHT
α,β LLLT CCCN .

We are now ready to put the collocation points (8) into the preceding equation followed
by utilizing the relation (9); the proof of (10) is done.

We then find a relationship between ΞΞΞN(x) and ds

dxs ΞΞΞN(x) for s = 1, 2. For this purpose,
we define the differentiation matrix BBB through defining

BBBT =



0 1 0 . . . 0
0 0 2 . . . 0
...

... 0
...

...

0 0 0
. . . N

0 0 0 . . . 0


(N+1)×(N+1)

.

It can be easily seen that [30]

d
dx

ΞΞΞN(x) = ΞΞΞN(x)BBBT , (15)

Differentiating the relation (15) once more, we get

d2

dx2 ΞΞΞN(x) = ΞΞΞN(x) (BBBT)2. (16)

Our next aim is to differentiate (7) with respect to the variable x and utilize (15).
Therefore, we will get the following approximation for d

dx wN(α x + β) as

d
dx

wN(α x + β) ≈ d
dx

wN(x)
∣∣∣
x→(α x+β)

= ΞΞΞN(x)
∣∣∣
x→(α x+β)

BBBT LLLT CCCN . (17)

In the same manner, after using (16) we get an approximation for d2

dx2 wN(α x + β)
as follows

d2

dx2 wN(α x + β) ≈ d2

dx2 wN(x)
∣∣∣
x→(α x+β)

= ΞΞΞN(x)
∣∣∣
x→(α x+β)

(BBBT)2 LLLT CCCN . (18)

We now replace the vector ΞΞΞN(α x + β) in (17) and (18) via (14). Thus, we get the
following matrix representation forms

d
dx

wN(α x + β) = ΞΞΞN(x)HHHT
α,β BBBT LLLT CCCN ,

d2

dx2 wN(α x + β) = ΞΞΞN(x)HHHT
α,β (BBB

T)2 LLLT CCCN .
(19)
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The proofs of (11) and (12) are straightforward after inserting the collocation points (8)
into the foregoing (19).

Remark 1. It is worth mentioning the cost of calculating ΞΞΞN(α x + β) as well as ds

dxs ΞΞΞN(α x + β)
for s = 1, 2 in (19) is O((N + 1)2). For practical applications, however, it would be very useful to
consider an algorithm with linear complexity O(N + 1). This task can be accomplished by taking
direct differentiation of the monomials ΞΞΞN(x). Upon calling Algorithm 1, the s-order derivatives
(s ≥ 1, s ∈ N) of ΞΞΞN(x) can be achieved directly. Let us assume that Algorithm 1 takes (N = 4, s)
as inputs. The outputs with s = 1 and s = 2 are as follows, respectively:

d
dx

ΞΞΞ4(x) =
[
0 1 2x 3x2 4x3

]
,

d2

dx2 ΞΞΞ4(x) =
[
0 0 2 6x 12x2

]
.

In this work, we are particularly interested in computing the first and second derivatives of
ΞΞΞN(x) by Algorithm 1. This enables us to compute ds

dxs ΞΞΞN(α x + β) for s = 0, 1, 2 after invoking
Algorithm 1 followed by substituting x → (α x + β) in them.

Algorithm 1: The computation of s-derivative of the vector ΞΞΞN(x).

procedure [ΞΞΞ(s)
N ]= compute_DerX(N, s)

ΞΞΞ(s)
N [1] := 0;

for j := 1, . . . , N do
if (j− s < 0) then

ΞΞΞ(s)
N [j + 1] := 0;

else
ΞΞΞ(s)

N [j + 1] :=
j!

(j− s)!
xj−s;

end if
end for
end;

The considered SFDE problem (1) will be collocated at the set of collocation points (8)
to arrive at

d2

dx2 w(axq + b) +
µ

xq

d
dx

w(cxq + d) + r(xq)w(exq + f ) = p(xq), q = 0, 1, . . . , N. (20)

To express the former N + 1 equations in a matrix representation, we exploit the results
of Theorem 2 to have

ẄWWa,b +QQQ ẆWWc,d + RRR WWWe, f = PPP. (21)

Two matrices QQQ, RRR and the vector PPP are

QQQ =


µ
x0

0 . . . 0
0 µ

x1
. . . 0

...
...

. . .
...

0 0 . . . µ
xN

, RRR =


r(x0) 0 . . . 0

0 r(x1) . . . 0
...

...
. . .

...
0 0 . . . r(xN)

, PPP =


p(x0)
p(x1)

...
p(xN),

, (22)

We finally obtain the so-called fundamental matrix equation for the underlying
model (1).

Lemma 1. Suppose that the solution of model problem (1) can be expanded in Bessel function
form (4) or (7). Then we have
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(
χχχ HHHT

a,b (BBB
T)2 +QQQ χχχ HHHT

c,d BBBT + RRR χχχHHHT
e, f

)
LLLT︸ ︷︷ ︸

ZZZ

CCCN = PPP, or [ZZZ; PPP]. (23)

Proof. To conclude the fundamental matrix Equation (23), it is sufficient to place rela-
tions (10), (11), and (12) into (21).

Let us emphasize that the algebraic matrix Equation (23) is linear and the unknown
coefficient CCCN can be calculated through solving it. However, the initial conditions (2) must
be utilized in implementation of the fundamental matrix Equation (23). This aim will be
considered below.

Initial Conditions in the Matrix Form

Analogously, we are able to approximate the initial conditions (2) in the matrix form,
which allows us to find the solution of (1) via solving the fundamental matrix Equation (23).
We first convert w(0) = w0 into a matrix representation. To this end, let us tend t→ 0 in (7)
to arrive at

ẐZZ0 := ΞΞΞN(0) LLLTCCCN = w0, or [ẐZZ0; w0].

For the second condition d
dx w(0) = w1, we first differentiate (7). Hence, we combine

the resultant equation with (15) to get

d
dx

wN(x) =
d

dx
ΞΞΞN(x) LLLT CCCN = ΞΞΞN(x)BBBT LLLT CCCN .

Now, let t→ 0 in the foregoing equation to obtain

ẐZZ1 := ΞΞΞN(0)BBBT LLLT CCCN = w1, or [ẐZZ1; w1].

Now, to the fundamental matrix Equation (23), we add the initial conditions (2). For
this purpose, the replacements of the first and the second row of the matrix [ZZZ; PPP] are done
by the row matrices [ẐZZ0; w0] and [ẐZZ1; w1]. Let us denote by [ẐZZ; P̂PP] the modified version of
the fundamental matrix. After solving this modified form, the unknown coefficients cm,
m = 0, 1, . . . , N will be calculated and thus the desired approximation wN(x) of SFDEs (1)
will be determined.

3. Computational Simulations

Let us illustrate the practicability of our Bessel matrix approach through numerical
simulations. In this respect, computational results of three test examples are performed to
show the reliability and validity of the proposed numerical model. Thus, we show that our
suggested approximation algorithm can produce improved results compared to existing
available computational procedures. For numerical simulations, we use MATlAB software
version 2017a for programming and visualization. Moreover, the value ξ = 0.01 is taken in
the set of collocation points (8) in order to ensure that the zero point is excluded from this
set. In order to evaluate the accuracy as well as the convergence of the proposed Bessel
matrix technique, we define

EN(x) := |wN(x)− w(x)|, x ∈ [0, `],

RN(x) := EN(x)/|w(x)|, x ∈ [0, `].

Example 1. We firstly consider a non-homogeneous singular differential difference model problem
of the form

d2

dx2 w(3x− 1) +
2
x

d
dx

w(2x) + x w(x + 1) = −6 + 44x + 3x2 + 3x3 + x4, 0 ≤ x ≤ `,
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with initial conditions w(0) = 1, d
dx w(0) = 0. A straightforward calculation shows that true exact

solution is given by w(x) = 1 + x3.

For this test problem, we set ` = 10, and utilize N = 3, which is sufficient to obtain
an accurate solution. To do so, we express the solution of (1) in terms of Bessel bases
as considered in (4). Afterwards, through solving the fundamental matrix Equation (23),
we obtain

C3 =
[
− 997/3 600 − 1000/3 200/3

]T .

By exploiting the first four Bessel basis functions and multiply them by C3, we get the
approximate solution w3(x) on 0 ≤ x ≤ 10 as follows

w3(x) =
[
1 B1,`(x) B2,`(x) B3,`(x)

]
C3 = 1 + x3.

Clearly this is the exact solution of (1). In the next experiments, the results of absolute
errors utilizing diverse values of ` = 1, 5, 20 are computed. Table 1 tabulates the results
of EN(x) which are calculated at some points xj = j`/10 and j varies from 1 to 10. A
comparison with the outcomes of artificial neural networks (ANNs) reported in [17] on
[0, 1] and with 10 neurons is carried out in Table 1 to testify to the validity of our numerical
results. An obvious conclusion can be made from Table 1 that our numerical model results
are not only highly accurate on the unit interval but also have sufficient accuracy for the
larger values of `.

Table 1. The comparison of (absolute) errors in the Bessel matrix approach in Example 1 using N = 3,
` = 1, 5, 20, and diverse x ∈ [0, `].

Bessel (N = 3) ANNs (` = 1) [17]

x ` = 1 ` = 5 ` = 20 Min Mean S.D

0.1` 9.2006−19 5.4584−16 1.1589−14 6.20−09 1.42−05 2.03−05
0.2` 3.3134−18 1.9357−15 3.3996−14 1.60−07 7.36−05 4.17−04
0.3` 6.6298−18 3.7979−15 4.8678−14 5.21−07 1.44−04 8.90−04
0.4` 1.0319−17 5.7610−15 3.7092−14 2.86−07 2.16−04 1.37−03
0.5` 1.3831−17 7.4534−15 1.9303−14 1.34−07 2.80−04 1.80−03
0.6` 1.6615−17 8.5035−15 1.3905−13 1.72−07 3.24−04 2.11−03
0.7` 1.8121−17 8.5398−15 3.4069−13 1.96−07 3.48−04 2.30−03
0.8` 1.7799−17 7.1907−15 6.4277−13 6.20−07 3.58−04 2.40−03
0.9` 1.5099−17 4.0846−15 1.0638−12 9.39−07 3.67−04 2.47−03
1.0` 9.4700−18 1.1500−15 1.6224−12 5.82−07 3.79−04 2.56−03

Utilizing ` = 1, 5, 20, the obtained approximate solutions by the Bessel matrix approach
are given by

w3(x) = 1.0 x3 − 1.011761533× 10−16 x2 + 1.0, x ∈ [0, 1],

w3(x) = 1.0 x3 − 2.43108357× 10−15 x2 − 5.450188595× 10−107 x + 1.0, x ∈ [0, 5],

w3(x) = 1.0 x3 + 3.669958207× 10−15 x2 + 1.0, x ∈ [0, 20].

Finally, we consider N = 4 and ` = 50 for this example. The obtained approximate
solution w4(x) for x ∈ [0, `] takes the form

w4(x) = −7.132116273× 10−18 x4 + 1.0 x3 − 7.257031883× 10−15 x2

− 3.966717388× 10−105 x + 1.0.
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The above approximation together with the exact solutions are visualized in Figure 1.
The resulting absolute errors are also presented in this figure, but on the right part.
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Figure 1. Graphs of the exact and computed solution using N = 4 (left) and the resulting absolute
error (right) for ` = 50 in Example 1.

Example 2. As the second test problem, let us consider a Lane–Emden differential difference model
problem of the form

d2

dx2 w(2x− 1) +
2
x

d
dx

w(3x) + x w(x + 1) = e2x−1 +
2
x

e3x + xex+1, 0 ≤ x ≤ `,

with initial conditions w(0) = 1, d
dx w(0) = 1. It is not a difficult task to show that the exact

solution of (2) is w(x) = ex.

Firstly, N = 6 is used for this example. Considering ` = 1, the resulting approximate
solution via the Bessel matrix technique takes the following form on x ∈ [0, `]

w6(x) = 0.00464175985 x6 − 0.001670260859 x5 + 0.04740032168 x4 + 0.1803886514 x3

+ 0.4870266818 x2 + 1.0 x + 1.0.

Let us check that our proposed method yields a reasonable result in comparison with
the exact solution. In this respect, the first seven terms of its series expansion are written as

ex ≈ 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
.

However, more accurate results based on the Bessel matrix approach will be achieved
if one increases N. For instance, the approximated solution w10(x) can be analogous on
[0, 1] as

w10(x) = 0.000001068044011 x10 − 0.000002908206541 x9 + 0.00004176809694 x8

+ 0.0001888482682 x7 + 0.001313363417 x6 + 0.008508813772 x5

+ 0.04165172897 x4 + 0.1663795908 x3 + 0.5001750161 x2 + 1.0 x + 1.0.

Additionally, the graphical representation of the numerical results using different
values of N = 6, 10 and N = 15 are shown in Figure 2. In this plot, the absolute errors
EN(x) for x ∈ [0, 1] and for these values of N are also depicted.

In Table 2, the computed values of the values of the absolute errors EN(x) at some
points x ∈ [0, `] with ` = 1, ` = 2 as well as ` = 5 for Example 2 are shown. The corre-
sponding number of basis functions are N = 10, 20 and N = 30, respectively. Furthermore,
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the statistical results for this test example utilizing the ANN approach for ` = 1 and with
10 neurons that was proposed in [17] are reported in Table 2 for comparison.
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Figure 2. Graphs of the exact and computed solutions utilizing N = 6, 10, 15 (left) and the resulting
absolute errors (right) for ` = 1 in Example 2.

Table 2. The comparison of absolute errors in the Bessel matrix approach in Example 2 utilizing
N = 10, 20, 30, ` = 1, 2, 5, and diverse x ∈ [0, `].

Bessel ANNs (` = 1) [17]

x ` = 1, N = 10 ` = 2, N = 20 ` = 5, N = 30 Min Mean S.D

0.1` 1.4633−6 1.9321−9 1.7737−7 3.30−8 4.51−5 8.65−5
0.2` 4.7314−6 9.8570−9 2.8830−7 1.09−6 1.81−4 3.67−4
0.3` 8.2497−6 2.3617−8 9.0792−8 3.79−7 4.22−4 8.68−4
0.4` 1.0729−5 4.0088−8 1.1621−7 2.04−6 7.52−4 1.59−3
0.5` 1.1221−5 5.5145−8 3.1451−8 1.05−5 1.16−3 2.50−3
0.6` 9.1480−6 6.5255−8 3.1422−7 1.51−5 1.58−3 3.50−3
0.7` 4.2955−6 6.8403−8 6.4486−7 2.80−7 1.96−3 4.47−3
0.8` 3.2249−6 6.4385−8 6.9379−7 2.02−5 2.26−3 5.30−3
0.9` 1.3031−5 5.4593−8 3.7913−7 3.87−6 2.43−3 5.85−3
1.0` 2.4539−5 4.1499−8 1.7989−7 5.39−6 2.45−3 6.05−3

In the next and last experiment performed for the test problem (2), we consider a
relatively large domain of computation by choosing ` = 10. To get a reasonable accuracy,
we take N = 60. In Figure 3, the curve of approximate solution w60(x) as well as the related
relative error RN(x) are shown.
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Figure 3. Graphs of the exact and computed solutions using N = 60 (left) and the resulting absolute
error (right) for ` = 10 in Example 2.
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Example 3. The last and third test case is devoted to the following singular differential difference
with trigonometric functions defined on 0 ≤ x ≤ `

d2

dx2 w(3x− 1) +
2
x

d
dx

w(3x) + x w(x + 1) = − sin(3x− 1) +
2
x

cos(3x) + x sin(x + 1),

with initial conditions w(0) = 0, d
dx w(0) = 1. An easy calculation shows that w(x) = sin x is the

exact solution of this model problem.

Utilizing N = 5, 10 in the Bessel matrix procedure, we get the following polynomial
forms for the approximate solutions on x ∈ [0, 1] as follows

w5(x) = 0.004432261297 x5 + 0.008818459263 x4 − 0.1704928679 x3

− 0.002798292238 x2 + 1.0 x− 6.38693976× 10−109,

and

w10(x) = −1.8339× 10−7 x10 + 3.1712× 10−6 x9 + 1.2818× 10−7 x8 − 1.9967× 10−4 x7

− 6.0962× 10−7 x6 + 0.008337076448 x5 + 2.0318× 10−7 x4 − 0.1666714768 x3

+ 1.7925× 10−6 x2 + 1.0 x− 9.337157052× 10−109.

Let us consider the series form of the exact solution, i.e., sin x ≈ x− x3

3! +
x5

5! − . . . + x9

9! .
A comparison between the achieved approximations and the exact one indicates the good
alignment between them. The absolute errors EN(x) utilizing diverse values of N = 5, 10, 15
in the approximate solutions are presented in Figure 4. The curves of wN(x) for N = 5, 10
are also visualized in Figure 4.
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Figure 4. Graphs of the exact and computed solutions using N = 5, 10, 15 (left) and the resulting
absolute errors (right) for ` = 1 in Example 3.

We next examine the benefits of the presented Bessel matrix scheme and validate
our results for ` = 1, π, 2π. We also utilize various N = 10, 20, and N = 30 for each
computational domain [0, `]. In this respect and in terms of accuracy, some comparisons
are performed in Example 3 in Table 3. Besides the numerical results reported at some
x in [0, `], the outcomes of the achieved errors obtained via ANNs with 10 neurons are
further presented in Table 3 as has been done in the previous test examples. Comparing
our numerical achievements in Tables 1–3 with the outcomes of ANNs reveals that our
approach is more accurate and can be easily applied on long computational domains.
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Table 3. The comparison of absolute errors in the Bessel matrix method in Example 3 utilizing
N = 10, 20, 30, ` = 1, π, 2π, and diverse x ∈ [0, `].

Bessel ANNs (` = 1) [17]

x ` = 1, N = 10 ` = π, N = 20 ` = 2π, N = 30 Min Mean S.D

0.1` 1.3172−8 4.9934−12 5.9707−11 3.51−8 1.03−6 1.29−6
0.2` 3.4686−8 1.3423−11 7.7946−11 7.83−9 2.37−6 2.34−6
0.3` 4.1486−8 1.7895−11 8.3353−11 8.63−8 3.90−6 3.94−6
0.4` 1.8096−8 2.0670−11 7.7780−11 6.81−9 5.52−6 5.42−6
0.5` 4.1676−8 2.2442−11 6.2475−11 8.48−8 6.83−6 6.74−6
0.6` 1.3460−7 2.3120−11 3.7118−11 6.03−8 7.52−6 7.82−6
0.7` 2.4942−7 2.3020−11 1.3218−12 1.37−7 7.74−6 8.37−6
0.8` 3.6947−7 2.2240−11 4.5159−11 1.28−7 7.61−6 8.51−6
0.9` 4.7614−7 2.0646−11 1.0211−10 8.94−9 7.53−6 8.38−6
1.0` 5.5254−7 1.8200−11 1.6874−10 2.68−8 7.70−6 8.27−6

Finally, we take ` = 5π. Moreover, the value of N = 60 is utilized as the number of
the basis of functions. The numerical solution w60(x) is depicted in Figure 5. The graphical
representation of the absolute error EN(x) is also shown in Figure 5. It can be obviously
observed that, to keep the accuracy of the proposed method up on a long domain of
computation, one has to adjust the number of basis functions accordingly.
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Figure 5. The comparison of numerical and exact solutions (left) and the resulting absolute error
(right) using N = 60 and ` = 5π in Example 3.

4. Conclusions

In this manuscript, an accurate and reliable numerical technique is designed and im-
plemented to obtain an approximate solution for a class of singular second-order functional
differential models using the Bessel polynomials. The proposed approach is viably devel-
oped for solving various test examples of the second-order singular functional differential
model problems. A precise and accurate performance is witnessed for this technique consis-
tently achieving high accuracy from the existing exact results for the given test cases based
upon the second-order singular functional differential model. The presented approach
looks proficient and promising for solving similar applicable problems in the future.
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