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Abstract: In this paper, we were interested in obtaining the exact expression and studying the regions
of constant sign of Green’s function related to a second-order perturbed periodic problem coupled
with integral boundary conditions at the extremes of the interval of the definition. To obtain the
expression of Green’s function related to this problem, we used the theory presented in a previous
paper of the authors for general non-local perturbed boundary-value problems. Moreover, we
characterized the parameter set where such a Green’s function has a constant sign. To this end,
we needed to consider first a related second-order problem without integral boundary conditions,
obtaining the properties of its Green’s function and then using them to compute the sign of the one
related to the main problem.

Keywords: Green’s function; periodic boundary-value problem; integral boundary conditions

1. Introduction

In this paper, we studied the regions of constant sign of Green’s function related to the
following perturbed second-order periodic problem, coupled with integral conditions on
the boundary: 

u′′(t) + Mu(t) = σ(t), t ∈ I := [0, 1],

u(0)− u(1) = δ1

∫ 1

0
u(s)ds,

u′(0)− u′(1) = δ2

∫ 1

0
u(s)ds,

(1)

where M, δ1, δ2 ∈ R and σ is a continuous function. In particular, we considered separately
the cases M = 0, M > 0, and M < 0, and we analyzed each of them and give the optimal
values of M, δ1, δ2 ∈ R for which Green’s function (denoted by GM,δ1,δ2 ) has a constant sign.

The interest of this study relies on the fact that the constant sign of Green’s function is a
fundamental tool to ensure the existence of constant-sign solutions of the related nonlinear
problems, since it is a basic assumption to apply some classical methods as, for instance,
lower and upper solutions, monotone iterative techniques, Leray–Schauder degree theory,
or fixed-point theorems on cones.

Furthermore, the solvability of differential equations coupled with different types of
boundary-value conditions is a topic that has awakened interest in recent and classical
literature (see [1,2] and references therein). In particular, integral boundary conditions have
been widely considered in many works in the recent literature. For more information on this
topic, we refer the reader to [3–8] (for integral boundary conditions in second- and fourth-
order ODEs or systems) or [9–13] (for fractional equations) and the references therein.
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In a recent paper [14], the authors proved the existence of a relation between the
Green’s function of a differential problem coupled with some functional boundary con-
ditions (where the functional is given by a linear operator) and the Green’s function of
the same differential problem coupled with homogeneous boundary conditions. Such
a formula was used now to compute the exact expression of Green’s function related to
Problem (1) for the cases M > 0 and M < 0. In such cases, the very well-known properties
of the periodic Green’s function will help to study the constant sign of the Green’s function
of Problem (1). For the case M = 0, this technique cannot be applied, as M = 0 is an
eigenvalue of the periodic problem, and consequently, we need to compute the expression
of the Green’s function of (1) by means of direct integration.

The paper is organized as follows: In Section 2, we compile the preliminary results
that are used later. In Section 3, we prove some properties of Green’s function, which
allow us to simplify the study of the general case. Section 4 considers the particular case
of considering parameter δ1 = 0 in Problem (1). Finally, Section 5 includes the complete
study of the case δ1 6= 0, which is related to the study developed in Section 4 by means of
the general properties proven in Section 3.

2. Preliminaries

In this section, we compile the main results of [14] that are used to compute the exact
expression of Green’s function related to (1). We include also the definition and main
properties of Green’s function, for the reader’s convenience.

Consider the following n-th order linear boundary-value problem with parameter
dependence: {

Tn[M]u(t) = σ(t), t ∈ J := [a, b],

Bi(u) = δi Ci(u), i = 1, . . . , n,
(2)

where Tn[M]u(t) := Lnu(t) + M u(t), t ∈ J, with:

Lnu(t) := u(n)(t) + a1(t)u(n−1)(t) + · · ·+ an(t)u(t), t ∈ J.

Here, σ and ak are continuous functions for all k = 0, . . . , n− 1, M ∈ R and δi ∈ R for
all i = 1, . . . , n. Moreover, Ci : C(J)→ R is a linear continuous operator, and Bi covers the
general two-point linear boundary conditions, i.e.,

Bi(u) =
n−1

∑
j=0

(
αi

ju
(j)(a) + βi

ju
(j)(b)

)
, i = 1, . . . , n,

αi
j, βi

j being real constants for all i = 1, . . . , n, j = 0, . . . , n− 1.
We note that Problem (1) is a particular case of (2).

Definition 1. Given a Banach space X, operator Tn[M] is said to be nonresonant in X if and only
if the homogeneous equation:

Tn[M] u(t) = 0, t ∈ J, u ∈ X, (3)

has only the trivial solution.

Let us consider in this case:

X = {u ∈ C(J), Bi(u) = δi Ci(u), i = 1, . . . , n}.

It is very well known that if σ ∈ C(J) and operator Tn[M] is nonresonant in X, then
the non-homogeneous problem:

Tn[M] u(t) = σ(t), t ∈ J, u ∈ X,
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has a unique solution given by:

u(t) =
∫ b

a
GM,δ1,...,δn(t, s) σ(s) ds, ∀ t ∈ J,

where GM,δ1,...,δn denotes the so-called Green’s function related to operator Tn[M] on X and
it is uniquely determined (see [1] for the details).

Green’s function can be defined axiomatically in the following way.

Definition 2. We say that GM,δ1,...,δn is a Green’s function for Problem (3) if it satisfies the
following properties:

(G1) GM,δ1,...,δn is defined on the square J × J (except at the points with t = s if n = 1);

(G2) For k = 0, . . . , n− 2, the partial derivatives
∂k GM,δ1,...,δn

∂ tk exist and are continuous on J × J;

(G3) Both
∂n−1 GM,δ1,...,δn

∂ tn−1 and
∂n GM,δ1,...,δn

∂ tn exist and are continuous on the triangles a ≤ s < t ≤ b
and a ≤ t < s ≤ b;

(G4) For each s ∈ (a, b), the function GM,δ1,...,δn(·, s) is a solution of the differential equation
Tn[M] y = 0 a. e. on [a, s) ∪ (s, b], that is,

∂n GM,δ1,...,δn

∂ tn (t, s) + a1(t)
∂n−1 GM,δ1,...,δn

∂ tn−1 (t, s) + · · ·+ an(t) GM,δ1,...,δn(t, s) = 0,

for all t ∈ J \ {s};
(G5) For each t ∈ (a, b), there exist the lateral limits:

∂n−1 GM,δ1,...,δn

∂ tn−1 (t−, t) =
∂n−1 GM,δ1,...,δn

∂ tn−1 (t, t+)

and:
∂n−1 GM,δ1,...,δn

∂ tn−1 (t, t−) =
∂n−1 GM,δ1,...,δn

∂ tn−1 (t+, t).

Moreover,

∂n−1 GM,δ1,...,δn

∂ tn−1 (t+, t)−
∂n−1 GM,δ1,...,δn

∂ tn−1 (t−, t)

=
∂n−1 GM,δ1,...,δn

∂ tn−1 (t, t−)−
∂n−1 GM,δ1,...,δn

∂ tn−1 (t, t+) = 1;

(G6) For each s ∈ (a, b), the function GM,δ1,...,δn(·, s) satisfies the boundary conditions
Bi(GM,δ1,...,δn(·, s)) = δi Ci(GM,δ1,...,δn(·, s)), i = 1, . . . , n.

Lemma 1 ([14], Lemma 1). There exists a unique Green’s function related to the homogeneous
problem: {

Tn[M]u(t) = 0, t ∈ J,

Bi(u) = 0, i = 1, . . . n,
(4)

if and only if for any i ∈ {1, · · · , n}, the following problem:
Tn[M]u(t) = 0, t ∈ J,

Bj(u) = 0, j 6= i,

Bi(u) = 1,

(5)

has a unique solution, which we denote as ωi(t), t ∈ J.

The following result shows the existence and uniqueness of the solution of Problem (2),
and it is a direct consequence of [14], Theorem 2.
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Theorem 1 ([14] Corollary 1). Assume that the homogeneous Problem (4) has u = 0 as its unique
solution, and let GM,0,...,0 be its unique Green’s function. Let σ ∈ C(J) and δi, i = 1, . . . , n be
such that ∑n

i=1 δi C(ωi) 6= 1. Then, Problem (2) has a unique solution u ∈ Cn(J), given by
the expression:

u(t) =
∫ b

a
GM,δ1,...,δn(t, s) σ(s)ds,

where:

GM,δ1,...,δn(t, s) := GM,0,...,0(t, s) +

n

∑
i=1

δi ωi(t)

1−
n

∑
j=1

δj C(ωj)

C(GM,0,...,0(·, s)). (6)

3. First Results

This section is devoted to deducing some preliminary results that will be fundamen-
tal in the development of the paper. First, we prove that Green’s function satisfies the
following symmetry.

Lemma 2. Assume that Problem (1) has a unique solution, and let GM,δ1,δ2 be its related Green’s
function. Then, it holds that:

GM,δ1,δ2(t, s) = GM,−δ1,δ2(1− t, 1− s), t, s ∈ I. (7)

Proof. Let:

u(t) =
∫ 1

0
GM,δ1,δ2(t, s) σ(s) ds

be the unique solution of Problem (1).
In such a case, it is immediate to verify that v(t) := u(1− t) is the unique solution

of problem: 

v′′(t) + Mv(t) = σ(1− t), t ∈ I,

v(0)− v(1) = −δ1

∫ 1

0
v(s)ds,

v′(0)− v′(1) = δ2

∫ 1

0
v(s)ds,

and as a direct consequence, we deduce that:

v(t) =
∫ 1

0
GM,−δ1,δ2(t, s) σ(1− s) ds.

On the other hand, we have that:

v(t) = u(1− t) =
∫ 1

0
GM,δ1,δ2(1− t, s) σ(s) ds =

∫ 1

0
GM,δ1,δ2(1− t, 1− s) σ(1− s) ds.

By identifying the two previous equalities, we obtain that:∫ 1

0

(
GM,−δ1,δ2(t, s)− GM,δ1,δ2(1− t, 1− s)

)
σ(1− s) ds = 0

and since σ is arbitrary, from the regularity properties (G1)–(G3) on Definition 2, we
deduce (7).

Let us now characterize the points where a constant-sign Green’s function may vanish.

Lemma 3. Let M < π2. If GM,δ1,δ2 has a constant sign on I × I and vanishes at some point
(t0, s0), then either t0 = 0, t0 = 1 or t0 = s0.
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Proof. Let us suppose that (t0, s0) ∈ (0, 1) × (0, 1), with t0 > s0. In such a case,
u1(t) := GM,δ1,δ2(t, s0) solves the problem:{

u′′1 (t) + M u1(t) = 0, t ∈ (s0, 1],

u1(s0) = u′1(s0) = 0,

and so, GM,δ1,δ2(t, s0) = 0 for all t ∈ (s0, 1].
Now, using Condition (G5) in Definition 2, we may extend u1 to the interval [0, 1] as

the unique solution of the problem:{
u′′1 (t) + M u1(t) = 0, t ∈ [0, s0),

u1(s0) = 0, u′1(s0) = −1,

and from Condition (G6) in Definition 2, this function must satisfy that:

u1(0) = δ1

∫ 1

0
u1(t) dt = δ1

∫ s0

0
u1(t) dt.

It can be easily seen that previous equality is only true for a particular value of δ1:

δ1 =



√
M sin(

√
M s0)

1−cos(
√

M s0)
, M > 0,

2
s0

, M = 0,
√
−M sinh(

√
−M s0)

−1+cosh(
√
−M s0)

, M < 0.

(8)

Now, let us fix t1 ∈ (s0, 1). As was proven in [15], Section 3.2, it occurs that
v(s) = GM,δ1,δ2(t1, s) solves the problem:{

v′′(s) + M v(s) = 0, s ∈ [0, t1),

v(s0) = v′(s0) = 0,
(9)

and as a consequence, GM,δ1,δ2(t1, s) = 0 for all s ∈ [0, t1).
Now, if we choose some s1 ∈ (0, t1), s1 6= s0, defining u2(t) = GM,δ1,δ2(t, s1) and

reasoning analogously to the case with u1, we deduce that GM,δ1,δ2(t, s1) = 0 for all
t ∈ (s1, 1]. As we have already seen, this is only possible if:

δ1 =



√
M sin(

√
M s1)

1−cos(
√

M s1)
, M > 0,

2
s1

, M = 0,
√
−M sinh(

√
−M s1)

−1+cosh(
√
−M s1)

, M < 0,

which contradicts (8).
In the case that Green’s function has a constant sign and vanishes at some point

(t0, 0), with t0 ∈ (0, 1), with the same arguments, we conclude that GM,δ1,δ2(t, 0) = 0
for all t ∈ [0, 1]. Now, for any t1 ∈ (0, 1), we have that GM,δ1,δ2(t1, s) solves (9) with
v(0) = v′(0) = 0. As a direct consequence GM,δ1,δ2(t1, s) = 0 for all s ∈ [0, t1), and we
arrive at a contradiction in a similar way to s0 ∈ (0, 1).

Finally, we note that the case (t0, s0) ∈ (0, 1)× (0, 1], with t0 < s0, can also be discarded
as Lemma 2 implies that if GM,δ1,δ2 has a constant sign and vanishes at (t0, s0) ∈ (0, 1)×
(0, 1], with t0 < s0, then GM,−δ1,δ2 will also have a constant sign and will vanish at the point
(1− t0, 1− s0) (which satisfies that 1 > 1− t0 > 1− s0 ≥ 0).

Let us now compute the value of the Green’s function of Problem (1). For M ∈ R \ {0},
according to (6), it holds that:
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GM,δ1,δ2(t, s) = GM,0,0(t, s) +
δ1 ω1(t) + δ2 ω2(t)

1−
(

δ1
∫ 1

0 ω1(s) ds + δ2
∫ 1

0 ω2(s) ds
) ∫ 1

0
GM,0,0(t, s) dt, (10)

where ω1 is the unique solution to the problem:
u′′(t) + Mu(t) = 0, t ∈ I,

u(0)− u(1) = 1,

u′(0)− u′(1) = 0,

and ω2 is the unique solution to the problem:
u′′(t) + Mu(t) = 0, t ∈ I,

u(0)− u(1) = 0,

u′(0)− u′(1) = 1.

It is immediate to see that and ω1(t) = ω′2(t), for all t ∈ I, and so, as a consequence,∫ 1
0 ω1(s) ds = 0. Moreover, it is very well known (see [1]) that ω2(t) = GM,0,0(t, 0), and this

functions satisfies that:

GM,0,0(t, s) =


GM,0,0(t− s, 0), 0 ≤ s ≤ t ≤ 1,

GM,0,0(1 + t− s, 0), 0 ≤ t < s ≤ 1.

Thus, it holds that:∫ 1

0
GM,0,0(t, s)dt =

∫ 1

0
GM,0,0(t, 0)dt =

∫ 1

0
ω2(t)dt = − 1

M

∫ 1

0
ω′′2 (t)dt =

1
M

, ∀ s ∈ I.

Therefore, (10) can be rewritten as:

GM,δ1,δ2(t, s) = GM,0,0(t, s) +
δ1 ω1(t) + δ2 ω2(t)

M− δ2
= GM,0,δ2(t, s) +

δ1 ω1(t)
M− δ2

. (11)

Taking into account the previous expression, we shall start with the study of GM,0,δ2
(that is, the particular case in which δ1 = 0), and later on, we use (11) to study the general
case from the previous one.

4. Study of Case δ1 = 0

As we mentioned before, in this section, we study the regions of constant sign of
Green’s function related to the following perturbed periodic problem:

u′′(t) + Mu(t) = σ(t), t ∈ I,

u(0)− u(1) = 0,

u′(0)− u′(1) = δ2

∫ 1

0
u(s)ds,

(12)

for M, δ2 ∈ R. We recall that this problem is the particular case of considering δ1 = 0 in (1).
First of all, we note that the spectrum of Problem (12) is given by:

(δ2, M) ∈
{
(4k2π2, δ2), δ2 ∈ R, k = 1, 2, . . .

}
∪ {(M, M), M ∈ R}.
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On the other hand, the spectrum of the homogeneous periodic problem (δ1 = δ2 = 0):
u′′(t) + Mu(t) = σ(t), t ∈ I,

u(0)− u(1) = 0,

u′(0)− u′(1) = 0,

(13)

is given by 4k2π2, k = 0, 1, 2 . . ., that is GM,0,0 exists and is unique if and only if M 6= 4k2π2,
k = 0, 1, 2 . . ..

Thus, Formula (10) is valid to compute GM,0,δ2 for all M 6= 4k2π2, k = 0, 1, . . . and
δ2 6= M. Green’s function G0,0,δ2 , with δ2 6= 0, exists, but it cannot be calculated using (10),
so we need to do this by means of direct integration.

Let us now characterize the points where a constant-sign Green’s function GM,0,δ2
may vanish.

Lemma 4. Let M < π2. If δ2 < 0, GM,0,δ2 is non-negative on I × I and vanishes at some point
(t0, s0) ∈ I × I, then t0 = s0.

Proof. From Lemma 3, we only need to discard the cases (0, s0) and (1, s0) with s0 ∈ (0, 1).
We note that, since GM,0,δ2(0, s0) = GM,0,δ2(1, s0), both cases are equivalent. Suppose
then that:

GM,0,δ2(0, s0) = GM,0,δ2(1, s0) = 0.

In such a case, it would occur that
∂ GM,0,δ2

∂ t (0, s0) ≥ 0 and
∂ GM,0,δ2

∂ t (1, s0) ≤ 0, which
contradicts the fact that:

∂ GM,0,δ2

∂ t
(0, s)−

∂ GM,0,δ2

∂ t
(1, s) =

δ2

M− δ2
< 0 ∀ s ∈ (0, 1).

As a consequence, the only possibility is that t0 = s0.

Lemma 5. Let M < π2. If δ2 > M, GM,0,δ2 is non-positive on I × I and vanishes at some point
(t0, s0) ∈ I × I, then either t0 = 0 or t0 = 1.

Proof. From Lemma 3, we only need to discard the case t0 = s0. In such a case, since

GM,0,δ2 is non-positive, it must occur that
∂ GM,0,δ2

∂ t (t−0 , t0) ≥ 0 and
∂ GM,0,δ2

∂ t (t+0 , t0) ≤ 0, which
contradicts the fact that:

∂ GM,0,δ2

∂ t
(t+, t)−

∂ GM,0,δ2

∂ t
(t−, t) = 1 ∀ t ∈ (0, 1).

As a consequence, the only possibility is that either t0 = 0 or t0 = 1.

4.1. Expression of Green’s Function

We obtain now the exact expression of Green’s function related to Problem (12) by
considering the different situations of the parameters M and δ2. We start with M 6= 0, that
is the situation in which Problem (12) is uniquely solvable for δ2 = 0.

We must point out that the exact expression of GM,0,0 can be consulted in [1] and
references therein. More concisely, on such references (coauthored by the first author of
this work) it was developed an algorithm that calculates the exact expression of Green’s
function related to any n-th order differential equation with constant coefficients coupled
to arbitrary homogeneous (δi = 0, i = 0, . . . , n− 1) two-point linear boundary conditions.
Such an algorithm was developed in a Mathematica package and is free available at the
web page of Wolfram.
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4.1.1. M 6= 0

In this case, using Expression (11) and taking into account that, as we already men-
tioned, ω2(t) = GM,0,0(t, 0), the expression of Green’s function related to Problem (12) is
given by:

GM,0,δ2(t, s) = GM,0,0(t, s) +
δ2

M− δ2
GM,0,0(t, 0). (14)

We shall consider two different cases:

M = m2 > 0, with m ∈ (0, ∞):

In such a case, GM,0,0 is given by the expression:

GM,0,0(t, s) =
csc
(m

2
)

2m


cos
(m

2
(1 + 2s− 2t)

)
, 0 ≤ s ≤ t ≤ 1,

cos
(m

2
(1 + 2t− 2s)

)
, 0 ≤ t < s ≤ 1,

and so, (14) implies that:

GM,0,δ2(t, s) =
δ2 cos

(m
2 (1− 2t)

)
m2 − δ2

+
csc
(m

2
)

2m


cos
(m

2
(1 + 2s− 2t)

)
, 0 ≤ s ≤ t ≤ 1,

cos
(m

2
(1 + 2t− 2s)

)
, 0 ≤ t < s ≤ 1.

M = −m2 < 0, with m ∈ (0, ∞):

In this case, GM,0,0 is given by:

GM,0,0(t, s) =
1

2m(1− em)

{
em(1+s−t) + em(t−s), 0 ≤ s ≤ t ≤ 1,
em(1+t−s) + em(s−t), 0 ≤ t < s ≤ 1,

and thus:

GM,0,δ2(t, s) = − δ2

m2 + δ2

(
em(1−t) + emt

)
+

1
2m(1− em)

{
em(1+s−t) + em(t−s), 0 ≤ s ≤ t ≤ 1,

em(1+t−s) + em(s−t), 0 ≤ t < s ≤ 1.

4.1.2. M = 0

In this case, Formula (6) is not valid to calculate the expression of Green’s function, so
we shall compute it by direct integration.

Since the solution of equation u′′(t) = σ(t) is given by:

u(t) = c1 + c2t +
∫ t

0
(t− s)σ(s)ds,

then u′(t) = c2 +
∫ t

0 σ(s)ds. Imposing now the condition u(0) = u(1), we have that

c2 = −
∫ 1

0 (1− s)σ(s)ds. Therefore, u′(0)− u′(1) = −
∫ 1

0 σ(s)ds, and since u′(0)− u′(1) =
δ2
∫ 1

0 u(s)ds, we deduce that:

c1 = − 1
δ2

∫ 1

0
σ(s)ds− 1

2

∫ 1

0

(
1− s2

)
σ(s)ds +

∫ 1

0

(
s− s2

)
σ(s)ds +

1
2

∫ 1

0
(1− s)σ(s)ds.
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Therefore,

u(t) =− 1
δ2

∫ 1

0
σ(s)ds− 1

2

∫ 1

0

(
1− s2

)
σ(s)ds +

∫ 1

0
s(1− s)σ(s)ds

+

(
1
2
− t
) ∫ 1

0
(1− s)σ(s)ds +

∫ t

0
(t− s)σ(s)ds,

=
∫ 1

0
G0,0,δ2(t, s) σ(s)ds,

where:

G0,0,δ2(t, s) =


− s

2
− s2

2
+ st− 1

δ2
, 0 ≤ s ≤ t ≤ 1,

s
2
− s2

2
− t + st− 1

δ2
, 0 ≤ t < s ≤ 1.

4.2. Regions of Constant Sign of Green’s Function

We shall study now the regions in which the functions that we have just calculated have
a constant sign. To begin with, we note that we can bound these regions in the following way.

Lemma 6. GM,0,δ2 will never have a constant sign on I × I for any M > π2.

Proof. From Expression (14) and the fact that:

GM,0,δ2(t, 0) =
(

1 +
δ2

M− δ2

)
GM,0,0(t, 0) =

m2

m2 − δ2

csc
(m

2
)

cos
(m

2 (1− 2t)
)

2m
,

it is immediately deduced that GM,0,δ2(t, 0) is sign-changing on I for any m > π.

Lemma 7. The following properties are fulfilled:

• If M < δ2 ≤ 0, then GM,0,δ2 is negative on I × I;
• If 0 ≤ δ2 < M ≤ π2, then GM,0,δ2 is positive on I × I;
• If M = π2 and 0 ≤ δ2 < M, then GM,0,δ2 vanishes at the set A := {(0, 0), (0, 1), (1, 0), (1, 1)}

and is positive on (I × I)\A.

Proof. This is immediately deduced from (14) and the fact that GM,0,0 is negative on I × I
for M < 0, positive on I × I for 0 < M < π, and positive on (I × I)\A, vanishing at the set
A, for M = π2.

Moreover, since:

∂GM,0,δ2

∂δ2
(t, s) =

M
(M− δ2)2 GM,0,0(t, 0) > 0, ∀M ∈

(
−∞, π2

)
\ {0}, δ2 6= M, t, s ∈ I

and:
∂G0,0,δ2

∂δ2
(t, s) =

(
1
δ2

)2
> 0 ∀ t, s ∈ I, (15)

we deduce that, for any fixed M < π2, GM,0,δ2 is strictly increasing with respect to δ2. As a
consequence, we deduce the following facts:

• Since GM,0,0 > 0 on I × I for M ∈ (0, π2), we know that GM,0,δ2 will be positive for
some values of δ2 < 0. In particular, GM,0,δ2 will be positive for δ2 ∈ (δ2(M), 0], where
the optimal value δ2(M) will be either−∞ or the biggest negative real value for which
GM,0,δ2(M) attains the value of zero at some point (t0, s0) ∈ I × I;

• Since GM,0,0 < 0 on I × I for M < 0, we know that GM,0,δ2 will be negative for some
values of δ2 > 0. In particular, GM,0,δ2 will be negative for δ2 ∈ [0, δ2(M)), where the
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optimal value δ2(M) will be either +∞ or the smallest positive real value for which
GM,0,δ2(M) attains the value of zero at some point (t0, s0) ∈ I × I.

Let us study now the range of values δ2 < 0 for which GM,0,δ2 is positive.

Theorem 2. If M = m2 with m ∈ (0, π) and δ2 ≤ 0, then GM,0,δ2(t, s) > 0 for all (t, s) ∈ I × I
if and only if:

−
m2 cos

(m
2
)

1− cos
(m

2
) < δ2 ≤ 0.

Proof. From Lemma 4, we only need to study the values of function GM,0,δ2 at the diagonal
of its square of definition, where we obtain the function:

h(t) = GM,0,δ2(t, t) =
coth

(m
2
)

2m
+

δ2 cos
(m

2 (1− 2t)
)

csc
(m

2
)

2m(m2 − δ2)
, t ∈ I,

whose minimum is attained at t = 1
2 . Therefore, h has a positive sign on I if and only if

h
(

1
2

)
is positive, that is δ2 > −m2 cos(m

2 )
1−cos(m

2 )
.

Let us analyze now the range of values δ2 > 0 for which GM,0,δ2 is negative.

Theorem 3. Let M = −m2 with m ∈ (0, ∞) and δ2 ≥ 0, then GM,0,δ2 is strictly negative on
I × I if and only if:

0 ≤ δ2 <
2m2e

m
2

1 + em − 2e
m
2

.

Proof. From Lemma 5, we only need to study the values of function GM,0,δ2 at the points
of the form (0, s) and (1, s). Therefore, we have to study the function:

r(s) = GM,0,δ2(0, s) = GM,0,δ2(1, s) =
1

2m(1− em)

(
em(1−s) + ems − δ2

δ2 + m2 (1 + em)

)
,

whose maximum value is attained at s = 1
2 . Therefore, r is negative if and only if r

(
1
2

)
< 0,

that is δ2 < 2m2e
1
2

1+em−2e
m
2

.

From the previous results and (15), we deduce the following facts:

• Since GM,0,δ2 > 0 for M ∈ (0, π2) and −m2 cos(m
2 )

1−cos(m
2 )

< δ2 ≤ 0, we know that G0,0,δ2

will be positive for some values of δ2 < 0. In particular, G0,0,δ2 will be positive for
δ2 ∈ (δ2(0), 0), where the optimal value δ2(0) will be either−∞ or the biggest negative
real value for which G0,0,δ2(0) attains the value of zero at some point (t0, s0) ∈ I × I;

• Since GM,0,δ2 < 0 for M < 0 and 0 ≤ δ2 < 2m2e
m
2

1+em−2e
m
2

, we know that G0,0,δ2 will

be negative for some values of δ2 > 0. In particular, G0,0,δ2 will be negative for
δ2 ∈ (0, δ2(0)), where the optimal value δ2(0) will be either +∞ or the smallest positive
real value for which G0,0,δ2(0) attains the value of zero at some point (t0, s0) ∈ I × I.

Let us study the sign of function G0,0,δ2 according to the value of δ2 ∈ R \ {0}.

Theorem 4. G0,0,δ2 is strictly negative on I × I if and only if δ2 ∈ (0, 8).

Proof. For δ2 > 0, using Lemma 4, the function to study in this case is:

r(s) = G0,0,δ2(0, s) = G0,0,δ2(1, s) =
s
2
− s2

2
− 1

δ2
, s ∈ I,
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which reaches its maximum at s = 1
2 . As a consequence, G0,0,δ2 is negative if and only if

r
(

1
2

)
< 0, that is 0 < δ2 < 8.

Using the same arguments, by means of Lemma 5, we arrive at the following result
for the negative sign of δ2.

Theorem 5. G0,0,δ2 is strictly positive on I × I if and only if δ2 ∈ (−8, 0).

Finally, we have that:

• Since G0,0,δ2 > 0 on I × I for δ2 ∈ (−8, 0), we know that GM,0,δ2 will be positive for
some values of δ2 < M < 0. In particular, GM,0,δ2 will be positive for δ2 ∈ (δ2(M), M),
where the optimal value δ2(M) will be either −∞ or the biggest negative real value
for which GM,0,δ2(M) attains the value of zero at some point (t0, s0) ∈ I × I;

• Since G0,0,δ2 < 0 on I × I for δ2 ∈ (0, 8), we know that GM,0,δ2 will be negative for
some values of δ2 > M > 0. In particular, GM,0,δ2 will be negative for δ2 ∈ (M, δ2(M)),
where the optimal value δ2(M) will be either +∞ or the smallest positive real value
for which GM,0,δ2(M) attains the value of zero at some point (t0, s0) ∈ I × I.

Theorem 6. If M = m2 with m ∈ (0, π), then GM,0,δ2(t, s) < 0 for all (t, s) ∈ I × I if and only if:

m2 < δ2 <
m2

1− cos
(m

2
) .

Proof. Arguing as in the previous results, using Lemma 5, we only need to consider the
function GM,0,δ2 at the points of the form (0, s) and (1, s), where the corresponding function
to study is:

r(s) = GM,0,δ2(0, s) = GM,0,δ2(1, s) =
csc
(m

2
)

2m

[
cos
(m

2
(1− 2t)

)
+

δ2

m2 − δ2
cos
(m

2

)]
.

In this case, r has an absolute maximum at s = 1
2 . Thus, r(s) < 0 for all s ∈ I if and

only if r
(

1
2

)
< 0, that is δ2 < m2

1−cos(m
2 )

.

We now perform a study of the positive sign of GM,0,δ2 for m ∈ (0, ∞) and
δ2 < −m2 < 0.

Theorem 7. Let M = −m2 with m ∈ (0, ∞), then Green’s function related to Problem (12) is

strictly positive on I × I if and only if δ2 > − m2(1 + em)

1 + em − 2e
m
2

.

Proof. From Lemma 4, we only must study the behavior of Green’s function at the points
of its diagonal. In this case,

h(t) = GM,0,δ2(t, t) =
em + 1

2m(1− em)
− δ2

δ2 + m2
em(1−t) + emt

2m(1− em)

has in this case an absolute minimum at t = 1
2 . Therefore, h is positive on I if and only if

h
(

1
2

)
> 0, that is δ2 > − m2(1 + em)

1 + em − 2e
m
2

.

Figure 1 shows the regions where the function GM,0,δ2 maintains a constant sign.
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M 0 π2

δ2

8

-8

Figure 1. The blue region represents the positive sign of GM,0,δ2 , while the red region corresponds to
the negative sign of GM,0,δ2 at the (M, δ2)-plane.

5. Case δ1 6= 0

In this last section, we consider the general situation of δ1 6= 0 and calculate the regions
of constant sign of Green’s function related to Problem (1). We divide this study into two
different situations, depending on the fact that the parameter M is or is not equal to zero.

First of all, we obtain the expression of Green’s function in each of the aforemen-
tioned cases.

5.1. Expression of Green’s Function

In this subsection, we obtain the expression of Green’s function related to Problem (1)
as a function of the real parameter M.

5.1.1. M 6= 0

Using Formula (11) and the fact that ω1(t) = ω′2(t), it is obtained that the expression
of Gδ1,δ2,M is given by:

GM,δ1,δ2(t, s) = GM,0,0(t, s) +
δ1 ω′2(t) + δ2 ω2(t)

M− δ2
, (16)

where:

ω2(t) =
1

2m


cos
(m

2 (2 t− 1)
)

csc
(m

2
)
, M = m2 > 0, M 6= 4k2π2, k = 0, 1, . . .

− cosh
(m

2 (2 t− 1)
)
csch

(m
2
)
, M = −m2 < 0.

Thus, for M = m2 > 0, m > 0, M 6= 4k2π2, k = 0, 1, . . . , Gδ1,δ2,M follows the
expression:
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GM,δ1,δ2(t, s) =
csc
(m

2
)

2m


cos
(

m
(

1
2 + s− t

))
+

δ2 cos(m( 1
2−t))+mδ1 sin(m( 1

2−t))
m2−δ2

, 0 ≤ s ≤ t ≤ 1,

cos
(

m
(

1
2 + t− s

))
+

δ2 cos(m( 1
2−t))+mδ1 sin(m( 1

2−t))
m2−δ2

, 0 ≤ t < s ≤ 1,

and for M = −m2, m > 0, the expression of Gδ1,δ2,M is given by:

GM,δ1,δ2(t, s) =
csch

(m
2
)

2m


− cosh

(
m
(

1
2 + s− t

))
+

δ2 cosh(m( 1
2−t))−m δ1 sinh(m( 1

2−t))
m2+δ2

, 0 ≤ s ≤ t ≤ 1

− cosh
(

m
(

1
2 + t− s

))
+

δ2 cosh(m( 1
2−t))−m δ1 sinh(m( 1

2−t))
m2+δ2

, 0 ≤ t < s ≤ 1.

5.1.2. M = 0

For the case M = 0, we cannot apply Formula (10), and we need to compute G0,δ1,δ2
directly.

It is clear that the solutions of the equation u′′(t) = σ(t), t ∈ I are given by the
expression:

u(t) = c1 + c2t +
∫ t

0
(t− s)σ(s)ds. (17)

So, u(0)− u(1) = −c2 +
∫ 1

0 (s− 1)σ(s)ds.
On the other hand,∫ 1

0
u(t)dt =

∫ 1

0

(
c1 + c2t +

∫ t

0
(t− s)σ(s)ds

)
dt = c1 +

c2

2
+
∫ 1

0

∫ t

0
(t− s)σ(s) ds dt.

Applying Fubini’s theorem, we have that:

∫ 1

0

∫ t

0
(t− s)σ(s)ds =

∫ 1

0

∫ 1

s
(t− s)σ(s) dt ds =

∫ 1

0

(
s2 + 1

2
− s
)

σ(s)ds.

Imposing the boundary conditions in (1), we arrive at the following system of equations:

δ1c1 +

(
δ1

2
+ 1
)

c2 =
∫ 1

0
(s− 1)σ(s)ds− δ1

∫ 1

0

(
s2 + 1

2
− s
)

σ(s)ds,

δ2c1 +
δ2

2
c2 = −

∫ 1

0
σ(s)ds− δ2

∫ 1

0

(
s2 + 1

2
− s
)

σ(s)ds,

whose solutions are:

c1 = −1
2

∫ 1

0
(s− 1)σ(s)ds−

∫ 1

0

(
s2 + 1

2
− s
)

σ(s)ds− δ1 + 2
2 δ2

∫ 1

0
σ(s)ds,

c2 =
∫ 1

0
(s− 1)σ(s)ds +

δ1

δ2

∫ 1

0
σ(s)ds.

Substituting c1 and c2 in (17), we have that:

u(t) = − 1
2

∫ 1

0
(s− 1)σ(s)ds−

∫ 1

0

(
s2 + 1

2
− s
)

σ(s)ds− δ1 + 2
2 δ2

∫ 1

0
σ(s)ds

+
∫ 1

0
t(s− 1)σ(s)ds +

δ1

δ2

∫ 1

0
t σ(s)ds +

∫ 1

0
(t− s)σ(s)ds

=
∫ 1

0
G0,δ1,δ2(t, s) σ(s)ds,
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being:

G0,δ1,δ2(t, s) =
1

2 δ2


−2 + δ1 (−1 + 2t)− s δ2 (1 + s− 2t), 0 ≤ s ≤ t ≤ 1,

−2 + δ1 (−1 + 2t)− δ2 (s− 1) (s− 2t), 0 ≤ t < s ≤ 1.

(18)

5.2. Regions of Constant Sign of Green’s Function

Now, we are in a position to obtain the regions of constant sign of Green’s function as
a function of the parameters M, δ1, and δ2.

To this end, we notice that, by direct differentiation on (16) and (18), the following
identities hold:

∂

∂δ1
GM,δ1,δ2(t, s) =

ω1(t)
M− δ2

for M 6= 0, M 6= δ2

and:
∂

∂δ1
G0,δ1,δ2(t, s) =

1
δ2

(
t− 1

2

)
,

which implies that ∂
∂δ1

GM,δ1,δ2 will change sign depending on t. As a consequence, there
will be some values of t for which GM,δ1,δ2 will increase with respect to δ1 and some other
values of t for which GM,δ1,δ2 will decrease with respect to δ1. As an immediate consequence,
we deduce the following result.

Corollary 1. The two following properties hold:

• If M and δ2 are such that GM,0,δ2 > 0 on I × I, then GM,δ1,δ2 is either positive or changes its
sign on I × I;

• If M and δ2 are such that GM,0,δ2 < 0 on I × I, then GM,δ1,δ2 is either negative or changes its
sign on I × I.

Furthermore, the following result can be easily verified.

Lemma 8. If M and δ2 are such that GM,0,δ2 changes sign on I × I, then GM,δ1,δ2 also changes its
sign on I × I for every δ1 ∈ R.

Proof. It is immediately verified using arguments similar to Theorems 2, 3, 6, and 7. In
particular, it is obtained that:

1. If M = m2 ∈ (0, π2) and δ2 < −m2 cos(m
2 )

1−cos(m
2 )

, then GM,δ1,δ2

(
1
2 , 1

2

)
< 0 and GM,δ1,δ2(0, 0) > 0;

2. If M = m2 ∈ (0, π2)and δ2 >
m2

1− cos
(m

2
) , then GM,δ1,δ2

(
1
2 , 1

2

)
> 0 and GM,δ1,δ2(0, 0) < 0;

3. If M = −m2, with m ∈ (0, ∞), and δ2 >
2m2e

m
2

1 + em − 2e
m
2

, then GM,δ1,δ2

(
1
2 , 1

2

)
> 0 and

GM,δ1,δ2(0, 0) < 0;

4. If M = −m2, with m ∈ (0, ∞), and δ2 < − m2(1 + em)

1 + em − 2e
m
2

then GM,δ1,δ2

(
1
2 , 1

2

)
< 0 and

GM,δ1,δ2(0, 0) > 0;
5. If M > π2 then GM,δ1,δ2(t, 0) is sign-changing on I.

Moreover, since for any fixed t ∈ I, GM,δ1,δ2(t, s) is either increasing or decreasing with
respect to δ1, we deduce the following facts:

• If M and δ2 are such that GM,0,δ2 > 0 on I × I, then GM,δ1,δ2 will be positive on I × I
for some values (both positive and negative) of δ1. In particular, by Lemma 2, we
know that GM,δ1,δ2 will be positive on I × I for δ1 ∈ (−δ1(δ2, M), δ1(δ2, M)), where
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the optimal value δ1(δ2, M) will be either +∞ or the smallest positive real value for
which GM,δ1(δ2,M),δ2

attains the value of zero at some point;
• If M and δ2 are such that GM,0,δ2 < 0 on I × I, then GM,δ1,δ2 will be negative on I × I

for some values (both positive and negative) of δ1. In particular, by Lemma 2, we
know that GM,δ1,δ2 will be negative on I × I for δ1 ∈ (−δ1(δ2, M), δ1(δ2, M)), where
the optimal value δ1(δ2, M) will be either +∞ or the smallest positive real value for
which GM,δ1(δ2,M),δ2

attains the value of zero at some point.

Similar to Lemmas 4 and 5, we can make precise the points where a constant-sign
Green’s function GM,δ1,δ2 may vanish.

Lemma 9. Let M < π2 and δ1 > 0. If GM,δ1,δ2 has a constant sign on I × I and vanishes at some
point (t0, s0), then either t0 = 1 or t0 = s0.

Proof. Let us suppose that GM,δ1,δ2 ≥ 0 (the case GM,δ1,δ2 ≤ 0 would be analogous). From
Lemma 3, we only need to discard the case t0 = 0. Suppose then that GM,δ1,δ2(0, s0) = 0 for
some s0 ∈ (0, 1). In such a case, from the equality:

GM,δ1,δ2(0, s0)− GM,δ1,δ2(1, s0) = δ1

∫ 1

0
GM,δ1,δ2(t, s0) dt > 0,

we deduce that GM,δ1,δ2(1, s0) < 0, which is a contradiction. Therefore, GM,δ1,δ2 cannot
vanish at (0, s0).

5.3. Negativeness of GM,δ1,δ2

Now, we study the region where Green’s function is negative on the square of defini-
tion. We distinguish two situations.

5.3.1. M 6= 0

We analyze the region where GM,δ1,δ2 is negative on I × I. To do this, taking into
account Corollary 1, we fix M 6= 0 and δ2 for which GM,0,δ2 is negative on I × I, that is
δ2 ∈ (M, f (M)), with:

f (M) =


m2

1−cos(m
2 )

, M = m2, m ∈ (0, π),

2m2e
m
2

1+em−2e
m
2

, M = −m2 < 0, m ∈ (0, ∞).

Taking into account Lemma 2, we only need to perform the calculations for δ1 > 0
(since the case δ1 < 0 follows by symmetry). On the other hand, it is immediate to verify
that function ω1 is strictly decreasing on I, ω1(0) = 1

2 , and ω1(1) = − 1
2 .

The characterization of the set is given in the following result.

Theorem 8. Let M < π2, M 6= 0, and δ2 ∈ (M, f (M)), then GM,δ1,δ2 is strictly negative on
I × I if and only if:

|δ1| < 2 (M− δ2) GM,0,δ2

(
1,

1
2

)
.

Proof. For δ1 > 0, it is immediately deduced from expression:

GM,δ1,δ2(t, s) = GM,0,δ2(t, s) +
δ1

M− δ2
ω1(t)
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and the fact that ω1 attains its minimum at t = 1 and GM,0,δ2 attains its maximum at

(t, s) =
(

1, 1
2

)
. As a consequence:

max
t,s∈I

GM,δ1,δ2(t, s) = GM,δ1,δ2

(
1,

1
2

)
= GM,0,δ2

(
1,

1
2

)
− δ1

2(M− δ2)
.

Thus, GM,δ1,δ2 is negative if and only if δ1 < 2 (M− δ2) GM,0,δ2

(
1, 1

2

)
.

The case δ1 < 0 follows by symmetry.

5.3.2. M = 0

For the negative case, we set δ2 ∈ (0, 8) where G0,0,δ2 is negative.

Theorem 9. If M = 0 and δ2 ∈ (0, 8), then G0,δ1,δ2 is negative on I × I if and only if:

|δ1| < 2− δ2
4 .

Proof. Suppose that δ1 > 0, and let us calculate the maximum of G0,δ1,δ2 (whose expression
is given by (18)). From Lemma 9, we know that such a maximum is either at t = 1 or at
t = s.

At points of the form (1, s), we have that r(s) = G0,δ1,δ2(1, s) has an absolute maximum

at s = 1
2 . Therefore, r(s) < 0 for all s ∈ I if and only if r

(
1
2

)
< 0, that is 0 < δ1 < 2− δ2

4 .
Let us consider now the restriction to the diagonal, that is h(s) = G0,δ1,δ2(s, s). Given

c = 1
2 −

δ1
δ2

< 1
2 , it holds that h′(s) < 0 for s < c and h′(c) = 0 and h′(s) > 0 for s > c.

Thus, c is a minimum of h. If c ∈ (0, 1
2 ), h attains its maximum either at s = 1 or at s = 0,

while if c ≤ 0, then h′ > 0 on (0, 1], and the maximum is attained at s = 1. In any case,
h(0) = −2−δ1

2δ2
< 0 and h(1) = −2+δ1

2δ2
> h(0). Therefore, h(s) < 0 if and only if h(1) < 0,

that is 0 < δ1 < 2.
Therefore, for δ1 > 0, GM,δ1,δ2 < 0 on I × I if and only if:

δ1 < min
{

2− δ2

4
, 2
}

= 2− δ2

4
.

Using the symmetry of G0,δ1,δ2 with respect to δ1, we conclude the result.

5.4. Positiveness of GM,δ1,δ2

Let us calculate now the regions where GM,δ1,δ2 is positive. As usual, we distinguish
two cases.

5.4.1. M 6= 0

Taking into account Corollary 1, let us fix M 6= 0 and δ2 such that GM,0,δ2 is positive
on I × I, that is δ2 ∈ (g(M), M), with:

g(M) :=

{
g1

(√
M
)

, M ∈ (0, π2),

g2
(√
−M

)
, M < 0,

(19)

where g1(m) = −
m2 cos

(m
2
)

1− cos
(m

2
) and g2(m) = −m2 cosh(m

2 )
cosh(m

2 )−1
.

Now, we define the function:

k(M) :=

{
k1

(√
M
)

, M ∈ (0, π2),

k2
(√
−M

)
, M < 0,

(20)

where k1(m) = −m2 cot2(m
2
)

and k2(m) = −m2 coth2(m
2
)
.
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It is easy to verify that:

g(M) < k(M) < M, for all M 6= 0.

We shall consider now two different subcases, depending on the sign of the parameter
M. We start with M > 0.

Theorem 10. Let functions g and k be defined in (19) and (20), respectively. Assume that M = m2,
m ∈ (0, π) and δ2 ∈ (g(M), M), then the two following properties are fulfilled:

1. If δ2 ∈ (k(M), M), then GM,δ1,δ2 is strictly positive on I × I if and only if:

|δ1| < m cot
(m

2

)
;

2. If δ2 ∈ (g(M), k(M)], then GM,δ1,δ2 is strictly positive on I × I if and only if:

|δ1| <

√
−δ2

2 + cos2
(m

2
)
(m2 − δ2)

2

m
.

Proof. Let us assume that δ1 > 0 and calculate the minimum of GM,δ1,δ2 . From Lemma 9,
we know that such a minimum is either at t = 1 or t = s.

Let us distinguish several cases:

1. δ2 ≥ 0 (that is, δ2 ∈ [0, M)):
At the points of the form (1, s), the function to be studied is:

r(s) = GM,δ1,δ2(1, s) =
cos
(m

2 (1− 2s)
)

csc
(m

2
)

2m
+

δ2 cot
(m

2
)

2m(m2 − δ2)
− δ1

2(m2 − δ2)
,

whose minimum is attained at s = 0 and s = 1 (indeed, r(0) = r(1)). Thus, r(s) > 0
for all s ∈ I if and only if r(0) = r(1) > 0, that is 0 < δ1 < m cot

(m
2
)
.

At the diagonal t = s, we obtain the following function:

h(s) = GM,δ1,δ2(s, s) =
csc
(m

2
)

2m

cos
(m

2

)
+

δ1 m sin
(

m
(

1
2 − s

))
+ δ2 cos

(
m
(

1
2 − s

))
m2 − δ2

,

which attains its minimum at s = 1, and so, h(s) > 0 on I if and only if h(1) = r(1) > 0.
Thus, from Lemma 9, we have that GM,δ1,δ2 > 0 on I × I if and only if
0 < δ1 < m cot

(m
2
)
;

2. δ2 < 0 (that is, δ2 ∈ (g(M), 0)):
At the points of the form (1, s), analogous to the previous case, we obtain that r(s) > 0
on I if and only if r(1) > 0, that is 0 < δ1 < m cot

(m
2
)
.

At the diagonal t = s, we have that h′(c) = 0, h′(s) > 0 for s > c, and h′(s) < 0 for
s < c, with c = 1

2 −
1
m arctan

(
m δ1
δ2

)
. Therefore, c is a minimum of h. Moreover, we

note that c ∈ I if and only if 1
m arctan

(
mδ1
δ2

)
∈
[
− 1

2 , 0
)

, that is 0 < δ1 ≤ − δ2
m tan

(m
2
)
.

Therefore, we subdivide the case δ2 < 0 into two cases:

(a) If δ1 ≥ − δ2
m tan

(m
2
)
, then h′(s) < 0 for all s ∈ [0, 1) and the minimum of h is

attained at s = 1. Thus, h(s) > 0 on I if and only if h(1) = r(1) > 0, that is
0 < δ1 < m cot

(m
2
)
. As a consequence, GM,δ1,δ2 > 0 on I × I for

0 < δ1 < m cot
(m

2
)
.

We note that the two previous conditions, δ1 ≥ − δ2
m tan

(m
2
)

and 0 < δ1 <
m cot

(m
2
)
, are compatible if and only if δ2 > −m2 cot2(m

2
)
≡ k(M);
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(b) If 0 < δ1 < − δ2
m tan

(m
2
)
, then h attains an absolute minimum at c ∈ (0, 1). In this

case, h(c) > 0 if and only if:

δ1 <

√
m4 − 2m2δ2 − δ2

2 + (m2 − δ2)
2 cos(m)

√
2 m

=

√
−δ2

2 + cos2
(m

2
)
(m2 − δ2)

2

m
.

We note that −δ2
2 + cos2(m

2
)(

m2 − δ2
)2

> 0 for m ∈ (0, π) and δ2 ∈ (g(M), 0).

Indeed, −δ2
2 + cos2(m

2
)(

m2 − δ2
)2

> 0 if and only if
∣∣cos

(m
2
)∣∣ |m2 − δ2| ≥ |δ2|.

Since m ∈ (0, π) and δ2 < 0, the previous inequality is equivalent to:

δ2 ≥ −
m2 cos

(m
2
)

1− cos
(m

2
) ≡ g(M).

Moreover, we note that:

min

− δ2

m
tan
(m

2

)
,

√
−δ2

2 + cos2
(m

2
)
(m2 − δ2)

2

m


=


√
−δ2

2+cos2(m
2 )(m2−δ2)

2

m , δ2 ∈ (g(M), k(M)),
− δ2

m tan
(m

2
)
, δ2 ∈ (k(M), M).

As a consequence, we conclude that:

• If δ2 ∈ (g(M), k(M)] then, from (b), GM,δ1,δ2 > 0 for:

0 < δ1 < min

− δ2

m
tan
(m

2

)
,

√
−δ2

2 + cos2
(m

2
)
(m2 − δ2)

2

m


=

√
−δ2

2 + cos2
(m

2
)
(m2 − δ2)

2

m
.

• If δ2 ∈ (k(M), M), then, from (a), GM,δ1,δ2 > 0 for:

− δ2

m
tan
(m

2

)
< δ1 < m cot

(m
2

)
and, from (b), GM,δ1,δ2 > 0 for:

0 < δ1 ≤ min

− δ2

m
tan
(m

2

)
,

√
−δ2

2 + cos2
(m

2
)
(m2 − δ2)

2

m


=

√
−δ2

2 + cos2
(m

2
)
(m2 − δ2)

2

m
.

Thus, GM,δ1,δ2 > 0 on I × I for 0 < δ1 < m cot
(m

2
)
.

The fact that the obtained bounds are optimal follows from Lemma 9.
Using the symmetry with respect to δ1, we conclude the result.

In the sequel, we shall consider the case M < 0.

Theorem 11. Let functions g and k be defined in (19) and (20), respectively. For any M = −m2,
with m > 0 and δ2 ∈ (g(M), M), it holds that:
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1. If δ2 ∈ (g(M), k(M)], then GM,δ1,δ2 is strictly positive on I × I if and only if:

|δ1| <

√
δ2

2 − (m2 + δ2)
2 cosh2(m

2
)

m
.

2. If δ2 ∈ (k(M), M), then GM,δ1,δ2 is strictly positive on I × I if and only if:

|δ1| < m coth
(m

2

)
.

Proof. Let us assume that δ1 > 0 and calculate the minimum of GM,δ1,δ2 . From Lemma 9,
we know that such a minimum is either at t = 1 or t = s.

At the points of the form (1, s), we obtain the function:

r(s) = GM,δ1,δ2(1, s) =
csch

(m
2
)

2m

(
δ1m sinh

(m
2
)
+ δ2 cosh

(m
2
)

m2 + δ2
− cosh

(
m
(

s− 1
2

)))
,

whose minimum is attained at s = 0 and s = 1 (indeed, r(0) = r(1)). Thus, r(s) > 0 for all
s ∈ I if and only if r(0) = r(1) > 0, that is 0 < δ1 < m coth

(m
2
)
.

At the diagonal t = s, we obtain the following function:

h(s) = GM,δ1,δ2(s, s) =
csch

(m
2
)

2m

 δ2 cosh
(

m
(

1
2 − s

))
− δ1m sinh

(
m
(

1
2 − s

))
m2 + δ2

− cosh
(m

2

).

It occurs that h′(s) = 0 if and only if tanh
(m

2 (1− 2s)
)
= mδ1

δ2
. Since δ2 < 0 and

tanh−1(x) exists for x ∈ [−1, 1], we have that h has a critical point c = 1
2 −

1
m tanh−1

(
mδ1
δ2

)
if and only if −1 ≤ mδ1

δ2
< 0, that is δ1 ≤ − δ2

m . In such a case, it occurs that h′(s) < 0
for s < c and h′(s) > 0 for s > c. Moreover, we can see that c ∈ I if and only if
0 < δ1 ≤ − δ2

m tanh
(m

2
)(

< − δ2
m

)
. Therefore, we distinguish two cases:

(a) If δ1 > − δ2
m tanh

(m
2
)
, then h′(s) < 0 for all s ∈ I and h has a minimum at s = 1.

Then, h(s) > 0 for all s ∈ I if and only if h(1) = r(1) > 0, that is if and only if
0 < δ1 < m coth

(m
2
)
. As a consequence, GM,δ1,δ2 > 0 on I × I for 0 < δ1 < m coth

(m
2
)
.

We note that the two previous conditions, δ1 > − δ2
m tanh

(m
2
)

and 0 < δ1 < m coth
(m

2
)
,

are compatible if and only if δ2 > −m2 coth2(m
2
)
≡ k(M);

(b) If 0 < δ1 ≤ − δ2
m tanh

(m
2
)
, then h attains an absolute minimum c ∈ (0, 1). In this case,

h(c) > 0 (and, consequently, h(s) > 0 for s ∈ I) if and only if:

0 < δ1 <

√
δ2

2 − (m2 + δ2)
2 cosh2(m

2
)

m
.

Note that, analogous to what was done in Theorem 10, it can be proven that δ2
2 −(

m2 + δ2
)2 cosh2(m

2
)
> 0 for M = −m2 < 0 and δ2 ∈ (g(M), M).

Therefore, since h(c) < h(1) = r(1), GM,δ1,δ2 > 0 on I × I for:

0 < δ1 <

√
δ2

2 − (m2 + δ2)
2 cosh2(m

2
)

m
.

Moreover, we note that:

min

− δ2

m
tanh

(m
2

)
,

√
δ2

2 − (m2 + δ2)
2 cosh2(m

2
)

m
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=


√

δ2
2−(m2+δ2)

2 cosh2(m
2 )

m , δ2 ∈ (g(M), k(M)),

− δ2
m tanh

(m
2
)
, δ2 ∈ (k(M), M).

As a consequence, reasoning analogously to the previous theorem and using the
symmetry with respect to δ1, we conclude that the attained bounds are optimal, and so, the
result holds.

5.4.2. M = 0

As in the previous case, we shall compute the positive sign of G0,δ1,δ2 fixing the value
of δ2.

Theorem 12. Let M = 0 and δ2 ∈ (−8, 0), then G0,δ1,δ2 > 0 on I × I if and only if:

|δ1| <

 1
2

√
−8δ2 − δ2

2 , δ2 ∈ (−8,−4),

2, δ2 ∈ [−4, 0).

Proof. Let us assume that δ1 > 0 and calculate the minimum of G0,δ1,δ2 . From Lemma 9,
we know that such a minimum is either at t = 1 or t = s.

As we saw in Theorem 9, r(s) = G0,δ1,δ2(1, s) has its maximum at s = 1
2 and the

minimum at s = 0 and s = 1. Hence, r > 0 if and only if r(0) = r(1) > 0, that is 0 < δ1 < 2.
On the other hand, as we saw in Theorem 9, h(s) = G0,δ1,δ2(s, s) has an absolute

minimum at c = 1
2 −

δ1
δ2

, h′(s) < 0 for s < c, and h′(s) > 0 for s > c.
We distinguish the following cases:

• If δ1 ≥ − δ2
2 , then c ≥ 1, and the minimum of h is attained at s = 1 and h(1) > 0 if and

only if δ1 < 2. Since h(1) = r(1), we deduce that if − δ2
2 ≤ δ1 < 2, then G0,δ1,δ2 > 0 on

I × I. We note that this is only possible when δ2 > −4;

• If 0 < δ1 < − δ2
2 , then c ∈ (0, 1) and h(c) > 0 if and only if δ1 < 1

2

√
−8δ2 − δ2

2 . Since
r(1) = h(1) > h(c), we deduce that G0,δ1,δ2 > 0 for:

0 < δ1 < min
{
− δ2

2
,

1
2

√
−8δ2 − δ2

2

}
=

 1
2

√
−8δ2 − δ2

2 , δ2 ∈ (−8,−4),

− δ2
2 , δ2 ∈ [−4, 0).

In conclusion, G0,δ1,δ2(t, s) > 0 on I × I for all t, s ∈ I for:

0 < δ1 <

 1
2

√
−8δ2 − δ2

2 , δ2 ∈ (−8,−4),

2, δ2 ∈ [−4, 0).

Using the symmetry with respect to δ1, we conclude the result.

5.5. A Particular Case: δ2 = 0

Finally, as a consequence of the previous results, we arrive at the following corollary.

Corollary 2. Let us consider the perturbed periodic problem:
u′′(t) + Mu(t) = σ(t), t ∈ I,

u(0)− u(1) = δ1

∫ 1

0
u(s)ds,

u′(0)− u′(1) = 0,

(21)

for M ∈ R \ {0}. The following statements holds:
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1. If M = m2 > 0, then GM,δ1,0 > 0 on I × I if and only if m ∈ (0, π) and |δ1| < m cot
(m

2
)
;

2. If M = −m2 < 0, then GM,δ1,0 < 0 on I × I if and only if |δ1| < 2me
m
2

1−em .

In this case, the graph showing the sign of Green’s function on the (M, δ1) plane can
be seen in Figure 2.

0

-2

2

δ1

π2
Μ

Figure 2. The blue and red areas represent the regions of the positive and negative sign of Green’s
function, respectively.

6. Conclusions

We studied and characterized the regions of constant sign of Green’s function related
to the problem: 

u′′(t) + Mu(t) = σ(t), t ∈ I,

u(0)− u(1) = δ1

∫ 1

0
u(s)ds,

u′(0)− u′(1) = δ2

∫ 1

0
u(s)ds.

In the case M 6= 0, we obtained the expression of Green’s function as a linear combina-
tion of the Green’s function of the related homogeneous problem (with δ1 = δ2 = 0) and
some particular solutions of the equation. However, for the case M = 0, we obtained the
expression of Green’s function by direct integration.

We started our study by analyzing the regions of constant sign of Green’s function
in the particular case of δ1 = 0, and later on, we extended this study to any real value of
parameter δ1.

Author Contributions: Conceptualization, A.C., L.L.-S. and M.Y.; methodology, A.C., L.L.-S. and
M.Y.; formal analysis, A.C., L.L.-S. and M.Y.; investigation, A.C., L.L.-S. and M.Y.; writing—original
draft preparation, A.C., L.L.-S. and M.Y.; writing—review and editing, A.C., L.L.-S. and M.Y.; funding
acquisition, A.C. All authors have read and agreed to the published version of the manuscript.

Funding: The authors are supported by the Agencia Estatal de Investigación (AEI) of Spain under
Grant PID2020-113275GB-I00, co-financed by the European Community fund FEDER. They are also
also supported by Xunta de Galicia, Project ED431C 2019/02 (Spain).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cabada, A. Green’s Functions in the Theory of Ordinary Differential Equation; Springer Briefs in Mathematics; Springer: New York, NY,

USA, 2014.
2. Magnus, W.; Winkler, S. Hill’s Equation; Dover Publications: New York, NY, USA, 1979.
3. Hu, Q.Q.; Yan, B. Existence of multiple solutions for second-order problem with Stieltjes integral boundary condition. J. Funct.

Spaces 2021, 2021, 6632236. [CrossRef]
4. Khanfer, A.; Bougoffa, L. On the nonlinear system of fourth-order beam equations with integral boundary conditions. AIMS Math.

2021, 6, 11467–11481. [CrossRef]
5. Mansouri, B.; Ardjouni, A.; Djoudi, A. Positive solutions of nonlinear fourth order iterative differential equations with two-point

and integral boundary conditions. Nonautonomous Dyn. Syst. 2021, 8, 297–306. [CrossRef]
6. Xu, S.; Zhang, G. Positive solutions for a second-order nonlinear coupled system with derivative dependence subject to coupled

Stieltjes integral boundary conditions. Mediterr. J. Math. 2022, 19, 50. [CrossRef]

http://doi.org/10.1155/2021/6632236
http://dx.doi.org/10.3934/math.2021664
http://dx.doi.org/10.1515/msds-2020-0139
http://dx.doi.org/10.1007/s00009-022-01977-9


Axioms 2022, 11, 139 22 of 22

7. Yang, Y.-Y.; Wang, Q.-R. Multiple positive solutions for one dimensional third order p-laplacian equations with integral boundary
conditions. Acta Math. Appl. Sin. Engl. Ser. 2022, 38, 116–127. [CrossRef]

8. Zhang, Y.; Abdella, K.; Feng, W. Positive solutions for second-order differential equations with singularities and separated integral
boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2020, 75, 1–12. [CrossRef]

9. Ahmad, B.; Hamdan, S.; Alsaedi, A.; Ntouyas, S.K. On a nonlinear mixed-order coupled fractional differential system with new
integral boundary condition. AIMS Math. 2021, 6, 5801–5816. [CrossRef]

10. Ahmadkhanlu, A. On the existence and uniqueness of positive solutions for a p-Laplacian fractional boundary-value problem
with an integral boundary condition with a parameter. Comput. Methods Differ. Equ. 2021, 9, 1001–1012. [CrossRef]

11. Chandran, K.; Gopalan, K.; Tasneem, Z.S.; Abdeljawad, T. A fixed point approach to the solution of singular fractional differential
equations with integral boundary conditions. Adv. Differ. Equ. 2021, 2021, 56. [CrossRef]

12. Duraisamy, P.; Nandha, G.T.; Subramanian, M. Analysis of fractional integro-differential equations with nonlocal Erdélyi-Kober
type integral boundary conditions. Fract. Calc. Appl. Anal. 2020, 23, 1401–1415. [CrossRef]

13. Rezapour, S.; Kumar, S.; Iqbal, M.Q.; Hussain, A.; Etemad, S. On two abstract Caputo multi-term sequential fractional boundary-
value problems under the integral conditions. Math. Comput. Simul. 2022, 194, 365–382. [CrossRef]

14. Cabada, A.; López-Somoza, L.; Yousfi, M. Green’s function related to a n-th order linear differential equation coupled to arbitrary
linear non-local boundary conditions. Mathematics 2021, 9, 1948. [CrossRef]

15. Cabada, A.; Saavedra, L. The eigenvalue characterization for the constant sign Green’s functions of (k, n− k) problems. Bound.
Value Prob. 2016, 44, 1–35. [CrossRef]

http://dx.doi.org/10.1007/s10255-022-1065-9
http://dx.doi.org/10.14232/ejqtde.2020.1.75
http://dx.doi.org/10.3934/math.2021343
http://dx.doi.org/10.22034/cmde.2020.38643.1699
http://dx.doi.org/10.1186/s13662-021-03225-y
http://dx.doi.org/10.1515/fca-2020-0069
http://dx.doi.org/10.1016/j.matcom.2021.11.018
http://dx.doi.org/10.3390/math9161948
http://dx.doi.org/10.1186/s13661-016-0547-1

	Introduction
	Preliminaries 
	First Results
	Study of Case 1=0
	Expression of Green's Function
	M=0
	M=0

	Regions of Constant Sign of Green's Function

	Case 1=0
	Expression of Green's Function
	M=0
	M=0

	Regions of Constant Sign of Green's Function
	Negativeness of GM,1,2
	M=0
	M= 0

	Positiveness of GM,1,2
	M=0
	M=0

	A Particular Case: 2=0

	Conclusions
	References

