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Abstract: This article investigates an equation with a rapidly oscillating inhomogeneity and with a
rapidly decreasing kernel of an integral operator of Fredholm type. Earlier, differential problems of
this type were studied in which the integral term was either absent or had the form of a Volterra-type
integral. The presence of an integral operator and its type significantly affect the development of
an algorithm for asymptotic solutions, in the implementation of which it is necessary to take into
account essential singularities generated by the rapidly decreasing kernel of the integral operator.
It is shown in tise work that when passing the structure of essentially singular singularities changes
from an integral operator of Volterra type to an operator of Fredholm type. If in the case of the
Volterra operator they change with a change in the independent variable, then the singularities
generated by the kernel of the integral Fredholm-type operators are constant and depend only on
a small parameter. All these effects, as well as the effects introduced by the rapidly oscillating
inhomogeneity, are necessary to take into account when developing an algorithm for constructing
asymptotic solutions to the original problem, which is implemented in this work.
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regularization; asymptotic convergence
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1. Introduction

Integro-differential equations

Lεy(t, ε) ≡ ε
dy
dt − a(t)y−

∫ α
0 e

1
ε

∫ α
s µ(θ)dθK(t, s)y(s, ε)ds =

= h1(t) + h2(t)e
iβ(t)

ε , y(0, ε) = y0, t ∈ [0, T]

(1)

with rapidly changing Volterra-type kernels (α = t) have been studied from various
positions in a number of works (see, for example, [1] and its bibliography). The prob-
lems were considered on the construction of a regularized asymptotics for the solution
of problem type (1) in the case of stability of the operator a(t) and the spectral value µ(t)
of the kernel of the integral operator [2–7]. As for the integro-differential equations (1)
with rapidly changing kernels of the Fredholm type (α = T), it was assumed that the
results obtained for the Volterra equations are automatically extended to equations of the
Fredholm type. However, when considering the simplest case of scalar Equation (1) for
(see, for example, [8–14]) it turned out that the spectral value does not participate in the
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regularization of problem (1) (in contrast to the case α = t), and the coefficients of the
elements of the space of resonance-free solutions (in the terminology of S.A. Lomov [15–17]
depend on the exponentials

σ1 = exp{ 1
ε

∫ 1
0 a(θ)dθ}, σ2 = exp{ i

ε

∫ 1
0 β′(θ)dθ}, σ3 = exp{ 1

ε

∫ 1
0 µ(θ)dθ},

σ4 = exp{ i
ε β(0)}, (β′(t) > 0 ∀t ∈ [0, 1])

bounded for ε→ +0, if a(t) < 0 and µ(t) < 0, β′(t) > 0 (t ∈ [0, 1]), β(t) is a real function).
Therefore, the regularization of problem (1) and the theory of normal and unique solvability
of the corresponding iterative problems do not fit into the previously developed scheme
for equations of the Volterra type and should be revised, taking into account those changes
which are introduced by the Fredholm operator. Fredholm-type integro-differential equa-
tions with slow and rapidly changing kernels have been studied in [18]. In recent years, the
main attention of researchers has been focused on the development of asymptotic solutions
for integro-differential equations with rapidly oscillating coefficients in the presence of
rapidly oscillating inhomogeneities [19]. Therefore, in this paper, an attempt is made to
create an algorithm for constructing an asymptotic solution of problem (1) at ε → +0.
Without a loss of generality, we can assume that α = T = 1, and we will proceed to the
study of the problem (1).

Thus, in this paper we consider the following Cauchy problem:

Lεy(t, ε) ≡ ε
dy
dt − a(t)y−

∫ 1
0 e

1
ε

∫ 1
s µ(θ)dθK(t, s)y(s, ε)ds =

= h1(t) + h2(t)e
iβ(t)

ε , y(0, ε) = y0, t ∈ [0, 1]

(2)

with the Fredholm type of integral operator.

2. Regularization of the Problem (1)

The problem (1) will be considered under the following conditions:

(1) a(t), µ(t), β(t) ∈ C∞([0, 1],R), h1(t), h2(t) ∈ ([0, 1],C), K(t, s) ∈ C∞({0 ≤ s ≤ t ≤ 1},C);

(2) a(t) 6= µ(t), µ(t) < 0, a(t) < 0∀t ∈ [0, 1].
Let us denote λ1(t) ≡ a(t), λ2(t) ≡ iβ′(t), λ3(t) ≡ µ(t) and call the set

{
λj(t)

}
the

spectrum of problem (1). We introduce the regularizing variables

τj =
1
ε

∫ t

0
λj(θ)dθ =

ψj(t)
ε

, j = 1, 2

along the points of the spectrum λ1(t) and λ2(t) of the problem (1) (in this case, as will be
shown below, the variable τ3 = ε−1

∫ t
0 λ3(θ)dθ does not participate in the regularization).

For the “extension” ỹ(t, τ, ε) we obtain the following problem:

Lεỹ(t, τ, ε) ≡ ε
∂ỹ
∂t +

2
∑

j=1
λj(t)

∂ỹ
∂τj
− λ1(t)ỹ−

∫ 1
0 e

1
ε

∫ 1
s λ3(θ)dθK(t, s)ỹ(s, ψ(s)

ε , ε)ds =

= h1(t) + h2(t)eτ2 σ4, ỹ(0, 0, ε) = y0, t ∈ [0, 1]
(3)

where τ = (τ1, τ2), ψ = (ψ1, ψ2). The function ỹ(t, τ, ε) satisfies the necessary regularization
condition: ỹ(t, ψ(t)

ε , ε) ≡ y(t, ε)(y(t, ε) is the exact solution to problem (1)). However,
problem (3) cannot be considered completely regularized, since the integral term

Jỹ ≡ J
(

ỹ(t, τ, ε)|t=s,τ=ψ(s)/ε

)
=
∫ 1

0
e

1
ε

∫ 1
s λ3(θ)dθK(t, s)ỹ(s,

ψ(s)
ε

, ε)ds. (4)
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has not been regularized in it. For its regularization, as is known, it is necessary to
introduce a class Mε, that is asymptotically invariant with respect to the operator J (see [15],
pp. 62–64).

Definition 1. We say that a vector function y(t, τ, σ) belongs to the space U, if it is represented by
a sum of the form

y(t, τ) ≡ y(t, τ, σ) = y0(t, σ) +
2

∑
j=1

yj(t, σ)eτj (5)

where the functions yj(t, σ) are polynomials in σ = (σ1, . . . , σ4) with coefficients from the class
C∞([0, 1],C), i.e.,

yj(t, σ) = ∑
Nj
|m|=0 y(m1,...,m4)

j (t)σm1
1 · · · σ

m4
4 ,

y(m1,...,m4)
j (t) ∈ C∞([0, 1],C), 0 ≤ |m| ≡ m1 + · · ·+ m4, Ni < ∞, j = 0, 1, 2.

We take as Mε the class U|
τ=

ψ(t)
ε

. It should be shown that the image Jy(t, τ) on functions (4) can

be represented in the form of a series

∞

∑
k=0

εk

(
2

∑
j=1

z(k)j (t, σ)eτj + z(k)0 (t, σ)

)
|
τ=

ψ(t)
ε

,

converging asymptotically to Jy at ε→ +0 (uniformly with respect to t ∈ [0, 1]). Substituting (5)
in, we will have

Jy(t, τ, σ) =
∫ 1

0
K(t, s)y0(s, σ)e

1
ε

∫ 1
s λ3(θ)dθds+

2

∑
j=1

∫ 1

0
K(t, s)yj(s, σ)e

1
ε

∫ 1
s λ3(θ)dθ+ 1

ε

∫ s
0 λj(θ)dθds.

We take the integrals here by parts:

J0(t, ε) =
∫ 1

0
e

1
ε

∫ 1
s λ3(θ)dθK(t, s)y0(s, σ)ds = ε

∫ 1

0

K(t, s)y0(s, σ)

−λ3(s)
d(exp

(
1
ε

∫ 1

s
λ3(θ)dθ

)
) =

= ε[
K(t, 1)y0(1, σ)

−λ3(1)
− K(t, 0)y0(0, σ)

−λ3(0)
σ3]− ε

∫ 1

0
exp

(
1
ε

∫ 1

s
λ3(θ)dθ

)
∂

∂s
(

K(t, s)y0(s, σ)

−λ3(s)
)ds =

=
∞

∑
ν=0

(−1)νεν+1[(Iν
0 (K(t, s)y0(s, σ)))s=1 − (Iν

0 (K(t, s)y0(s, σ)))s=0σ3], (5a)

Jj(t, ε) =
∫ 1

0
exp

(
1
ε

∫ 1

s
λ3(θ)dθ +

1
ε

∫ s

0
λj(θ)dθ

)
K(t, s)yj(s, σ)ds ≡

≡ σ3

∫ 1

0
exp

(
1
ε

∫ s

0
(λj(θ)− λ3(θ))dθ

)
K(t, s)yj(s, σ)ds ≡

≡ σ3ε
∫ 1

0

K(t, s)yj(s, σ)

λj(s)− λ3(s)
d(exp

(
1
ε

∫ s

0
(λj(θ)− λ3(θ))dθ

)
) =

= εσ3[
K(t, 1)yj(1, σ)

λj(1)− λ3(1)
σj

σ3
−

K(t, 0)yj(0, σ)

(λj(0)− λ3(0))
]−

−εσ3

∫ 1

0
exp

(
1
ε

∫ s

0
(λj(θ)− λ3(θ))dθ

)
∂

∂s

(
K(t, s)yj(s, σ)

λj(s)− λ3(s)

)
ds =
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=
∞

∑
ν=0

(−1)νεν+1
[
(Iν

j (K(t, s)yj(s, σ)))s=1σj − (Iν
j (K(t, s)yj(s, σ)))s=0σ3

]
(5b)

where j = 1, 2 and the operators are introduced:

I0
0 = 1

−λ3(s)
, Iν

0 = 1
−λ3(s)

∂
∂s Iν−1

0 , (ν ≥ 1),

I0
j = 1

λj(s)−λ3(s)
, Iν

j = 1
λj(s)−λ3(s)

∂
∂s Iν−1

j , (ν ≥ 1, j = 1, 2).
(5c)

It is easy to show (see, for example, [20], pp. 291–294) that the series (5a, b) converge asymptot-
ically (at ε→ +0) to the corresponding integrals Jj(t, ε) (uniformly with respect to t ∈ [0, 1]), and

hence the image Jy(t, τ) is represented as series ∑∞
k=0 εk(∑2

j=1 z(k)j (t, σ)eτj +z(k)0 (t, σ)g)|
τ=

ψ(t)
ε

,

also converging asymptotically to Jy(t, τ) uniformly with respect to t ∈ [0, 1]). Thus, it is shown
that the class Mε = U|

τ=
ψ(t)

ε

is asymptotically invariant with respect to the operator J.

Now let ỹ(t, τ, ε) be an arbitrary continuous in (t, τ) ∈ [0, 1]×Π(Π = {τ : Reτj ≤ 0, j =
1, 2} function represented by the series

ỹ(t, τ, ε) =
∞

∑
k=0

εkyk(t, τ, σ), yk(t, τ, σ) ∈ U (6)

converging asymptotically at ε→ +0 (uniformly with respect to t ∈ [0, 1]). Substituting (6) into
(4) and collecting the coefficients at the same degrees of ε, we obtain the series

Jỹ(t, τ, ε) =
∞

∑
k=0

εk Jyk(t, τ, σ) =
∞

∑
r=0

εr
r

∑
s=0

Rr−sys(t, τ, σ)

converging asymptotically to Jỹ for ε → +0 (uniformly in t ∈ [0, 1]). Here Rν : U → U (the
operators of order in ε) are of the following form:

R0y(t, τ, σ) ≡ 0,

R1(t, τ, σ) =

[
K(t, 1)y0(1, σ)

−λ3(1)
− K(t, 0)y0(0, σ)

−λ3(0)
σ3

]
+

+
2

∑
j=1

[
K(t, 1)yj(1, σ)

λj(1)− λ3(1)
σj −

K(t, 0)yj(0, σ)

λj(0)− λ3(0)
σ3

]
, (6a)

Rν+1y(t, τ, σ) = (−1)ν[(Iν
0 (K(t, s)y0(s, σ)))s=1 − (Iν

0 (K(t, s)y0(s, σ)))s=0σ3]+

+
2

∑
j=1

(−1)ν
[
(Iν

j (K(t, s)yj(s, σ)))
s=1
− (Iν

j (K(t, s)yj(s, σ)))
s=0

σ3

]
(6b)

where Iν
j are the operators (5c), j = 0, 2, ν ≥ 0, introduced above, and y(t, τ, σ) is the function (5).

Definition 2. By a formal extension of an operator J, we mean an operator J̃, acting on any
continuous in (t, τ) ∈ [0, 1]×Π function ỹ(t, τ, ε) of the form (6) according to the law

J̃ỹ ≡ J̃

(
∞

∑
k=0

εkyk(t, τ, σ)

)
=

∞

∑
r=0

εr
r

∑
s=0

Rr−sys(t, τ, σ). (7)

Equality (7) is the basis for the definition of the operator J̃, extended with respect to the integral
operator J. Despite the fact that the extension J̃ of the operator J is defined formally, it is quite
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possible to use it (see Theorem 3 below) when constructing an asymptotic solution of finite order in
ε. Now we can write the problem completely regularized with respect to the original (1):

Lεỹ(t, τ, σ, ε) ≡ ε
∂ỹ
∂t + ∑2

j=1 λj(t)
∂ỹ
∂τj
− λ1(t)ỹ− J̃ỹ =

= h1(t) + h2(t)eτ2 σ4, ỹ(t, τ, ε)|t=0,τ=0 = y0
(8)

where the operator J̃ has the form (7).

3. Iterative Problems and Their Solvability in the Space U

Substituting (6) into (8) and equating the coefficients at the same degrees of ε, we
obtain the following iterative problems:

Ly0(t, τ, σ) ≡ ∑2
j=1 λj(t)

∂y0
∂τj
− λ1(t)y0 =

= h1(t) + h2(t)eτ2 σ4, y0(0, 0) = y0;
(90)

Ly1(t, τ, σ) = −∂y0

∂t
+ R1y0, y1(0, 0) = 0; (91)

Ly2(t, τ, σ) = −∂y1

∂t
+ R1y1 + R2y0, y2(0, 0) = 0; (92)

· · ·

Lyk(t, τ, σ) = −∂yk−1
∂t

+ Rky0 + . . . + R1yk−1, yk(0, 0) = 0, k ≥ 1. (9k)

Each of the iterative problems (9k) has the form

Ly(t, τ, σ) ≡
2

∑
j=1

λj(t)
∂y
∂τj
− λ1(t)y = H(t, τ, σ), y(0, 0, σ) = y∗ (10)

where H(t, τ, σ) = H0(t, σ) + ∑2
j=1 Hj(t, σ)eτj . We introduce in the space U a scalar product

(for each t ∈ [0, 1] and σ) :

< y(t, τ, σ), z(t, τ, σ) >≡< ∑2
j=1 yj(t, σ)eτj + y0(t, σ), ∑2

j=1 zj(t, σ)eτj+

+z0(t, σ) >
de f
= ∑2

j=0(yj(t, σ), zj(t, σ))

where (∗, ∗) is the usual scalar product in C. Let us prove the following statement.

Theorem 1. Let H(t, τ) ∈ U, and conditions (1) and (2) be satisfied. Then, for the solvability of
Equation (10) in the space U , it is necessary and sufficient that

< H1(t, τ, σ), eτ1 >≡ 0⇔ H1(t, σ) ≡ 0, ∀t ∈ [0, 1]. (11)

Proof. Defining the solution of the Equation (10) in the form of function (5), we obtain
the identity

2

∑
j=1

[
λj(t)− λ1(t)

]
yj(t, σ)eτj − λ1(t)y0(t, σ) = H0(t, σ) +

2

∑
j=1

Hj(t, σ)eτj .
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Equating here separately the free terms and the coefficients at the exponentials eτj , we
will have

−λ1(t)y0(t, σ) = H0(t, σ), (120)[
λj(t)− λ1(t)

]
yj(t, σ) = Hj(t, σ), j = 1, 2. (12j)

Since λ1(t) 6= 0∀t ∈ [0, 1], that the Equation (120) has a unique solution

y0(t, σ) = −H0(t, σ)

λ1(t, σ)
. (13)

Since λ1(t) is a real function and λ2(t) = iβ′(t) is purely imaginary, the Equation (122) has
a unique solution in the space C∞([0, 1],C). For the solvability of the Equation (121) in the
space C∞([0, 1],C) it is necessary and sufficient for identity (11) to hold. Thus, Theorem 1
is proved.

Remark 1. It follows from the Equalities (120)–(13) that under conditions (1) and (2) and condition
(11), Equation (10) has the following solution in the space U:

y(t, τ, σ) = y0(t, σ) + α1(t, σ)eτ1 + y2(t, σ)eτ2 (14)

where α1(t, σ) ∈ C∞([0, 1],C) is an arbitrary function,

y0(t, σ) = −λ−1
1 (t)H0(t, σ), y2(t, σ) = (λ2(t)− λ1(t))

−1H2(t, σ).

Thus, the solution (14) of the Equation (10) is determined ambiguously in the space U. Let now
y∗ ∈ C be a fixed constant vector. Consider the following problem:

y(0, 0, σ) = y∗,

< − ∂y
∂t + R1y + Q(t, τ, σ), eτ1 >≡ 0, ∀t ∈ [0, 1]

(15)

where Q(t, τ, σ) = Q0(t, σ) + ∑2
j=1 Qi(t, σ)eτj is the well-known vector function of the space U,

and R1 is the order operator described above (see (6a)). Let us prove the following statement.

Theorem 2. Let conditions (1) and (2) be satisfied and the vector function H(t, τ, σ) ∈ U satisfies
the orthogonality conditions (11). Then the problem (10) under additional conditions (15) has a
unique solution in the space U.

Proof. Since the condition (11) is satisfied, Equation (10) has a solution in the space U in the
form of the function (14), where α1(t, σ) ∈ C∞([0, 1],C) is an arbitrary function. Submitting
(14) to the condition y(0, 0) = y∗, we have

y∗ = y0(0, σ) + α1(0, σ) +
H2(0, σ)

λ2(0)− λ1(0)
⇔

⇔ α1(0, σ) = y∗ +
H0(0, σ)

λ1(0)
− H2(0, σ)

λ2(0)− λ1(0)
.

Let us now subordinate (14) to the second condition (15):

−∂y0

∂t
+ R1y0 + Q(t, τ) = −ẏ0(t, σ)− α̇1(t, σ)eτ1 − ẏ2(t, σ)eτ2+

+

[
K(t, 1)y0(1, σ)

−λ3(1)
σ3 −

K(t, 0)y0(0, σ)

−λ3(0)

]
+

[
K(t, 1)α1(1, σ)

λ1(1)− λ3(1)
σ1 −

K(t, 0)α1(0, σ)

λ1(0)− λ3(0)
σ3

]
+
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+

[
K(t, 1)y2(1, σ)

λ2(1)− λ3(1)
σ2 −

K(t, 0)y2(0, σ)

λ2(0)− λ3(0)
σ3

]
+ Q(t, τ).

Considering that here the expressions in square brackets do not contain an exponent eτ1 ,
we perform scalar multiplication in the second equality (15). This gives

−α̇1(t, σ) + Q1(t) = 0⇔ α1(t, σ) =
∫ t

0
Q1(θ)dθ + y∗ +

H0(0, σ

λ1(0)
− H2(0, σ)

λ2(0)− λ1(0)

and hence, we construct the solution (14) of the problem (10) in the space U in a unique
way. Theorem 2 is proved.

4. Construction of the Solution to the First Iterative Problem

Let us apply Theorem 1 to iterative problems (9k). Since the right-hand side h1(t) +
h2(t)eτ2 σ4 of the Equation (90) satisfies condition (11), the solution y0(t, τ) ∈ U of the first
iterative problem (90) has the form

y0(t, τ, σ) =
h1(t)
−λ1(t)

+ α
(0)
1 (t, σ)eτ1 +

h2(t)
λ2(t)− λ1(t)

eτ2 σ4 (16)

where α
(0)
1 (t, σ) ∈ C∞[0, 1] is an arbitrary function. Submitting this solution to the initial

condition y0(0, 0, σ) = y0, we find

h1(0)
−λ1(0)

+ α
(0)
1 (0, σ) + h2(0)

λ2(0)−λ1(0)
σ4 = y0 ⇔

⇔ α
(0)
1 (0, σ) = y0 + h1(0)

λ1(0)
− h2(0)

λ2(0)−λ1(0)
σ4.

(17)

For the final calculation of the function α
(0)
1 (t, σ), it is necessary to write down conditions

(11) for the next iterative problem (91). Since R1y0(t, τ) does not contain an exponent, then,
under the orthogonality conditions (11), it can be omitted and an equality can be obtained
α̇
(0)
1 (t, σ) = 0, which, taking into account the initial condition (17), leads to an unambiguous

calculation of the function

α
(0)
1 (t, σ) = y0 +

h1(0)
λ1(0)

− h2(0)
λ2(0)− λ1(0)

σ4 = const

and hence to an unambiguous calculation of the solution (16) of the first iterative problem
(90) in the space U.

Remark 2. The solution of the following problem (91) is determined from the system

Ly1(t, τ, σ) = − ∂y0
∂t + R1y0, y1(0, 0) = 0,

< − ∂y1
∂t + R1y1 + R2y0, eτ1 >≡ 0∀t ∈ [0, 1].

(18)

As in the previous case, the expression R1y1 and R2y0 does not contain an exponent eτ1 , therefore,
under orthogonality conditions (18), they can be omitted, and then the solution y1(t, τ) ∈ U of the
iterative problem (91) will be determined from the system

Ly1(t, τ, σ) = −∂y0

∂t
+ R1y0, y1(0, 0) = 0,

< −∂y1

∂t
, eτ1 >≡ 0∀t ∈ [0, 1].
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The same situation takes place for all subsequent iterative problems (9k)(k ≥ 2). Thus, the influence
of the Fredholm-type integral operator in (1) affects only the formation of particular solutions
of equations for functions α

(k)
1 (t, σ), while in Volterra systems the kernel K(t, s) of the integral

operator participates in the formation of common solutions for these functions.

5. Justification of the Asymptotic Convergence of Formal Solutions to the
Exact Solutions

Applying Theorems 1 and 2 to iterative problems (9k), we can uniquely calculate their
solutions yk(t, τ, σ) in the space U. Denote the N-th partial sum of series (6) by SN(t, τ, σ),
and through yεN(t) = SN(t,

ψ(t)
ε , ε) is the restriction of this sum at τ = ψ(t)

ε . It is easy to
prove the following assertion (see, for example, [15], pp. 37–40).

Lemma 1. Let conditions (1) and (2) be satisfied. Then the function yεN(t) is a formal asymptotic
solution of the problem (1) of order N, that is, it satisfies the problem

ε
dyεN

dt − a(t)yεN −
∫ 1

0 exp
(

1
ε

∫ 1
s µ(θ)dθ

)
K(t, s)yεN(s)ds =

= h1(t) + h2(t)e
iβ(t)

ε + εN+1FN(t, ε), yεN(0) = y0

(19)

where ||FN(t, ε)||C[0,1] ≤ F̄(F̄ > 0 is a constant independent of ε at ε ∈ (0, ε0], ε0 is small enough).
To prove the Theorem on the estimate of the remainder term, we first consider the integro-

differential equation

ε dz
dt = a(t)z +

∫ 1
0 exp

(
1
ε

∫ 1
s µ(θ)dθ

)
K(t, s)z(s, ε)ds+H(t, ε), z(0, ε) = 0 (200)

and try to estimate the norm of its solution z(t, ε) in terms of the norm of the right-hand side H(t, ε).

The function Y(t, s, ε) = e
1
ε

∫ t
s a(θ)dθ is the fundamental Cauchy solution for a homogeneous equation

εż = a(t)z. Under conditions (1) and (2) it is uniformly bounded, i.e., ||Y(t, s, ε)|| ≤ c0 = const
for all (t, s, ε) ∈ {0 ≤ s ≤ t ≤ 1, ε > 0}. Let us convert the Equation (200), using Y(t, s, ε); we
obtain the equivalent integral equation

z(t, ε) =
1
ε

∫ t

0
e

1
ε

∫ t
x a(θ)dθ(

∫ 1

0

(
e

1
ε

∫ 1
s µ(θ)dθ

)
K(x, s)z(s, ε)ds)dx +

1
ε

∫ t

0
e

1
ε

∫ t
x a(θ)dθ H(x, ε)dx.

Denoting H1(t, ε) ≡
∫ t

0 e
1
ε

∫ t
x a(θ)dθ H(x, ε)dx and changing the order of integration in the iterated

integral, we obtain the following integral equation of the Fredholm type:

z(t, ε) =
∫ 1

0
exp

(
1
ε

∫ 1

s
µ(θ)dθ

)
G(t, s, ε)z(s, ε)ds +

H1(t, ε)

ε
(20)

where G(t, s, ε) = 1
ε

∫ t
0 e

1
ε

∫ t
x a(θ)dθK(x, s)dx. Let us show that the kernel G(t, s, ε) of this equation

is uniformly bounded for 0 ≤ s, t ≤ 1, i.e., which the following statement holds.

Lemma 2. Let conditions (1) and (2) be satisfied. Then the kernel G(t, s, ε) is uniformly bounded,
i.e., |G(t, s, ε)| ≤ M for all (s, t, ε) ∈ [0, 1]× [0, 1]× (0,+∞).

Proof. Using the operation of integration by parts, we have

G(t, s, ε) = 1
ε

∫ t
0 e

1
ε

∫ t
x a(θ)dθK(x, s)dx =

∫ t
0

K(x,s)
−a(x) dxe

1
ε

∫ t
x a(θ)dθ =

= K(x,s)
−a(x) e

1
ε

∫ t
x a(θ)dθ |x=t

x=0 −
∫ t

0 e
1
ε

∫ t
x a(θ)dθ ∂

∂x

(
K(x,s)
−a(x)

)
dx =
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=

[
K(t, s)
−a(t)

− K(0, s)
−a(0)

e
1
ε

∫ t
0 a(θ)dθ

]
−
∫ t

0
e

1
ε

∫ t
x a(θ)dθ ∂

∂x

(
K(x, s)
−a(x)

)
dx.

Hence, it is clear that under conditions (1) and (2) the kernel G(t, s, ε) is uniformly
bounded, i.e., |G(t, s, ε)| ≤ M for all 0 ≤ s, t ≤ 1, ε > 0. The Lemma 2 is proved.

We now turn to the proof of the correct solvability of Equation (20). To do this, we will
try to estimate the norm of the resolvent R(t, s, ε) of the kernel K̃(t, s, ε) = exp

(
1
ε

∫ 1
s µ(θ)dθ

)
G(t, s, ε) of integral Equation (20). Let us denote χ = min

t∈[0,1]
Re(−µ(t)) and estimate the

iterated kernels of the integral operator of this system. By Lemma 2, for all 0 ≤ s, t ≤ 1 and
ε > 0 we have

|K̃1(t, s, ε)| ≡ |K̃(t, s, ε)| ≤ M;

|K̃2(t, s, ε)| ≡ |
∫ 1

0
K̃(t, x, ε)K̃1(x, s, ε)dx| ≡

≡ |
∫ 1

0
exp

(
1
ε

∫ 1

x
µ(θ)dθ

)
G(t, x, ε) exp

(
1
ε

∫ 1

s
µ(θ)dθ

)
G(x, s, ε)dx| ≤

≤ M2
∫ 1

0
exp

(
1
ε

∫ 1

x
Re µ(θ)dθ

)
dx ≤ M2

∫ 1

0
exp

(
−χ(1− x)

ε

)
dx =

≤ M2ε
exp

(
− χ(1−x)

ε

)
x

∣∣∣∣∣∣
x=1

x=0

=
M2ε

χ
(1− e

χ
ε ) ≤ M2

ε
,

|K̃3(t, s, ε)| ≡ |
∫ 1

0
K̃(t, x, ε)K̃2(x, s, ε)dx| ≤

∫ 1

0
|K̃(t, s, ε)| · |K̃2(x, s, ε)|dx ≤

≤ M2

χ
ε
∫ 1

0

(
1
ε

∫ 1

x
Re µ(θ)dθ

)
|G(t, x, ε)|dx ≤ M3

χ
ε
∫ 1

0
exp

(
−χ(1− x)

ε

)
dx ≤ M3ε2

χ2 .

Suppose now that, for n = r ≥ 1, the estimate

|K̃r(t, s, ε)| ≤ Mrεr−1

χr−1 , 0 ≤ s, t ≤ 1, ε > 0

holds. Let us show that this estimate is also true for n = r + 1. Indeed,

|K̃r+1(t, s, ε)| ≡
∫ 1

0
|K̃(t, x, ε)K̃r(x, s, ε)dx| ≤

∫ 1

0
|K̃(t, x, ε)| · |K̃r(x, s, ε)|dx ≤

≤ Mrεr−1

χr−1

∫ 1
0 |K̃(t, x, ε)|dx = Mr+1εr−1

χr−1
ε
χ e−

χ(1−x)
ε |x=1

x=0 =

= Mr+1εr

χr

(
1− e−

χ
ε

)
≤ Mr+1εr

χr (0 ≤ s, t ≤ 1, ε > 0).

So, for all 0 ≤ s, t ≤ 1, ε > 0 we have proved the estimate

|K̃n(t, s, ε)| ≤ Mnεn−1

χn−1 (n = 1, 2, 3, . . .).

But then the resolvent

R(t, s, ε) ≡ K̃1(t, s, ε) + K̃2(t, s, ε) + · · ·+ K̃n(t, s, ε) + · · · ≡
∞

∑
n=1

K̃n(t, s, ε)
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majorized by a number series

∞

∑
n=1

Mnεn−1

χn−1 ≡ M
∞

∑
n=1

(
Mε

χ

)n−1
=

M
1− Mε

χ

converging absolutely for 0 < ε < χ
M . This means that the series for the resolvent converges

absolutely and uniformly in (s, t) : 0 ≤ s, t ≤ 1 for all ε ∈ (0, χ
2M ]. In this case, we have

the estimate
|R(t, s, ε)| ≤ M

1− Mε
χ

≤ 2M,

at (s, t, ε) : 0 ≤ s, t ≤ 1, 0 < ε ≤ ε0 (where ε0 > 0 is small enough). Consequently, for
ε ∈ (0, ε0] Equation (20) (and hence the equivalent Equation (200)) is uniquely solvable in
the class C1([0, 1],C) and its solution is represented in the form

z(t, ε) =
1
ε

H1(t, ε) +
1
ε

∫ 1

0
R(t, s, ε)H1(t, s, ε)ds

for any right-hand side H1(t, ε) ≡
∫ t

0 Y(t, x, ε)H(x, ε)dx. From this we derive the estimate

||z(t, ε)||C[0,1] ≤
1
ε
||H1(t, ε)||C[0,1] +

1
ε

2M||H1(t, ε)|| ≤

≤ 1
ε

(
||H(t, ε)||C[0,1] + 2Mc0||H(t, ε)||C[0,1]

)
≤ c̄0

||H(t, ε)||C[0,1]

ε

where c̄0 = c0(1+ 2M) > 0 is a constant independent of ε ∈ (0, ε0]. The following statement
is proved.

Lemma 3. Let conditions (1) and (2) be satisfied. Then, for sufficiently small ε(0 < ε ≤ ε0), the
Equation (200) is uniquely solvable in the class C1([0, 1],C) and its solution satisfies the estimate

||z(t, ε)||C[0,1] ≤
c̄0

ε
||H(t, ε)||C[0,1]

where the constant c̄0 > 0 does not depend on ε(0 < ε ≤ ε0].

Remark 3. Correct solvability of the integral system (20) means that the integral operator
∫ 1

0

exp
(

1
ε

∫ 1
s µ(θ)dθ

)
G(t, s, ε)z(s, ε)ds has no eigenvalues in the space C([0, 1],C) (for sufficiently

small ε > 0).

We apply Lemma 3 to prove the following statement.

Theorem 3. Let conditions (1) and (2) be satisfied. Then the problem (1) is uniquely solvable in the
class C1([0, 1],C) and its solution y(t, ε) satisfies the estimate

||y(t, ε)− yεN(t)||C[0,1] ≤ cNεN+1, N = 0, 1, 2, . . .

where yεN(t) is the narrowing (for τ = ψ(t)
ε ), N-th partial sum of the series (6) (with coefficients

yk(t, τ) ∈ U satisfying the iterative problems (9k)), and the constant cN > 0 does not depend on ε
at ε ∈ (0, ε0](ε0 > 0 is small enough).
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Proof. The problem (1) is uniquely solvable, since it is reduced to the problem (200) by a
change y− y0 = z. By Lemma 1, for the difference ∆N(t, ε) = y(t, ε)− yεN(t) , we obtain
the equation

ε
∆N
dt

= a(t)∆N(t, ε)+
∫ 1

0
exp

(
1
ε

∫ 1

s
µ(θ)dθ

)
K(t, s)∆N(s, ε)ds− εN+1FN(t, ε), ∆N(t, ε) = 0.

It has the form of the problem (20) with inhomogeneity H(t, ε) ≡ −εN+1FN(t, ε). By
Lemma 3, we have the estimate

||∆N(t, ε)||C[0,1] ≡ ||y(t, ε)− yεN(t)||C[0,1] ≤
c̄0

ε
εN+1||FN(t, ε)||C[0,1] ≤ c̄0 F̄NεN ≡ c̄N−1εN

and, therefore, for ∆N+1(t, ε) = y(t, ε)− yε,N+1(t) will have the estimate

||∆N+1(t, ε)||C[0,1] ≡||(y(t, ε)− yεN(t))− εN+1yN+1(t,
ψ(t)

ε )||C[0,1] ≤ c̄NεN+1.

Hence, we obtain that

c̄NεN+1 ≥ ||y(t, ε)− yεN(t)||C[0,1] − εN+1||yN+1(t,
ψ(t)

ε
)||C[0,1]

or ||y(t, ε)− yεN(t)||C[0,1] ≤ cNεN+1, where cN = c̄N + ȳN > 0, ||yN+1(t,
ψ(t)

ε )||C[0,1] ≤ ȳN ,
and the constant cN does not depend on ε ∈ (0, ε0], where ε0 > 0 is small enough. The
Theorem 3 is proved.

According to this Theorem 3, the leading term of the asymptotics of the solution the
problem (1) has the form (see Formula (16))

yε0(t, σ) = h1(t)
−λ1(t)

+ α
(0)
1 (t, σ)e

1
ε

∫ t
0 a(θ)dθ + h2(t)

λ2(t)−λ1(t)
e

i
ε

∫ t
0 β′(θ)dθσ4 =

= h1(t)
−λ1(t)

+
[
y0 + h1(0)

λ1(0)
− h2(0)

λ2(0)−λ1(0)
e

i
ε β(0)

]
e

1
ε

∫ t
0 a(θ)dθ+ h2(t)

λ2(t)−λ1(t)
e

i
ε β(t).

(21)

It is clearly seen here how the rapidly oscillating inhomogeneity affects the asymptotic
behavior of the solution to Equation (1), but the contribution of the integral operator∫ 1

0 e
1
ε

∫ T
s µ(θ)dθK(t, s)y(s, ε)ds to it is not found; therefore, we calculate the next term of the

asymptotics.
Substituting the solution to the problem in the right-hand side, we obtain the following

equation:

Ly1(t, τ, σ) = −∂y0

∂t
+ R1y0 =

= − ∂

∂t

(
− h1(t)

λ1(t)
+ α

(0)
1 (t, σ)eτ1 +

h2(t)
λ2(t)− λ1(t)

eτ2 σ4

)
+ R1y0 =

=

(
h1(t)
λ1(t)

)•
− α̇

(0)
1 (t, σ)eτ1 −

(
h2(t)

λ2(t)− λ1(t)

)•
eτ2 σ4−

−
[

K(t, 1)h1(1, σ)

λ3(1)λ1(1)
σ3 −

K(t, 0)h1(0, σ)

λ3(0)λ1(0)

]
+

[
K(t, 1)α(0)1 (1, σ)

λ1(1)− λ3(1)
σ2

1−
K(t, 0)α(0)1 (0, σ)

λ1(0)− λ3(0)
σ3

]
+

+

[
K(t, 1)h2(1, σ)

[λ2(1)− λ3(1)]2
σ2

2 σ4 −
K(t, 0)h2(0, σ)

[λ2(0)− λ3(0)]2
σ3σ4

]
=

(
h1(t)
λ1(t)

)•
− α̇

(0)
1 (t, σ)eτ1−

−
(

h2(t)
λ2(t)− λ1(t)

)•
eτ2 σ4 +

K(t, 0)h1(0, σ)

λ3(0)λ1(0)
+

K(t, 1)α(0)1 (1, σ)

λ1(1)− λ3(1)
σ2

1 +
K(t, 1)h2(1, σ)

[λ2(1)− λ3(1)]2
σ2

2 σ4−
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−
[

K(t, 1)h1(1, σ)

λ3(1)λ1(1)
+

K(t, 0)α(0)1 (0, σ)

λ1(0)− λ3(0)
+

K(t, 0)h2(0, σ)

[λ2(0)− λ3(0)]2
σ4

]
σ3.

Defining the solution of this equation as an element

y1(t, τ) = y(1)0 (t, σ) +
2

∑
j=1

y(1)j (t, σ)eτj

of the space U, we arrive at the following equality:

∑2
j=1
[
λj(t)− λ1(t)

]
y(1)j (t, σ)eτj − λ1(t)y

(1)
0 (t, σ) =

=

(
h1(t)
λ1(t)

)•
− α̇

(0)
1 (t, σ)eτ1 −

(
h2(t)

λ2(t)− λ1(t)

)•
eτ2 σ4+

+
K(t, 0)h1(0, σ)

λ3(0)λ1(0)
+

K(t, 1)α(0)1 (1, σ)

λ1(1)− λ3(1)
σ2

1 +
K(t, 1)h2(1, σ)

[λ2(1)− λ3(1)]2
σ2

2 σ4−

−
[

K(t, 1)h1(1, σ)

λ3(1)λ1(1)
+

K(t, 0)α(0)1 (0, σ)

λ1(0)− λ3(0)
+

K(t, 0)h2(0, σ)

[λ2(0)− λ3(0)]2
σ4

]
σ3.

Equating here separately the free terms and the coefficients at the exponentials eτj , we
will have

−λ1(t)y
(1)
0 (t, σ) =

(
h1(t)
λ1(t)

)•
+

K(t, 0)h1(0, σ)

λ3(0)λ1(0)
+

K(t, 1)α(0)1 (1, σ)

λ1(1)− λ3(1)
σ2

1+

+
K(t, 1)h2(1, σ)

[λ2(1)− λ3(1)]2
σ2

2 σ4 −
[

K(t, 1)h1(1, σ)

λ3(1)λ1(1)
+

K(t, 0)α(0)1 (0, σ)

λ1(0)− λ3(0)
+

K(t, 0)h2(0, σ)

[λ2(0)− λ3(0)]2
σ4

]
σ3.

0 · y(1)1 (t, σ) = −α̇
(0)
1 (t, σ),

[λ2(t)− λ1(t)]y
(1)
2 (t, σ) = −

(
h2(t)

λ2(t)− λ1(t)

)•
σ4.

Since the orthogonality condition α̇
(0)
1 (t, σ) ≡ 0 is satisfied, these equations have solutions

in the form of functions:

y(1)0 (t, σ) = − 1
λ1(t)

{(
h1(t)
λ1(t)

)•
+

K(t, 0)h1(0, σ)

λ3(0)λ1(0)
+

K(t, 1)α(0)1 (1, σ)

λ1(1)− λ3(1)
σ2

1+

+
K(t, 1)h2(1, σ)

[λ2(1)− λ3(1)]2
σ2

2 σ4 −
[

K(t, 1)h1(1, σ)

λ3(1)λ1(1)
+

K(t, 0)α(0)1 (0, σ)

λ1(0)− λ3(0)
+

K(t, 0)h2(0, σ)

[λ2(0)− λ3(0)]2
σ4

]
σ3

}
,

y(1)2 (t, σ) = −

(
h2(t)

λ2(t)−λ1(t)

)•
λ2(t)− λ1(t)

σ4
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and y(1)1 (t, σ) = α
(1)
1 (t, σ) ∈ C∞[0, 1] is an arbitrary function. Thus, the solution to the

problem (91) will be as follows:

y1(t, τ, σ) = − 1
λ1(t)

{(
h1(t)
λ1(t)

)•
+ K(t,0)h1(0,σ)

λ3(0)λ1(0)
+

K(t,1)α(0)1 (1,σ)
λ1(1)−λ3(1)

σ2
1 + K(t,1)h2(1,σ)

[λ2(1)−λ3(1)]2
σ2

2 σ4−

−
[

K(t,1)h1(1,σ)
λ3(1)λ1(1)

+
K(t,0)α(0)1 (0,σ)
λ1(0)−λ3(0)

+ K(t,0)h2(0,σ)
[λ2(0)−λ3(0)]2

σ4

]
σ3

}
+α

(1)
1 (t, σ)eτ1 −

(
h2(t)

λ2(t)−λ1(t)

)•
λ2(t)−λ1(t)

eτ2 σ4

where α
(1)
1 (t, σ) ∈ C∞[0, 1] is an arbitrary function that is calculated in the process of

solving the next iterative problem (92). As a result, we obtain an asymptotic solution of the
first order:

yε1(t) =
h1(t)
−λ1(t)

+

[
y0 +

h1(0)
λ1(0)

− h2(0)
λ2(0)− λ1(0)

σ4

]
e

1
ε

∫ t
0 a(θ)dθ +

h2(t)
λ2(t)− λ1(t)

e
i
ε

∫ t
0 β′(θ)dθσ4−

− ε

λ1(t)

{(
h1(t)
λ1(t)

)•
+

K(t, 0)h1(0, σ)

λ3(0)λ1(0)
+

K(t, 1)α(0)1 (1, σ)

λ1(1)− λ3(1)
σ2

1 +
K(t, 1)h2(1, σ)

[λ2(1)− λ3(1)]2
σ2

2 σ4−

−
[

K(t, 1)h1(1, σ)

λ3(1)λ1(1)
+

K(t, 0)α(0)1 (0, σ)

λ1(0)− λ3(0)
+

K(t, 0)h2(0, σ)

[λ2(0)− λ3(0)]2
σ4

]
σ3

}
+εα

(1)
1 (t, σ)e

1
ε

∫ t
0 a(θ)dθ−

−ε

(
h2(t)

λ2(t)−λ1(t)

)•
λ2(t)− λ1(t)

σ4e
i
ε

∫ t
0 β′(θ)dθ

from which it is seen that the kernel of the integral operator affects only the formation of
particular solutions of iterative problems (9k) and particular solutions of equations for the
functions α

(k)
1 (t, σ).

In conditions of solvability of the type (11), as already mentioned above, the integral
operator does not participate. This is the main difference between integro-differential
equations of Fredholm type from equations of Volterra type, where the kernel of the integral
operator significantly affects the construction of the general solution of the equations for
functions α

(k)
1 (t, σ) (see, for example, [20]).

6. Conclusions

Since the terms of order ε in yε1(t) uniformly tend to zero, when ε → +0, then the
behavior of the exact solution of the problem (1) as the small parameter tends to zero
completely is determined by its main term of asymptotics (21): after leaving the point
y = y0 at t = 0 , the exact solution y(t, ε) of the problem (1) (for t > 0 and ε → +0) will
perform fast oscillations around the “degenerate solution” ¯̄y(t) = h1(t)

−λ1(t)
, not tending for

any limit.
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