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Abstract: Let {Gi : i ∈ N} be a family of finite Abelian groups. We say that a subgroup G ≤ ∏
i∈N

Gi

is order controllable if for every i ∈ N, there is ni ∈ N such that for each c ∈ G, there exists c1 ∈ G
satisfying c1|[1,i] = c|[1,i], supp(c1) ⊆ [1, ni], and order (c1) divides order (c|[1,ni ]). In this paper,
we investigate the structure of order-controllable group codes. It is proved that if G is an order
controllable, shift invariant, group code over a finite abelian group H, then G possesses a finite
canonical generating set. Furthermore, our construction also yields that G is algebraically conjugate
to a full group shift.

Keywords: profinite abelian group; controllable group; order controllable group; group code; generating
set; homomorphic encoder
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1. Introduction

This article focuses on the research about (topological) groups that can be embedded
into a product of finite groups, started in [1–3] (for a nice elementary example, consider
the Rubik’s cube group; every rotation provides a transformation on angles and edges
and therefore, the Rubik’s cube group can be embedded in a direct product (see http://
sporadic.stanford.edu/bump/match/rubik.html, accessed on 1 March 2022)). In particular,
we deal here with the algebraic structure of abelian group codes.

In coding theory, a code refers to a set of sequences (the codewords), with good error-
correcting properties, used to transmit information over nosy channels. In communication
technology, most codes are linear (that is, vector spaces on a finite field) and there are two
main classes of codes: block codes, in which the codewords are finite sequences all of the same
length, and convolutional codes, in which the codewords can be infinite sequences. However,
some very powerful codes that were first thought to be nonlinear can be described as
additive subgroups of An, where A is a cyclic abelian group (see [4,5]). This fact motivated
the study of a more general class of codes. According to Forney and Trott [5,6], a group code
G is a subgroup of a product

X = ∏
i∈I

Gi,

where each Gi is a group and the composition law is the component-wise group operation.
The subgroup

G f := G ∩
⊕
i∈Z

Gi

is called the finite subcode of G. It may happen that all elements of G have finite support,
which means that G coincides with G f .

If all code symbols are drawn from a common group H, then G ≤ H I and G will be
called a group code over H defined on I.

A key point in the study of group codes is the finding of appropriate encoders.
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Definition 1. Given a group code G, a homomorphic encoder is a continuous homomorphism
Φ : ∏i∈I Hi → G that sends a full direct product of (topological) groups onto G. Of special
relevance are the so-called noncatastrophic encoders, that is, homomorphic continuous encoders α
that are one to one and such that Φ(

⊕
i∈I Hi) = G f (see [5–7] for some references).

From here on, we deal with a group shift (or group code) G over a finite abelian group H.
That is, G is a closed, shift-invariant subgroup of the full shift group X = HZ. Therefore, if
σ : X → X denotes the backward shift operator

σ[x](i) := x(i + 1), ∀x ∈ X, i ∈ Z,

we have that σ(G) = G. For simplicity’s sake, we denote the forward shift operator by ρ,
that is ρ[x](i) := x(i− 1), ∀x ∈ X, i ∈ Z. A group shift G over a finite abelian group H is
irreducible or transitive if there is x ∈ G such that the partial forward orbit {σn(x) : n ≥ n0}
is dense in G for all n0 ∈ Z. Given two group codes G and Ḡ, if there is a homeomorphism
(resp. topological group isomorphism) Φ : G −→ Ḡ so that σ ◦Φ = Φ ◦ σ then we say that
G and Ḡ are topologically conjugate (resp. algebraically and topologically conjugate) (see [8–10]).

In [11], Forney proved that every (linear) convolutional code is conjugate to a full shift
via a linear conjugacy. Subsequently, it was proved by several authors (see [5,8,12,13]) that
every irreducible group shift is conjugate to a full shift. In fact, one might expect that the
conjugacy was also a group homomorphism (algebraic conjugacy). However, for group
shifts, this turns out to be false in general (cf. [8,12]). In this sense, Fagnani [14] obtained
the necessary and sufficient conditions for a group shift to be algebraically conjugate to
the full shift over a finite group. His approach is based on Pontryagin duality, which lets
one reduce the question to its discrete dual group that turns out to be a finitely generated
module of Laurent polynomials.

We next collect some definitions and basic facts introduced in [2].

Definition 2. Let G be a group shift over a finite abelian group H. We have the following notions:

(1) G is weakly controllable if G
⋂

H(Z) is dense in G; here H(Z) denotes the subgroup of HZ

consisting of the elements with finite support.
(2) G is controllable (equivalently, irreducible or transitive—it is easily verified that every

controllable group code G is irreducible—see [8]) if there is a positive integer nc such
that for each g ∈ G, there exists g1 ∈ G such that g1|(−∞,0] = g|(−∞,0] and g1|]nc ,+∞) = 0
(we assume that nc is the least integer satisfying this property). Remark that this property
implies the existence of g2 := g− g1 ∈ G such that g = g1 + g2, supp(g1) ⊆ (−∞, nc] and
supp(g2) ⊆ [1,+∞[.

(3) G is order controllable if there is a positive integer no such that for each g ∈ G, there
exists g1 ∈ G such that g1|(−∞,0] = g|(−∞,0], supp(g1) ⊆ (−∞, no], and order(g1|[1,n0]

)
divides order(g|[1,n0]

(we assume that no is the least natural number satisfying this property).
Again, this implies the existence of g2 ∈ G such that g = g1 + g2, supp(g2) ⊆ [1,+∞[, and
order(g2) divides order(g). Here, the order of g is taken in the usual sense, as an element of
the group G.

We now state our main result.

Theorem 1. Let G be an order controllable group shift over a finite abelian group H. Then there is
a noncatastrophic isomorphic encoder for G. As a consequence, G is algebraically and topologically
conjugate to a full group shift.

2. Group Shifts

In this section, we apply the result accomplished in Theorem 3.2 in [2] in order to
prove that the order-controllable group shifts over a finite abelian group possess canonical
generating sets. Furthermore, our construction also yields that they are algebraically
conjugate to a full group shift.
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In the sequel, H(Z) denotes the subgroup of HZ consisting of all elements with fi-
nite support.

Theorem 2. Let G be a weakly controllable, group shift over a finite abelian p-group H. If G[p] is
weakly controllable, then there is a finite generating subset B0 := {xj : 1 ≤ j ≤ m} ⊆ G f [0,∞)][p],
where xj = phj yj, yj ∈ G f , and each xj is selected with the maximal possible height hj in G f with
hj ≥ hj+1, 1 ≤ j < m, such that the following assertions hold true:

• There is a canonically defined σ-invariant, onto, group homomorphism

Φ :

(
∏

1≤j≤m
Z(phj+1)

)Z

→ G.

• ((G is weakly rectangular and)) Φ is a noncatastrophic, isomorphic encoder for G if there is a
finite block [0, N] ⊆ N such that the set

{σn[xj]|[0,N] 6= 0 : n ∈ Z, 1 ≤ j ≤ m}

is linearly independent.

Proof. (1) Using that G and G[p] are weakly controllable, we can proceed as in Theorem 3.2
in [2] in order to define a subset B0 := {x1, . . . , xm} ⊆ G f [p][0,∞) such that π[0](B0) forms
a basis of π[0](G[0,∞)[p]) and for each xj ∈ B0, there is a nonnegative integer hj and an

element yj ∈ G f such that xj = phj yj, where each xj has the maximal possible height hj in
G f and h1 ≥ h2 ≥ · · · ≥ hm. Now define

ϕ0 : Z(p)m → G[p]

by
ϕ0[(λ1, . . . , λm)] = λ1x1 + · · ·+ λmxm

and, for each n ∈ Z, n > 0, set Bn := ρn(B0) ⊆ G f [p][n,∞) and define

ϕn : Z(p)m → G[p]

by
ϕn[(λ1, . . . , λm)] = λ1ρn(x1) + · · ·+ λmρn(xm).

Now, we can define

⊕n ϕn :
⊕
n≥0

(Z(p)m)n → G f [p][0,∞)

by
⊕n ϕn[∑

n≥0
(λ1n, λ2n, . . . , λmn)] := ∑

n≥0
ϕn[(λ1n, λ2n, . . . , λmn)],

where (Z(p)m)n = Z(p)m for all n ≥ 0.
Remark that all the maps set above are well-defined group homomorphisms since

each of these maps involves finite sums in its definition. Furthermore, since the range of ϕn
is contained in G f [p][n,∞) for all n ≥ 0, it follows that the map ⊕n ϕn is continuous when
its domain (and its range) is equipped with the product topology. Therefore, there is a
canonical extension of ⊕n ϕn to a continuous group homomorphism

Φ0 : ∏
n≥0

(Z(p)m)n → G[p][0,∞).
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Now, repeating the same arguments as in Theorem 3.2 in [2], it follows that

G f [p][0,∞) ⊆ Φ0(∏
n≥0

(Z(p)m)n),

which implies that Φ0 is a continuous group homomorphism because G f [p][0,∞) is dense
in G[p][0,∞). Furthermore, using the σ-invariance of G, we can extend Φ0 canonically to
continuous onto group homomorphism

ΦN : ∏
n≥−N

(Z(p)m)n −→ G[p][−N,∞)

by
ΦN [ ∑

n≥−N
(λ1n, λ2n, . . . , λmn)] := σN [Φ0[ρ

N [ ∑
n≥−N

(λ1n, λ2n, . . . , λmn)]]],

for every N > 0. Now, if we identify ∏
n≥−N

(Z(p)m)n with the subgroup

( ∏
n∈Z

(Z(p)m)n)[−N,+∞), remark that Φ(N+1) restricted to ∏
n≥−N

(Z(p)m)n is equal to ΦN .

Therefore, we have defined a map

Φ∞ :
⋃

N>0
∏

n≥−N
(Z(p)m)n → G[p].

Again, because
⋃

N>0
∏

n≥−N
(Z(p)m)n is dense in (Z(p)m)Z, it follows that we can extend

Φ∞ to a continuous group homomorphism

Φ : (Z(p)m)Z −→ G[p].

Now, taking into account that lim
n→±∞

σn(yj) = 0 for all 1 ≤ j ≤ m, we proceed as in

Theorem 3.2 in [2] in order to lift Φ to a continuous group homomorphism

Φ :

(
∏

1≤j≤m
Z(phj+1)

)Z

→ G.

This completes the proof of (1).
(2) First, we remark that repeating the proof accomplished in Theorem 3.2 in [2], it

follows that the sets {σn[xj] : n ∈ Z, 1 ≤ j ≤ m} and {σn[yj] : n ∈ Z, 1 ≤ j ≤ m} are both
(linearly) independent.

Furthermore, since all elements xj (1 ≤ j ≤ m) have finite support, it follows that the
set {σn[xj]|[0,N] 6= 0 : n ∈ Z, 1 ≤ j ≤ m} is finite. Thus, using the σ-invariance of G, we
proceed as in Theorem 3.2 in [2] to obtain that Φ is one to one.

In order to prove that Φ is noncatastrophic, that is Φ[( ∏
1≤j≤m

Z(phj+1)(Z)] ⊆ G f , first

notice that Φ−1 is continuous, being that the inverse map is a continuous one-to-one group
homomorphism. Now, reasoning by contradiction, suppose there is w ∈ G f such that
( ~λn) = Φ−1(w) is an infinite sequence, let us say, without loss of generality, an infinite
sequence on the right side. Then, we have that the sequence (σn(w))n>0 converges to
0 in G. However, since ( ~λn) is infinite on the right side, it follows that the sequence
(Φ−1(σn(w)))n>0 = (σn[( ~λn)])n>0 does not converge to 0 in ( ∏

1≤j≤m
Z(p(hj+1)))Z. This

contradiction completes the proof.

Definition 3. In the sequel, a set {y1, . . . , ym} (resp. {x1, . . . , xm}) that satisfies the properties
established in Theorem 2 is called topological generating set of G (resp. G[p]).
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Next, we are going to use the preceding results in order to characterize the exis-
tence of noncatastrophic, isomorphic encoders. As a consequence, we also characterize
when a group shift is algebraically conjugate to a full group shift. First we need the
following notions.

Definition 4. A group shift G ⊆ X = HZ is a shift of finite type (equivalently, is an observable
group code) if it is defined by forbidding the appearance a finite list of (finite) blocks. As a consequence,
there is N ∈ N such that if x1, x2 belong to G and they coincide on an N-block [k, . . . , k + N], then
there is x ∈ G such that x|(−∞,k+N] = x1|(−∞,k+N] and x|[k,∞) = x2|[k,∞). It is known that if G is
an irreducible group shift over a finite group H, then G is also a group shift of finite type (see Prop.
4 in [8]). Moreover, since every order controllable group shift G is irreducible, it follows that order
controllable group shifts are of a finite type.

Given an element x ∈ G f with supp(x) = {i ∈ Z : x(i) 6= 0}, the first index (resp.
last index) i ∈ supp(x) is denoted by i f (x) (resp. il(x)). The length of supp(x) is defined as
|supp(x)| := il(x)− i f (x) + 1.

Proposition 1. Let G be a weakly controllable, group shift of finite type over a finite abelian p-group
H. If exp(H) = p, then there is a noncatastrophic isomorphic encoder for G. As a consequence, G
is algebraically and topologically conjugate to a full group shift.

Proof. First, remark that G = G[p] in this case. By Theorem 2, there is a topological gener-
ating subset B0 := {xj : 1 ≤ j ≤ m} ⊆ G f [0,∞][p] = G f [0,∞] such that π[0](B0) forms a basis
of π[0](G[0,∞)) and there is a canonically defined σ-invariant, onto, group homomorphism

Φ : (Z(p)m)Z → G.

Furthermore, we select each element xj with minimal support in G f [0,∞) and such that
|supp(x1)| ≤ · · · ≤ |supp(xm)|.

By Theorem 2 (2), it suffices to verify that there is a finite block [0, N] ⊆ N such that
the set {σn[xj]|[0,N] 6= 0 : n ∈ Z, 1 ≤ j ≤ m} is linearly independent. Indeed, let N be a
natural number such that supp(xj) ⊆ [0, N] for all 1 ≤ j ≤ m and satisfying the condition
of being a group shift of finite type for G. That is, if ω1, ω2 belong to G and they coincide
on any N-block [k, . . . , k + N], then there is w ∈ G such that w|(−∞,k+N] = w1|(−∞,k+N]

and w|[k,∞) = w2|[k,∞).
Reasoning by contradiction, let us suppose that there is a linear combination

∑ λnjσ
n(xj)|[0,N] = 0.

Since the set {σn[xj] : n ∈ Z, 1 ≤ j ≤ m} is linearly independent, there must be an
element u = σn1 [xj1 ] (for some n1 and j1) such that

supp(u) ∩ (−∞, 0) 6= ∅.

As a consequence, there exist {αnj} ⊆ Z(p) such that

u|[0,N] = ∑
(n 6=n1,j 6=j1)

αnjσ
n(xj)|[0,N].

We select u such that i f (u) is minimal among the elements satisfying this property. Set

v := ∑
(n 6=n1,j 6=j1)

αnjσ
n(xj).

We have that
(u− v)|[0,N] = 0.
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Since G is of finite type for N-blocks, there exists w ∈ G such that

w|(−∞,N] = (u− v)|(−∞,N] and w|[0,∞) = 0.

We have that i f (u) ≤ i f (w) and il(w) < il(u). Therefore, we have found an element
w ∈ G f with |supp(w)| < |supp(u)|. Therefore, we can replace xj1 by x̃j1 := σ−n1(w)
and |supp(x̃j1)| < |supp(xj1)|. This is a contradiction with our previous selection of the
(ordered) set {xj : 1 ≤ j ≤ m}, which completes the proof.

Lemma 1. Let G be an order-controllable group shift over a finite abelian p-group H. Then G[p]
and prG are order-controllable group shifts for all r with pr < exp(H). As a consequence, it holds
that (prG) f = prG f for all r with pr < exp(H).

Proof. It is obvious that G[p] is order controllable. Regarding the group prG, take an arbi-
trary element x = pry ∈ prG. By the order controllability of G, there is z ∈ G and n0 ∈ N
such that y|(−∞,0] = z|(−∞,0], supp(z) ⊆ (−∞, n0] and order(z|[1,n0]

) divides order(y|[1,n0]
).

Then prz ∈ prG, x|(−∞,0] = prz|(−∞,0], supp(prz) ⊆ (−∞, n0] and order(prz|[1,n0]
) divides

order(x|[1,n0]
).

Finally, it is clear that prG f ⊆ (prG) f . Next, we check the reverse implication.
Let y ∈ G such that x = pry ∈ (prG) f . Then, there are two integers m, M such that

x ∈ G[m,M]. Assume that M ≥ 0 without loss of generality. By order controllability, there
is z ∈ G such that σM(y)|(−∞,0] = z|(−∞,0], supp(z) ⊆ (−∞, n0] and order(z|[1,n0]

) divides
order (σM(y)|[1,n0]

). Hence, if v = σ−M(z), we have y|(−∞,M] = v|(−∞,M], supp(v) ⊆
(−∞, M + n0] and order (v|[M+1,M+n0]

) divides order (y|[M+1,M+n0]
). Therefore, x = prv

with v ∈ G(−∞,M+no ].
If m− no > 0, by order controllability, there is u ∈ G such that v|(−∞,0] = u|(−∞,0],

supp(u) ⊆ (−∞, n0] ⊆ (−∞, m − 1] and order (u|[1,n0]
) divides order(v|[1,n0]

). Set w =
v− u. We have that w ∈ G[1,M+no ] and x = prw, which yields x ∈ prG f .

If m − no ≤ 0, set N = m − no − 1. By order controllability, there is u1 ∈ G
such that σN(v)|(−∞,0] = u1|(−∞,0], supp(u1) ⊆ (−∞, n0] and order (u1|[1,n0]

) divides or-
der (σN(v)|[1,n0]

). Hence, if u2 = σ−N(u1), we have v|(−∞,N] = u2|(−∞,N], supp(u2) ⊆
(−∞, N + n0] ⊆ (−∞, m− 1] and order (u2|[N+1,N+n0]

) divides order (v|[N+1,N+n0]
). Set

w = v− u2. We have that w ∈ G[N+1,M+no ] and x = prw, which again yields x ∈ prG f .
This completes the proof.

Let G be a group shift over a finite abelian p-group H and let G/pG denote the quotient
group defined by the map π : G → G/pG. We define the subgroup

(G/pG) f := {π(u) : u ∈ G and u(n) ∈ pH for all but finitely many n ∈ Z.}

Lemma 2. Let G be an order-controllable group shift over a finite abelian p-group H and let
{x1, . . . , xm} ⊆ (pG f )[0,∞) be a topological generating set of pG, where xi = pyi, yi ∈ G f ,
1 ≤ i ≤ m. If u ∈ G f then there exist v ∈ G f [p] and w ∈ 〈{σn(yj) : n ∈ Z, 1 ≤ j ≤ m}〉 such
that u = v + w.

Proof. Since {x1, . . . , xm} is a topological generating set of pG, we have

pu = ∑
n∈Z

m

∑
i=1

λinσn(xi) = ∑
n∈Z

m

∑
i=1

λin pσn(yi) = p ∑
n∈Z

m

∑
i=1

λinσn(yi).

Furthermore, since the group shift pG is of the finite type and (pG) f = p(G f ) by
Lemma 1, we can apply Proposition 1 to the group shift pG, in order to obtain that the
sum in the equality above only involves non-null terms for a finite subset of indices
F ⊆ Z. Therefore,

pu = p ∑
n∈F

m

∑
i=1

λinσn(yi).
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Set

w := ∑
n∈F

m

∑
i=1

λinσn(yi) ∈ G f .

Then,
u = w + (u− w),

where w ∈ 〈{σn(yj) : n ∈ Z, 1 ≤ j ≤ m}〉 and p(u − w) = 0. It now suffices to take
v := u− w.

Theorem 3. Let G be an order-controllable group shift (therefore, of a finite type) over a finite
abelian p-group H. Then, there is a noncatastrophic isomorphic encoder for G. As a consequence, G
is algebraically and topologically conjugate to a full group shift.

Proof. Using induction on the exponent of G, we prove that there is topological generating
set B0 of G[p], where B0 := {x1, . . . , xm} ⊆ (pG f [p])[0,∞) such that π[0](B0) forms a basis

of π[0]( (pG[p])[0,∞)) and for each xj ∈ B0 there is an element yj ∈ G f such that xj = phj yj.
Furthermore G is algebraically conjugate to the full group shift generated by Z(ph1) ×
. . .Z(phm).

The case exp(G) = p was already done in Proposition 1. Now, suppose that the proof
was accomplished if exp(G) = ph and let us verify it for exp(G) = ph+1. We proceed
as follows:

First, take the closed, shift invariant, subgroup pG. We have that exp(pG) = ph

and by the induction hypothesis, there is topological generating set B0 of pG[p], where
B0 := {x1, . . . , xm} ⊆ (pG f [p])[0,∞) such that π[0](B0) forms a basis of π[0]( (pG[p])[0,∞)),

and for each xj ∈ B0, there is an element yj ∈ pG f such that xj = phj yj.
Since yj ∈ pG f , there is zj ∈ G f such that yj = pzj, 1 ≤ j ≤ m. Furthermore, we

may assume that there is a finite block [0, N1] ⊆ N such that the set {σn[yj]|[0,N1]
6= 0 :

n ∈ Z, 1 ≤ j ≤ m} is linearly independent. As a consequence, using similar arguments
as in Theorem 3.2 in [2], it follows that the set {σn[zj]|[0,N1]

6= 0 : n ∈ Z, 1 ≤ j ≤ m}
also is linearly independent. Therefore there is a canonically defined σ-invariant onto
group homomorphism

Φ :

(
∏

1≤j≤m
Z(phj)

)Z

→ pG.

Now, we complete the set B0 := {x1, . . . , xm} ⊆ (pG)[p] f [0,∞) with a finite set B1 :=
{u1, . . . , uk} ⊆ G[p] f [0,∞) such that π[0](B0 ∪ B1) is a basis of π[0](G[p]). Remark that
we must have h(ui) = 0 for all 1 ≤ i ≤ k, since π[0](B0) forms a basis of π[0]( (pG[p]).
Furthermore, arguing as in Proposition 1, we may assume that there is a finite block
[0, N2] ⊆ N such that the set

E := {σn[ui]|[0,N2]
: σn[ui]|[0,N2]

6= 0 : n ∈ Z, 1 ≤ i ≤ k}

is an independent subset of G[p]|[0,N2]
.

Now, consider the quotient group homomorphism

q : G → G/pG

and remark that G/pG is a group shift over (H/pH)Z. Making use of this quotient map,
we select a basis

V1 := {v1, . . . , vk} ⊆ G f [p][0,+∞)

satisfying the following properties:

• V1|[0,N2]
⊆ 〈{σn[ui]|[0,N2]

: σn[vi]|[0,N2]
6= 0 : n ∈ Z, 1 ≤ i ≤ k}〉.

• π[0](B0 ∪V1) is a basis of π[0](G[p]).
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• The set
{σn[vi]|[0,N2]

: σn[vi]|[0,N2]
6= 0 : n ∈ Z, 1 ≤ i ≤ k}

is independent.
• Each q(vi) has the minimal possible support in (G/pG) f . That is

|supp(q(v1))| ≤ · · · ≤ |supp(q(vk))|

where, if supp(q(vi)) = {. . . , l1, . . . , lpi}, then |supp(q(vi))| := lpi − l1 + 1.

It is straightforward to verify that q(G f ) ⊆ (G/pG) f and, as a consequence, it follows
that the group G/pG is controllable and its controllability index is less than or equal to the
controllability index of G. As in Theorem 2, the topological generating set {v1, . . . , vk} ∪
{z1, . . . , zm} defines a continuous group homomorphism

Φ :

(
Z(p)k × ∏

1≤j≤m
(Zphm+1

)Z

−→ G

By Theorem 2, in order to proof that Φ is one-to-one, it will suffice to find some block
[0, N] ∈ Z such that

S :=
(
{σs[vi]|[0,N] 6= 0 : s ∈ Z, 1 ≤ i ≤ k} ∪ {σn[zj]|[0,N1]

6= 0 : n ∈ Z, 1 ≤ j ≤ m}
)
|[0,N]

forms an independent subset of G|[0,N].
Since this property holds separately for {z1, . . . , zm} on the block [0, N1] and {v1, . . . , vk}

on the block [0, N2], it suffices to verify that if we denote by Y the group shift generated
by {z1, . . . , zm} and by U the group shift generated by {v1, . . . , vk}, then there is an block
[0, N] ⊆ Z such that

(Y ∩U)|[0,N] = {0}.

This implies that S|[0,N] is an independent subset.
Indeed, take N ≥ max(2N1, 2N2). Then, reasoning by contradiction, assume we have

a sum
(∑ αinσn(vi) + ∑ β jsσs(zj))|[0,N] = {0}.

Remark that we may assume that this sum is finite without loss of generality since G
is order controllable. Then

p(∑ αinσn(vi) + ∑ β jsσs(zj))|[0,N] = (∑ pαinσn(vi) + ∑ pβ jsσs(zj))|[0,N] = {0}

this yields
∑ pβ jsσs(zj)|[0,N] = ∑ β jsσs(yj)|[0,N] = {0}.

Since N ≥ N1, this implies that

∑ β jsσs(yj) = {0}.

This means that β js = pγjs for every index js. Thus we have

(∑ αinσn(vi) + ∑ pγjsσs(zj))|[0,N] = {0}.

Now, we select an element σn(vi) such that i f (q(σn(ui))) is minimal among the ele-
ments satisfying this property. Suppose, without loss of generality, that σn(vi) = σn1 v1 for
simplicity’s sake. Solving for σn1 v1 in the equality above, we have

σn1 v1|[0,N] = ( ∑
n 6=n1,i 6=1

α′inσn(vi) + ∑ pγ′jsσs(zj))|[0,N] = {0}.
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Set
w := ∑

n 6=n1,i 6=1
α′inσn(vi)

and set
w1 := σn1 v1 − w.

Remark that pw1 = 0, that is w1 ∈ G[p] and

w1|[0,N] = ∑ pγ′jsσs(yj)|[0,N] ∈ pH.

Therefore,
supp(q(w1)) ∩ [0, N] = ∅.

Since G is a group shift of the finite type, there is w2 ∈ G such that

w2|(−∞,N] = w1|(−∞,N] and w2|[0,+∞) = ∑ pγ′jsσs(yj)|[0,+∞).

From the way w2 is defined, we have that σ−n1(w2) ∈ G f [p][0,+∞) satisfies that

σ−n1(w2)|[0,N2]
∈ 〈{σn[vi]|[0,N2]

: σn[vi]|[0,N2]
6= 0 : n ∈ Z, 1 ≤ i ≤ k}〉

and
|supp(q(w2))| ≤ |supp(q(σn1(v1)))|.

This is a contradiction and completes the proof.

We can now prove Theorem 1.

Proof of Theorem 1. Since every finite abelian group is the direct sum of all its nontrivial
p-subgroups, the proof follows from Theorem 3, in a similar manner as Theorem A in [2]
follows from Theorem 3.2 in [2].

QUESTION: Under what conditions is it possible to extend Theorem 1 to non-
abelian groups?

3. Conclusions

In this paper, we investigated the structure of order-controllable group codes. In
particular, we have dealt with the important question of when a group shift admits a
finite canonical generating set and, as a consequence, is topologically and algebraically
isomorphic to a full shift. In order to tackle this problem, we introduced the notion of
order-controllable group code (given a {Gi : i ∈ N} family of finite Abelian groups, the
subgroup G ≤ ∏

i∈N
Gi is called order controllable if for every i ∈ N there is ni ∈ N such

that for each c ∈ G, there exists c1 ∈ G satisfying that c1|[1,i] = c|[1,i], supp(c1) ⊆ [1, ni], and
order (c1) divides order (c|[1,ni ]

)). Our main result establishes a significant step toward the
understanding of when a group code is topologically and algebraically isomorphic to a full
group shift. In fact, we obtained a mild algebraic necessary condition for a group shift to
admit a finite canonical generating set and, as a consequence, to be topologically conjugate
to a full group shift.
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