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1. Introduction

Zadeh [1] introduced the theory of fuzzy sets and after that many authors discussed
concepts of fuzzy sets in different areas, one of them being fuzzy metric space [2]. By
using continuous t-norms George and Veeramani [3] modified the concept of fuzzy metric
space introduced by Kramosil and Michalek [2]. Many researchers have studied in this
field [4–6]. In 2004, using the idea of the intuitionistic fuzzy set [7], the concept of fuzzy
metric space [3] was extended to the concept of intuitionistic fuzzy metric space by Park [8].
Park defined this concept with the help of continuous t-norms and continuous t-conorms.
A lot of developments such as fixed point theorems and convergence have been studied
with fuzzy metric spaces and intuitionistic fuzzy metric spaces [9–16].

The notion of statistical convergence was introduced by Fast [17] and Steinhous [18]
in 1951 independently, and this idea drew attention from mathematicians working in both
fields of pure and applied mathematics. As a generalization of the concept of convergence,
statistical convergence is defined as: Let K ⊆ IN. ∀n ∈ IN, K(n) = {k 6 n:k ∈ K}. The
natural (or asymptotic) density of K is defined by δ(K) = limn→∞

|K(n)|
n if the limit exists,

where | K(n) | denotes the cardinality of the set K(n). δ(K) ∈ [0, 1] and δ(IN\K) = 1− δ(K)
if δ(K) exists. For instance, δ(IN) = 1, δ(A) = 1

2 , where A is an even natural number
and δ(B) = 0, where B is a finite subset of IN. K is called statistically dense provided
that δ(K) = 1. A sequence (xn) ⊂ IR is called statistically convergent to x0 ∈ IR if
δ({n ∈ IN :| xn − x0 |< ε}) = 1 for each ε > 0. There have been many important results
on statistical convergence by many authors ([19–21] ).

In 2020, Changqing et al. [22] introduced statistically convergent sequences in fuzzy
metric spaces. In view of this, we pay attention to statistical convergence on intuitionistic
fuzzy metric spaces with this study. Then, we analyze relations of convergence and
statistical convergence on intuitionistic fuzzy metric spaces. Further, we study statistical
Cauchy sequences and statistical completeness on intuitionistic fuzzy metric spaces.

2. Intuitionistic Fuzzy Metric Space

In this section, we give some basic definitions and notions to explain main results.
Throughout the paper, IR and IN will denote the set of all real numbers and the set of all
positive integer numbers, respectively.
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Definition 1 ([23]). A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is called a continuous t-norm if
∗ satisfies the following:

(1) a ∗ 1 = a, ∀a ∈ [0, 1];
(2) a ∗ b = b ∗ a and a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀a, b, c ∈ [0, 1];
(3) If a ≤ c and b ≤ d, then a ∗ b ≤ c ∗ d, ∀a, b, c, d ∈ [0, 1];
(4) ∗ is continuous.

Definition 2 ([23]). A binary operation � : [0, 1]× [0, 1]→ [0, 1] is called a continuous t-conorm
if � satisfies the following:

(1) a � 0 = a, ∀a ∈ [0, 1];
(2) a � b = b � a and a � (b � c) = (a � b) � c ∀a, b, c ∈ [0, 1];
(3) If a ≤ c, b ≤ d, then a � b ≤ c � d, ∀a, b, c, d ∈ [0, 1];
(4) � is continuous.

Note that a ∗ b = min{a, b}, a � b = max{a, b}, a ∗ b = ab and a � b = min{a + b, 1}
are basic examples of continuous t-norms and continuous t-conorms for all a, b ∈ [0, 1].

From the previous two definitions, we see that if r1 > r2, then there exist r3, r4 ∈ (0, 1)
such that r1 ∗ r3 ≥ r2 and r2 � r4 ≤ r1.

Definition 3 ([7]). An intuitionistic fuzzy set A is defined by A = {〈x, µA(x), νA(x)〉 : x ∈ X}
where µA : X → [0, 1] and νA : X → [0, 1] denote membership and nonmembership functions
respectively. µA(x) and νA(x) are membership and nonmembership degrees of each element x ∈ X
to the intuitionistic fuzzy set A and µA(x) + νA(x) ≤ 1 for each x ∈ X.

Definition 4 ([8]). Let M and N be fuzzy sets on X2 × (0, ∞), ∗ be a continuous t-norm, � be
a continuous t-conorm. If M and N satisfy the following conditions, we say that (M, N) is
intuitionistic fuzzy metric on X:

(IF1) M(x, y, t) + N(x, y, t) ≤ 1;
(IF2) M(x, y, t) > 0;
(IF3) M(x, y, t) = 1 if and only if x = y;
(IF4) M(x, y, t) = M(y, x, t);
(IF5) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s);
(IF6) M(x, y, .) : (0, ∞)→ (0, 1] is continuous;
(IF7) N(x, y, t) > 0;
(IF8) N(x, y, t) = 0 if and only if x = y;
(IF9) N(x, y, t) = N(y, x, t);
(IF10) N(x, y, t) � N(y, z, s) ≥ N(x, z, t + s);
(IF11) N(x, y, .) : (0, ∞)→ (0, 1] is continuous.

A 5-tuple (X, M, N, ∗, �) is called intuitionistic fuzzy metric space.
The functions M(x, y, t) and N(x, y, t) denote the degree of nearness and the degree of non-

nearness between x and y with respect to t, respectively.

Remark 1. Let (X, M, N, ∗, �) be an intuitionistic fuzzy metric space. Then (X, M, ∗) is a fuzzy
metric space. Conversely, if (X, M, ∗) is a fuzzy metric space, then (X, M, 1− M, ∗, �) is an
intuitionistic fuzzy metric space, where a � b = 1− ((1− a) ∗ (1− b)), ∀a, b ∈ [0, 1].

Definition 5 ([8]). Let (X, M, N, ∗, �) be an intuitionistic fuzzy metric space and t > 0, r ∈ (0, 1)
and x ∈ X. The set Bx(r, t) = {y ∈ X : M(x, y, t) > 1− r, N(x, y, t) < r} is said to be an open
ball with center x and radius r with respect to t.

{Bx(r, t) : x ∈ X, r ∈ (0, 1), t > 0} generates a topology τ(M,N) called the (M,N) topology.

Definition 6 ([8]). Let (X, M, N, ∗, �) be an intuitionistic fuzzy metric space.
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(i) (xn) is called convergent to x if for all t > 0 and r ∈ (0, 1) there exists n0 ∈ IN such that
M(xn, x, t) > 1− r and N(xn, x, t) < r for all n ≥ n0.
It is denoted by xn → x as n→ ∞.
∗ M(xn, x, t)→ 1 and N(xn, x, t)→ 0 as n→ ∞ for each t > 0.

(ii) (xn) is called a Cauchy sequence if, for t > 0 and r ∈ (0, 1), there exists n0 ∈ IN such that
M(xn, xm, t) > 1− r and N(xn, xm, t) < r for all n, m ≥ n0.

(iii) (X, M, N, ∗, �) is called (M,N)-complete if every Cauchy sequence is convergent.

Definition 7 ([22]). Let (X, M, ∗) be a fuzzy metric space.

(i) A sequence (xn) ⊂ X is called statistically convergent to x0 ∈ X if δ({n ∈ IN : M(xn, x0, t)
> 1− r}) = 1 for every r ∈ (0, 1) and t > 0.

(ii) A sequence (xn) ⊂ X is called a statistically Cauchy sequence if, for every r ∈ (0, 1) and
t > 0, there exists m ∈ IN such that δ({n ∈ IN : M(xn, xm, t) > 1− r}) = 1.

3. Statical Convergence in Intuitionistic Fuzzy Metric Space

In this section, we study statistically convergent sequences on intuitionistic fuzzy
metric spaces.

Definition 8. Let (X, M, N, ∗, �) be an intuitionistic fuzzy metric space. A sequence (xn) ⊂ X is
called statistically convergent to x0 ∈ X with respect to the intuitionistic fuzzy metric provided
that, for every r ∈ (0, 1) and t > 0,

δ({n ∈ IN : M(xn, x0, t) > 1− r, N(xn, x0, t) < r}) = 1.
We say that (xn) is statically convergent to x0. We see that
δ({n ∈ IN : M(xn, x0, t) > 1 − r, N(xn, x, t) < r}) = 1 ⇔ limn→∞

|{k≤n:M(xk ,x0,t)>1−r, N(xk ,x0,t)<r}|
n = 1

Example 1. Let X = IR, a ∗ b = ab and a � b = min{a + b, 1} for all a, b ∈ [0, 1]. Define
M and N by M(x, y, t) = t

t+|x−y| and N(x, y, t) = |x−y|
t+|x−y| for all x, y ∈ X and t > 0. Then

(IR, M, N, ∗, �) is an intuitionistic fuzzy metric space.
Now define a sequence (xn) by

xn =

{
1, n = k2, k ∈ IN;
0, otherwise

.

Then, for every r ∈ (0, 1) and for any t > 0, let K = {n ≤ m : M(xn, 0, t) ≤ 1− r,
N(xn, 0, t) ≥ r} = {n ≤ m : t

t+|xn | ≤ 1− r, |xn |
t+|xn | ≥ r} = {n ≤ m : |xn| ≥ rt

1−r > 0} =

{n ≤ m : xn = 1} = {n ≤ m : n = k2, k ∈ IN}, and we obtain 1
m |K| 6

1
m |{n 6 m : n = k2,

n ∈ IN}| 6
√

m
m → 0, m → ∞. Hence, we obtain that (xn) is statistically convergent to 0 with

respect to the intuitionistic fuzzy metric space (X, M, N, ∗, �).

Lemma 1. Let (X, M, N, ∗, �) be an intuitionistic fuzzy metric space. The, for every r ∈ (0, 1)
and t > 0, the following are equivalent:

(i) (xn) is statistically convergent to x0;
(ii) δ({n ∈ IN : M(xn, x0, t) ≤ 1− r}) = δ({N(xn, x0, t) ≥ r}) = 0;
(iii) δ({n ∈ IN : M(xn, x0, t) > 1− r}) = δ({N(xn, x0, t) < r}) = 1.

Proof. Using Definition 8 and properties of density, we have the lemma.

Theorem 1. Let (X, M, N, ∗, �) be an intuitionistic fuzzy metric space. If a sequence (xn) is sta-
tistically convergent with respect to the intuitionistic fuzzy metric, then the statistically convergent
limit is unique.

Proof. Suppose that (xn) is statistically convergent to x1 and x2. For a given r ∈ (0, 1),
chose t > 0 such that (1− t) ∗ (1− t) > 1− r and t � t < r.
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Then define the following sets for any ε > 0:
KM1(t, ε) := {n ∈ IN : M(xn, x1, ε) > 1− t}
KM2(t, ε) := {n ∈ IN : M(xn, x2, ε) > 1− t}
KN1(t, ε) := {n ∈ IN : N(xn, x1, ε) < t}
KN2(t, ε) := {n ∈ IN : N(xn, x2, ε) < t}
Since (xn) is statistically convergent with respect to x1 and x2, we obtain
δ{KM1(t, ε)} = δ{KN1(t, ε)} = 1 and δ{KM2(t, ε)} = δ{KN2(t, ε)} = 1, for all ε > 0.
Let KMN(t, ε) := {KM1(t, ε) ∪ KM2(t, ε)} ∩ {KN1(t, ε) ∪ KN2(t, ε)}.
Hence, δ{KMN(t, ε)} = 1 which implies that δ{IN\KMN(t, ε)} = 0.
If n ∈ IN\KMN(t, ε), then we have two options:
n ∈ IN\{KM1(t, ε) ∪ KM2(t, ε)} or n ∈ IN\{KN1(t, ε) ∪ KN2(t, ε)}.
Let us consider n ∈ IN\{KM1(t, ε) ∪ KM2(t, ε)}. Then we obtain
M(x1, x2, ε) ≥ M(x1, xn, ε

2 ) ∗M(xn, x2, ε
2 ) > (1− t) ∗ (1− t) > 1− r.

Therefore, M(x1, x2, ε) > 1− r and since r > 0 is arbitrary, we obtain M(x1, x2, ε) = 1
for all ε > 0, which implies x1 = x2.

Now let us consider n ∈ IN\{KN1(t, ε)∪KN2(t, ε)}. Then, N(x1, x2, ε) ≤ N(x1, xn, ε) �
N(xn, x2, ε) < t � t < r. Since r > 0 is arbitrary, we obtain N(x1, x2, ε) = 0 for all ε > 0,
which implies x1 = x2. This completes the proof.

Theorem 2. Let (xn) be a sequence in an intuitionistic fuzzy metric space (X, M, N, ∗, �). If
(xn) is convergent to x0 with respect to the intuitionistic fuzzy metric, then (xn) is statistically
convergent to x0 with respect to the intuitionistic fuzzy metric.

Proof. Let (xn) be convergent to x0. Then for every r ∈ (0, 1) and t > 0, there exists n0 ∈ IN
such that M(xn, x0, t) > 1− r and N(xn, x0, t) < r. We have |{k ≤ n : M(xn, x0, t) >
1− r and N(xn, x0, t) < r}| ≥ n− n0.

Hence, the set {k ≤ n : M(xn, x0, t) > 1− r and N(xn, x0, t) < r} has a finite number
of terms.

Then, limn→∞
|{k≤n:M(xn ,x0,t)>1−r,N(xn ,x0,t)<r}|

n ≥ limn→∞
n−n0

n = 1.
Consequently, δ({n ∈ IN : M(xn, x0, t) > 1− r, N(xn, x0, t) < r}) = 1.

The converse of the theorem need not hold.

Example 2. Let X = [1, 3], a ∗ b = ab and a � b = min{a + b, 1} for all a, b ∈ [0, 1]. Define
M and N by M(x, y, t) = t

t+|x−y| and N(x, y, t) = |x−y|
t+|x−y| for all x, y ∈ X and t > 0. Then

(IR, M, N, ∗, �) is an intuitionistic fuzzy metric space.
Now define a sequence (xn) by

xn =

{
2, n = k2, k ∈ IN;
1, otherwise

.

We can see that (xn) is not convergent to 1.
We need to show that (xn) is statistically convergent to 1. Let r ∈ (0, 1) and t > 0.

K = {n ∈ IN : M(xn, 1, t) > 1− r, N(xn, 1, t) < r}.
Case 1. r ∈ (0, 1

t+1 ]. If n 6= k2 for all k ∈ IN, then M(xn, 1, t) = 1 > 1 − r and
N(xn, 1, t) = 0 < r. If n = k2 for some k ∈ IN, then M(xn, 1, t) = t

t+1 = 1− 1
t+1 ≤ 1− r and

N(xn, 1, t) = 1
t+1 ≥ r.

Now, let n ∈ IN. If n = k2
0 for an k0 ∈ IN, then limn→∞

|K(n)|
n = limk0→∞

k2
0−k0
k2

0
= 1.

If n 6= k2 for all k ∈ IN, then we can obtain k1 ∈ IN such that n = k2
1 − l with l ∈ IN and

1 ≤ l ≤ k1. limn→∞
|K(n)|

n = limk1→∞
k2

1−l−(k1−l)
k2

1−l
= limk1→∞

k2
1−k1−l+1

k2
1−l

= 1.

Case 2. r ∈ ( 1
t+1 , 1). If n 6= k2 for all k ∈ IN, then M(xn, 1, t) = 1 > 1 − r and

N(xn, 1, t) = 0 < r. If n = k2 for some k ∈ IN, then M(xn, 1, t) = t
t+1 = 1− 1

t+1 > 1− r and
N(xn, 1, t) = 1

t+1 < r. Hence, M(xn, 1, t) > 1− r and N(xn, 1, t) < r for all n ∈ IN. Therefore,

limn→∞
|K(n)|

n = limn→∞
n
n = 1.
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Therefore, δ({n ∈ IN : M(xn, 1, t) > 1− r, N(xn, 1, t) < r}) = 1 for all r ∈ (0, 1) and
t > 0.

Theorem 3. Let (xn) be a sequence in an intuitionistic fuzzy metric space (X, M, N, ∗, �).
Then (xn) statistically converges to x0 if and only if there exists an increasing index sequence
A = {ni}i∈IN of the natural numbers such that (xni ) converges to x0 and δ(A) = 1.

Proof. Assume that (xn) statistically converges to x0.
Let KMN(j, t) := {n ∈ IN : M(xn, x0, t) > 1− 1

j and N(xn, x0, t) < 1
j }, for any t > 0

and j ∈ IN.
We show that KMN(j + 1, t) ⊂ KMN(j, t) for t > 0, j ∈ IN. Since (xn) statistically

converges to x0,
δ(KMN(j, t)) = 1 (1)

Take s1 ∈ KMN(1, t). Since δ(KMN(2, t)) = 1 (by Equation (1)) we have a number
s2 ∈ (KMN(2, t) (s2 > s1) such that

|{k≤n:M(xk ,x0,t)>1− 1
2 , N(xk ,x0,t)< 1

2 }|
n > 1

2 , for all n ≥ s2.
Again by Equation (1), δ(KMN(3, t)) = 1 and we can choose s3 ∈ KMN(3, t) (s3 > s2)

such that
|{k≤n:M(xk ,x0,t)>1− 1

3 , N(xk ,x0,t)< 1
3 }|

n > 2
3 , for all n ≥ s3 and we continue like this. Then,

we can obtain an increasing index sequence {sj}j∈IN of the natural numbers such that
sj ∈ (KMN(j, t)). We also have following;

|{k ≤ n : M(xk, x0, t) > 1− 1
j , N(xk, x0, t) < 1

j }|
n

>
j− 1

j
, f or all n ≥ sj, j ∈ IN (2)

Now we obtain the increasing index sequence A as
A := {n ∈ IN : 1 < n < s1} ∪ {

⋃
j∈IN{n ∈ (KMN(j, t) : sj ≤ n < sj+1}}.

By Equation (2) and KMN(j + 1, t) ⊂ KMN(j, t), we write
|{k≤n:k∈A}|

n ≥
|{k≤n:M(xk ,x0,t)>1− 1

j , N(xk ,x0,t)< 1
j }|

n > j−1
j for all n, (sj ≤ n < sj+1).

Since j→ ∞, when n→ ∞, we have limn→∞
|{k≤n:k∈A}|

n = 1, i.e., δ(A) = 1.
Now we show that (xni ) converges to x0. Let r ∈ (0, 1) and t > 0. Take N0 > s2

large enough that for some l0 ∈ IN, sl0 ≤ N0 < sl0+1 with 1
l0
< r. Assume that nm ≥ N0

with nm ∈ A. By the definition of A, there exists l ∈ IN such that sl ≤ nm < sl+1 with
nm ∈ KMN(l, t), (l ≥ l0). Then, we obtain

M(xnm , x0, t) ≥ M(xnm , x0, 1
l0
) ≥ M(xnm , x0, 1

l ) > 1 − 1
l ≥ 1 − 1

l0
> 1 − r and

N(xnm , x0, t) > 1
l0
< r. Therefore, (xni) converges to x0.

Conversely, assume that there exists an increasing index sequence A = {ni}i∈IN of
the natural numbers such that δ(A) = 1 and (xni ) converges to x0. Let r ∈ (0, 1) and
t > 0. Then, there is a number n0 ∈ IN such that for each n ≥ n0, the inequalities
M(xni , x0, t) > 1− r and N(xni , x0, t) < r are satisfied.

Let us define KMN(r, t) := {n ∈ IN : M(xni , x0, t) ≤ 1− r or N(xni , x0, t) ≥ r}. We
have

KMN(r, t) ⊂ IN\ {nn0 , nn0+1, nn0+2, ...}. Since δ(A) = 1, we have
δ(IN\{nn0 , nn0+1, nn0+2, ...}) = 0, so we deduce δ(KMN(r, t)) = 0. Hence,

δ({n ∈ IN : M(xn, x0, t) < 1− r and n(xn, x0, t) < r}) = 1.
Therefore, (xn) statistically converges to x0.

Corollary 1. Let (xn) be a sequence in an intuitionistic fuzzy metric space (X, M, N, ∗, �). If (xn)
is statistically convergent to x0 and it is convergent, then (xn) converges to x0.

Definition 9. Let (X1, M1, N1, ∗1, �1) and (X2, M2, N2, ∗2, �2) be two intuitionistic fuzzy metric
spaces.
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(i) A mapping f : X1 → X2 is called an isometry if for each x, y ∈ X1 and t > 0, M1(x, y, t) =
M2( f (x), f (y), t) and N1(x, y, t) = N2( f (x), f (y), t).

(ii) (X1, M1, N1, ∗1, �1) and (X2, M2, N2, ∗2, �2) are called isometric if there exists an isometry
from X1 onto X2.

(iii) An intuitionistic fuzzy completion of (X1, M1, N1, ∗1, �1) is a complete intuitionistic fuzzy
metric space (X2, M2, N2, ∗2, �2) such that (X1, M1, N1, ∗1, �1) is isometric to a dense sub-
space of X2.

(iv) (X1, M1, N1, ∗1, �1) is called completable if it leads to an intuitionistic fuzzy metric completion.

Proposition 1. Let (xn) be a sequence in a completable intuitionistic fuzzy metric space
(X, M, N, ∗, �). If (xn) is Cauchy sequence in X and it is statistically converges to x0, then
(xn) converges to x0.

Proof. Let (X1, M1, N1, ∗1, �1) be the completion of (X, M, N, ∗, �). Then ∃ x1 ∈ X1 : (xn)
converges to x1. We have M1(xn, x0, t) = M(xn, x0, t) and N1(xn, x0, t) = N(xn, x0, t) for
all t > 0 and n ∈ IN.

Let r ∈ (0, 1) and t > 0. Since δ({n ∈ IN : M(xn, x0, t) > 1− r and N(xn, x0, t) < r})
= 1, we obtain δ({n ∈ IN : M1(xn, x0, t) > 1− r and N1(xn, x0, t) < r}) = 1. Hence, we
see that (xn) statistically converges to x0 ∈ X1 with respect to (M1, N1). By Corollary 1, we
have x1 = x0.

4. Statically Complete Intuitionistic Fuzzy Metric Space

In this section, we give the concept of a statistical Cauchy sequence on an intuitionistic
fuzzy metric space and study a characterization.

Definition 10. Let (X, M, N, ∗, �) be an intuitionistic fuzzy metric space. A sequence (xn) ⊂ X
is called a statistically Cauchy sequence if, for every r ∈ (0, 1) and t > 0, there exists m ∈ IN such
that δ({n ∈ IN : M(xn, xm, t) > 1− r, N(xn, xm, t) < r}) = 1.

Theorem 4. Let (xn) be a sequence in an intuitionistic fuzzy metric space (X, M, N, ∗, �). Then
the following are equivalent:

(i) (xn) is statistically Cauchy.
(ii) There exists an increasing index sequence K = {ni}i∈IN of the natural numbers such that

(xni) is Cauchy and δ(K) = 1.

Proof. Straightforward.

Theorem 5. Let (xn) be a sequence in an intuitionistic fuzzy metric space (X, M, N, ∗, �). If (xn)
is statistically convergent with respect to the intuitionistic fuzzy metric, then (xn) is statistically
Cauchy with respect to the intuitionistic fuzzy metric.

Proof. Let (xn) be statistically convergent to x0 and r ∈ (0, 1), t > 0. Then, ∃r1 ∈ (0, 1) :
(1− r1) ∗ (1− r1) > 1− r and r1 � r1 < r. We have δ({n ∈ IN : M(xn, x0, t) > 1− r,
N(xn, x0, t) < r}) = 1. From Theorem 1, there exists an increasing index sequence {ni}i∈IN
such that (xni ) converges to x0. Hence, ∃ni0 ∈ {ni}i∈IN : M(xni , x0, t

2 ) > 1 − r1 and
N(xni , x0, t

2 ) < r1 for all ni ≥ ni0 . Since
M(xn, xni0

, t) ≥ M(xn, x0, t
2 ) ∗M(x0, xni0

, t
2 ) ≥ (1− r1) ∗ (1− r1) > 1− r and

N(xn, xni0
, t) ≤ N(xn, x0, t

2 ) � N(x0, xni0
, t

2 ) < r1 � r1 < r, we have δ({n ∈ IN :
M(xn, xni0

, t) > 1 − r, N(xn, xni0
, t)}) = 1. Therefore, (xn) is statistically Cauchy with

respect to the intuitionistic fuzzy metric.

Remark 2. If a sequence is Cauchy in an intuitionistic fuzzy metric space, then it is statistically
Cauchy.
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Definition 11. The intuitionistic fuzzy metric space (X, M, N, ∗, �) is called statistically complete
if every statistically Cauchy sequence in X is statistically convergent.

Theorem 6. Let (X, M, N, ∗, �) be an intuitionistic fuzzy metric space. If X is statistically
complete, then it is complete with respect to the intuitionistic fuzzy metric.

Proof. The proof is similar to Theorem 5.

5. Conclusions

Fast and Steinhaus introduced the concept of statistical convergence in 1951 inde-
pendently, and then many authors became interested in the subject and researched it in
different fields of mathematics. In 2020, Changqing et al. introduced the concept of statisti-
cal convergence in fuzzy metric spaces. In view of this, we have discussed generalizing
this convergence to intuitionistic fuzzy metric spaces. We have defined the concepts of sta-
tistical convergence, statistical Cauchy sequences and statistical completeness with respect
to intuitionistic fuzzy metric spaces. In addition, we have studied characterizations for
statistically convergent sequences and statistically Cauchy sequences.
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