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Abstract: This paper is concerned with a study of a special integral equation. This integral equation
arises in many applied problems, including transmutation theory, inverse scattering problems, the
solution of singular Sturm–Liouville and Shrödinger equations, and the representation of solutions
of singular Sturm–Liouville and Shrödinger equations. A special integral equation is derived and
formulated using the Riemann function of a singular hyperbolic equation. In the paper, the existence
of a unique solution to this equation is proven by the method of successive approximations. The
results can be applied, for example, to representations of solutions to Sturm–Liouville equations with
singular potentials, such as Bargmann and Miura potentials, and similiar. The treatment of problems
with such potentials are very important in mathematical physics, and inverse, scattering and related
problems. The estimates received do not contain any undefined constants, and for transmutation
kernels all estimates are explicitly written.

Keywords: transmutations; Sturm–Liouville operator; singular potential; Bargmann potential;
successive approximations

MSC: 34B24; 34L25

1. Introduction

In this section, we introduce the problem of the integral representation of solutions
to Sturm–Liouville equations with singular potential by a transmutation operator of the
Poisson type.

As, in fact, we use an underlying idea of transmutations in this paper, let us give a
proper definition.

Definition 1. For a given pair of operators (A, B) and an operator T, T 6= 0 is called the
transmutation (or intertwining) operator if, on elements of some functional spaces, the next property
is valid

T A = B T. (1)

It is obvious that the notion of transmutation is direct and far reaching generalization of
the similarity notion from linear algebra. However, transmutations do not reduce to similar
operators because intertwining operators often are not bounded in classical spaces and the
inverse operator may not exist or be bound in the same space. As a consequence, spectra
of transmuted operators A, B are not the same, as a rule, in contrast to to a case of similar
operators. Moreover, transmutations may be unbound. Additionally, a pair of intertwining
operators may not be differential ones. In transmutation theory, there are problems for
next varied types of operators: integral, integro–differential, difference–differential (e.g.,
the Dunkl operator), pseudodifferential and abstract differential operators, cf. [1–8]. In
quantum physics, in the study of the Shrödinger equation and inverse scattering theory,
underlying transmutations are called wave operators.
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Additionally, how do transmutations usually work? Suppose we study properties
for a rather complicated operator A. However, suppose also that we know corresponding
properties for the model, which has a more simple operator B and transmutation T; in (1)
this readily exists. Then, we may usually translate results for the model operator B to a
more complicated operator A. This is, briefly, the main idea of transmutations.

Let us, for example, consider an equation Au = f , then, applying to it a transmutation
with property (1), we consider a new equation: Bv = g, with v = Tu, g = T f . Therefore, if
we can solve the simpler equation Bv = g then the initial one is also solved and has solution
u = T−1v. Of course, it is supposed that the inverse operator exists and its explicit form is
known. This is a simple application of the transmutation technique for proving formulas
for the solutions of ordinary and partial differential equations, cf. [9] for more details.

For the explicit construction of transmutations, a special method was introduced and
developed by the first author—the integral transforms composition method (ITCM) , thoroughly
studied in [3,4,9] (and more references therein). The essence of this method is to construct
the necessary transmutation operator and corresponding connection formulas among the
solutions of perturbed and nonperturbed equations, as a composition of classical integral
transforms with properly chosen weighted functions.

In this paper, we consider the above described transmutation technique for finding a
solution of a perturbed differential equation with a singular coefficient via solutions of an
unperturbed differential equation, namely, via the Bessel functions.

Therefore, we consider the next problem in detail. Find a solution to the differential
equation

Bαu(x)− q(x)u(x) = u′′(x) +
2α

x
u′(x)− q(x)u(x) = 0, x > 0, α > 0. (2)

in the integral form

u(x) = Pαv(x) = v(x) +
∞∫

x

P(x, t)v(t) dt, (3)

where v(x) is the Bessel function and P(x, t) is a kernel function.

v(x) = Jα(x),

and P(x, t) is a kernel function.
In fact, (3) is a transmutation operator due to definition (1), with the choice

A = Bα − q(x), B = Bα, Bαu(x) = u′′(x) +
2α

x
u′(x), T = Pα.

Such a transmutation operator Pα (3), by the terminology of transmutations connected
with the Bessel differential operator, is called a transmutation of the Poisson type for
Equation (2). This connects solutions of Equation (2), including the potential function q(x),
with a more simple equation than the form of (2), but with q(x) = 0, namely, with the
Bessel functions.

As a result, the transmutation operator (3) acts by the formula

Pα(Bα − q(x))v = BαPαv,

on proper functions.
This approach produces connection formulas between different solutions to differential

equations, namely, of perturbed more complex ones and more simple model ones.
Transmutation theory is a rich and important field of modern mathematics. It has

many applications in all areas of theoretical and applied mathematics, cf. [1–8]. The solution
representation of the form (3) with a “good” kernel P for a large variety of potentials q(x)
is basic for classical methods of solving direct and inverse problems, including inverse
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scattering problems [1,4–6,10]. For Sturm–Liouville operators, transmutations and integral
representation (3) were first introduced by B.Ya. Levin, cf. [1,2,4,7,8].

After that, in a series of papers, transmutations and inverse problems were also
considered for perturbed Bessel operators with potentials, cf. [11–13]. Along with Poisson
operators, their inverse Sonine transmutation operators Sα were studied, which satisfy

Sα(Bα − q(x))u = BαSαu

on proper functions. These names are originated from formulas in special function the-
ory [14]. Sonine and Poisson transmutations for the Bessel operator were introduced by
J.Delsart, cf. [1,2,4,15]. The original method for constructing transmutations for the per-
turbed Bessel equation on a half-axis was developed by V.V. Stashevskaya in [11]. The
method works for singular at zero potentials with an estimate |q(x)| ≤ cx−3/2+ε, ε > 0
for integer α, this approach later received broad generalizability. A case of a continuous
potential q, α > 0 was studied in detail by A.S.Sokhin in [12,13], and, after that, by other
authors.

In many problems in mathematics and physics, we have to study strongly singular
potentials, e.g., with an arbitrary singularity at zero. In this paper, the problem of integral
representation for similar problems is considered. In addition, we concentrate on solving a
connected integral equation that produces such representations. In particular, such singular
potentials are included as the singular q = x−2, a strongly singular potential with power
singularity q = x−2−ε, ε > 0, Yukawa, Bargmann and Bateman–Shadan potentials [10].
Such versality is an advantage of methods based on Levin type transmutations.

In the paper, we study, as a main object, an integral equation for the kernel of the
transmutation in need. After reducing the problem to an integral equation, we prove the
existence and uniqueness of its solutions, and the existence of its necessary derivatives. In
addition, sharp estimates are proven for the solution via a parameter and the potential of
the Equation (2), via the special Legendre functions. For the special case of power potentials,
the estimates are simplified. We use a technique based on using the Riemann function for
Euler–Poisson–Darboux equations, estimating integrals by the Mellin transform technique
and Slater–Marichev theorem.

Let us note that, in this paper, a special class of transmutations is introduced, which
differs from known ones by some details. Usually, the same limits are considered in integral
equations, both as [0; a] OR [a; ∞] in the main integral equations for the kernel function of
a transmutation operator. In this paper, we use two different limits: [0; a] AND [a; ∞]. This
approach leads to a wider class of permitted singular potentials.

Furthermore, we modernize a little the method of Darboux–Levitan from [15], on
exploiting the basic integral equation. It turned out that the Riemann function in this
equation is represented not only by the Gauss hypergeometric function, but by the Legendre
function. This simplifies estimates, as a special function with three parameters is reduced
to a more simple special function with two parameters.

2. Derivation and Solution of an Integral Equation for the Transmutation Kernel

Let us introduce new variables and functions with the formulas

ξ =
t + x

2
, η =

t− x
2

, ξ ≥ η > 0;

K(x, t) =
( x

t

)α
P(x, t), u(ξ, η) = K(ξ − η, ξ + η). (4)
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Let ν = α− 1. Therefore, to derive representation (3) for Equation (2), it is enough
to find function u(ξ, η). It is well known (cf., [15]) that, if twice a differentiable solution
u(ξ, η) exists for an integral equation

u(ξ, η) = −1
2

∞∫
ξ

Rν(s, 0; ξ, η)q(s) ds−
∞∫

ξ

ds

η∫
0

q(s + τ)Rν(s, τ; ξ, η)u(s, τ) dτ,

under conditions 0 < τ < η < ξ < s, then the function P(x, t) is defined by (4), via this
solution u(ξ, η). The function Rν = Rα−1 is the Riemann function appearing for the next
singular inhomogeneous hyperbolic equation of the Euler–Poisson–Darboux kind

∂2u(ξ, η)

∂ξ∂η
+

4α(α− 1)ξη

(ξ2 − η2)2 u(ξ, η) = f (ξ, η),

which, in our case, is reduced to

∂2u(ξ, η)

∂ξ∂η
+

4α(α− 1)ξη

(ξ2 − η2)2 u(ξ, η) = q(ξ + η)u(ξ, η).

This Riemann function is known in the explicit form, cf. [15], via the Gauss hypergeo-
metric function 2F1:

Rν =

(
s2 − η2

s2 − τ2 ·
ξ2 − τ2

ξ2 − η2

)ν

2F1

(
−ν,−ν; 1;

s2 − ξ2

s2 − η2 ·
η2 − τ2

ξ2 − τ2

)
. (5)

This function was simplified, where it was expressed via the Legendre function

Rν(s, τ, ξ, η) = Pν

(
1 + A
1− A

)
, A =

η2 − τ2

ξ2 − τ2 ·
s2 − ξ2

s2 − η2 . (6)

The main result of this paper is the next theorem.

Theorem 1. Let a function q(r) ∈ C1(0, ∞) satisfy

|q(s + τ)| ≤ |p(s)|, ∀s, ∀τ, 0 < τ < s,
∞∫

ξ

|p(t)| dt < ∞, ∀ξ > 0. (7)

Then there exists an integral representation (3), in which the kernel function satisfies
an estimate

|P(r, t)| ≤
(

t
r

)α 1
2

∞∫
t+r

2

Pα−1

(
y2(t2 + r2)− (t2 − r2)

2try2

)
|p(y)| dy · (8)

· exp

( t− r
2

)
1
2

∞∫
t+r

2

Pα−1

(
y2(t2 + r2)− (t2 − r2)

2try2

)
|p(y)| dy

.

Further, the transmutation kernel P(x, t) and also a solution to Equation (2) are twice con-
tinuously differentiable functions, according to both of their arguments in corresponding sets of
definitions.

We divide the proof of Theorem 1 to some lemmas.
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Let us denote

Iq(ξ, η) =
1
2

∞∫
ξ

Rν(y, 0; ξ, η)|p(y)| dy =
1
2

∞∫
ξ

Pν

(
y2(ξ2 + η2)− 2ξ2η2

y2(ξ2 − η2)

)
|p(y)| dy, (9)

u0(ξ, η) = −1
2

∞∫
ξ

Rν(s, 0; ξ, η)|p(s)| ds, (10)

Au0(ξ, η) = −
∞∫

ξ

ds

η∫
0

q(s + τ)Rν(s, τ; ξ, η)u0(s, τ) dτ.

Prove the uniform convergence of von Neumann series

∞

∑
k=0

Aku0(ξ, y) (11)

and note that it is twice differentiable.

Lemma 1. The next estimate holds

|u0(ξ, η)| ≤ Iq(ξ, η). (12)

The proof is immediate from definitions (9) and (10).

Lemma 2. Let 0 < τ < η < ξ < s. Then the next inequality holds

Iq(s, t) ≤ Iq(ξ, η). (13)

Proof. We have 0 < τ < η < ξ < s < y. Let us derive, then

τ2

s2 ·
(y2 − s2)

(y2 − τ2)
≤ η2

ξ2 ·
(y2 − ξ2)

(y2 − η2)
(≤ 1).

In addition, this inequality is genuinely equivalent to

τ2ξ2(y2 − s2)(y2 − η2) ≤ η2s2(y2 − ξ2)(y2 − τ2),

which is obvious, due to the fact that every multiplier from the left side is less than or equal
to the corresponding multiplier from the right side. Further, consider, for 0 < x < 1, a
function

f (x) =
1 + x
1− x

≥ 1, f ′(x) =
2

(1− x)2 > 0, 0 < x < 1.

Consequently, this function is increasing in x, so

1 + τ2

s2 ·
(y2−s2)
(y2−τ2)

1− τ2

s2 ·
(y2−s2)
(y2−τ2)

≤
1 + η2

ξ2 ·
(y2−ξ2)
(y2−η2)

1− η2

ξ2 ·
(y2−ξ2)
(y2−η2)

.

The Legendre function Pν(x) on x ∈ (1, ∞) for ν > −1 is increasing, and even more
for Pν(x) > 1. It follows

Pν

1 + τ2

s2 ·
(y2−s2)
(y2−τ2)

1− τ2

s2 ·
(y2−s2)
(y2−τ2)

 ≤ Pν

1 + η2

ξ2 ·
(y2−ξ2)
(y2−η2)

1− η2

ξ2 ·
(y2−ξ2)
(y2−η2)

.
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The next inequality may be rewritten as

Pν

(
y2(s2 + τ2)− 2s2τ2

y2(s2 − τ2)

)
≤ Pν

(
y2(ξ2 + η2)− 2ξ2η2

y2(ξ2 − η2)

)
.

Note that, in fact, we proved an inequality for the Riemann function

Rν(y, 0; s, τ) ≤ Rν(y, 0; ξ, η) (14)

for 0 < τ < η < ξ < s < y.
From the above, the next estimate follows

Iq(s, τ) =
1
2

∞∫
s

Rν(y, 0; s, τ)|p(y)| dy ≤ 1
2

∞∫
ξ

Rν(y, 0; s, τ)|p(y)| dy.

Changing the lower limit of integration s to ξ < s, we may only increase the integral
value, because the Riemann function is positive, Rν > 0. This leads to the desired estimate
(13), so the Lemma 2 is proven.

Lemma 3. For the nth component of von Neumann series (11), the next estimate holds

|un(ξ, η)| ≤ Iq(ξ, η) ·
[η Iq(ξ, η)]n

n!
. (15)

Proof. Let us use an inductive method. For n = 0, an inequality (15) is reduced to the
result of Lemma 2. Let (15) be fulfilled for n = k. Then, for the next series component, it
follows

|uk+1(ξ, η)| ≤ |
∞∫

ξ

ds

η∫
0

Rν(s, τ; ξ, η)uk(s, τ)q(s + τ) dτ| ≤

≤
∞∫

ξ

ds

η∫
0

Rν(s, τ; ξ, η)|q(s + τ)|Iq(s, τ)
[η Iq(s, τ)]k

k!
dτ.

Repeating the arguments of the preceding lemma, we derive that

Rν(s, τ; ξ, η) ≤ Rν(s, 0; ξ, η), (16)

due to

Rν(s, τ; ξ, η) = Pν

(
1 + A
1− A

)
, A =

η2 − τ2

ξ2 − τ2 ·
s2 − ξ2

s2 − η2 ,

and the maximal τ value of A is for τ = 0. Now, using the inequalities (16) and (15), we derive

|uk+1(ξ, η)| ≤ Iq(ξ, η)
[τ Iq(ξ, η)]k

k!
·

∞∫
ξ

Rν(s, 0; ξ, η)

η∫
0

|q(s + τ)|τk dτ ds.

We consider potentials obeying an inequality |q(s + τ)| ≤ |p(s)|, 0 < τ < s. Finally,
it follows

|uk+1(ξ, η)| ≤ Iq(ξ, η)
[Iq(ξ, η)]k+1

k!
· ηk+1

(k + 1)
,

and that completely proves an estimate (15) for all n. This proves the Lemma 3.
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Now we are ready to complete the proof of Theorem 1. Summing up all esti-
mates (15) for all n, we derive that the von Neumann series is uniformly convergent in
the variable domain 0 < η < ξ and its sum is a continuous function satisfying an estimate

|u(ξ, η)| ≤ Iq(ξ, η) exp[η · Iq(ξ, η)]. (17)

It also follows from (17) that series (11) is convergent for summable potentials that
may be approximated by continuous potentials.

Going back to functions K and P, we derive inequalities

|K(x, t)| ≤ Iq

(
t + x

2
,

t− x
2

)
exp

[(
t− x

2

)
Iq

(
t + x

2
,

t− x
2

)]
,

|P(x, t)| ≤
(

t
x

)α

Iq

(
t + x

2
,

t− x
2

)
exp

[(
t− x

2

)
Iq

(
t + x

2
,

t− x
2

)]
.

Let us transform the value Iq to estimates

Iq

(
t + x

2
,

t− x
2

)
=

1
2

∞∫
t+x

2

Pα−1

(
y2(t2 + x2)− (t2 − x2)

2txy2

)
|p(y)| dy.

Therefore, we derive the desired estimate as in Theorem 1.
To finish the proof of Theorem 1, we must to justify the existence of the second contin-

uous derivatives of the function P(x, t) in variables x, t under the condition q ∈ C1(x > 0).
Obviously, this is equivalent to the existence of the second continuous derivatives of the
function u(ξ, η) in variables ξ, η. This is proven by exactly the same method of iterations
as above.

Additionally, therefore, Theorem 1 is completely proven.
Now, let us list some classes of potentials that are covered by condition (9). If |q(x)| is

monotone decreasing, then it suffices to take p(x) = |q(x)|. For potentials with an arbitrary
singularity at zero and increasing for 0 < x < M , say Coulomb ones q = − 1

x , and which
are cut by zero at infinity , i.e., q(x) = 0, x > M, it suffices to take p(x) = |q(M)| and
x < M, p(x) = 0, x ≥ M. In addition, condition (9) will be valid for potentials obeying an
estimate q(x + τ) ≤ c|q(x)| = |p(x)| (this remark belongs to V.V. Katrakhov).

In particular, the next potentials are covered by condition (9) and are important in
applications: a strongly singular potential with power singularity q(x) = x−2−ε, different
Bargmann potentials

q1(x) = − e−ax

(1 + βe−ax)2 , q2(x) =
c2

(1 + c3x)2 , q3(x) =
c4

ch2(c5x)

and Yukawa potentials

q4(x) = − e−ax

x
, q5(x) =

∞∫
x

e−at dc(t).

(cf. [10]).

Remark. In fact, in the proof of Theorem 1, we do not need an explicit form of the
Riemann function (5). Only the existence of the Riemann function, its positivity and some
special monotonicity property (15) are used. These facts are rather general, so the results of
this paper may be generalized to more classes of differential equations.

The estimate from Theorem (1) for a general class of potentials may transform to be a
less precise but more simple one.
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Theorem 2. Let conditions of Theorem (1) be fulfilled. Then, for the transmutation kernel P(x, t)
the next estimate is valid

|P(x, t)| ≤ 1
2

(
t
x

)α

Pα−1

(
t2 + x2

2tx

) ∞∫
x

|p(y)| dy×

× exp

1
2

(
t− x

2

)
Pα−1

(
t2 + x2

2tx

) ∞∫
x

|p(y)| dy

.

Let us note that, at x → 0, the kernel of the integral representation may have exponen-
tial singularity.

3. Kernel Estimates for Power Singular at Zero Potentials

For a class of potentials with a power singularity of the kind

q(x) = x−(2β+1), β > 0, (18)

it is possible to simplify the above received estimates to not lost their sharpness. Conditions
on β are duly needed for summability to infinity.

Theorem 3. Consider potentials of the form (18). In this case, Theorem 1 holds true with an estimate

|P(x, t)| ≤
(

t
x

)α Γ(β)4β−1

(t2 − x2)β
× P−β

α−1

(
t2 + x2

2tx

)
·

× exp
[(

t− x
x

)
Γ(β)4β−1

(t2 − x2)β
P−β

α−1

(
t2 + x2

2tx

)]
,

where Pµ
ν (·) is the Legendre function [16], a value β is defined by potential (18) and a value α by a

parameter in the initial Equation, (2).

Starting the proof, let us note that the estimate needed is derived by a chain of rather
long calculations using the Slater–Marichev theorem [17,18]. This theorem is a tool to find
many integrals in terms of hypergeometric functions, after reducing them to some forms of
the Mellin convolution.

Proof. For a class of potentials (17), we will simplify our main estimate (8) from Theorem 1.
For this class of potentials, we will simplify an estimate (8), which is a core of the Theorem 1,
without any loss of its sharpness. To achieve this, let us calculate explicitly a value Iq (9)
from an estimate (8).

The proof of this theorem will be derived from two lemmas.

Lemma 4. For a class of potentials (17) the next holds true

Iq(ξ, η) =
1

4ξ2β

1∫
0

Pν(2αz + 1)(1− z)β−1 d z (19)

where Pν is the Legendre function, α = η2/(ξ2 − η2).

Proof. Consider a value

Iq(ξ, η) =
1
2

∞∫
ξ

Pν

(
t2(ξ2 + η2)− 2ξ2η2

t2(ξ2 − η2)

)
dt

t2β+1 .
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Change variables denoting an argument of the Legendre function as x,

x =
t2(ξ2 + η2)− 2ξ2η2

t2(ξ2 − η2)
, dx =

4ξ2η2

t3(ξ2 − η2)
dt.

Under this change of variables, the limits of integration turn to

1, 1 +
2η2

ξ2 − η2 =
ξ2 + η2

ξ2 − η2 = B > 1,

and for a variable t, the following formula holds true

t = ξη

(
2

ξ2 + η2 − x(ξ2 − η2)

) 1
2
.

It follows, for Iq:

Iq(ξ, η) =
1
2

B∫
1

Pν(x)
t3(ξ2 − η2)

4ξ2η2
dx

t2β+1 =

=
1
2

B∫
1

Pν(x)
[

ξ2 − η2

4ξ2η2

]
·
[

ξ2 + η2 − x(ξ2 − η2)

2ξ2η2

]β−1

dx.

Perform one more change of variables in the last integral

z = (x− 1)
ξ2 − η2

2η2 , dz =

(
ξ2 − η2

2η2

)
dx.

As a result, it follows

Iq(ξ, η) =
1
2

(
ξ2 − η2

4ξ2η2

) 1∫
0

Pν(2αz + 1)
2η2

ξ2 − η2

 ξ2 + η2 − (ξ2 − η2)
(

2η2

ξ2−η2 z + 1
)

2ξ2η2

β−1

dz =
1

4ξ2β

1∫
0

Pν(2αz + 1)(1− z)β−1 dz,

where we denote α = η2/(ξ2 − η2). Therefore, we derive the formula (19) and prove
Lemma 4.

Lemma 5. Let a > 0, β > 0. Then, the next formula holds:

1∫
0

Pν(2αx + 1)(1− x)β−1 dx = Γ(β)

[
1 + α

α

] β
2

P−β
ν (2α + 1). (20)

Proof. For the proof, we use a technique based on the Slater–Marichev theorem, cf. [17,18].
Change variables in the integral (20) t = 1/x, so x = 1/t, dx =

(
− 1

t2

)
dt. It follows

1∫
0

Pν(2αx + 1)(1− x)β−1 dx =

1∫
∞

Pν

(
2

α

t
+ 1
)
(1− 1/t)β−1

(
− 1

t2

)
dt =
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=

∞∫
1

Pν

(
2

α

t
+ 1
)
(t− 1)β−1t−β dt

t
=

∞∫
0

Pν

(
2

α

t
+ 1
)
(t− 1)β−1

+ t−β dt
t
= I(α).

Here, we use a notion for the cut power function as xλ
+, defined by

xλ
+ =

{
xλ, for x ≥ 0,
0, for x < 0,

and prolong the integral to the segment [0, 1] in t, as the cut power function (t− 1)β−1
+

equals zero on this segment. Apply to function I(α) the Mellin transform in a variable
α (α > 0). Using the Mellin convolution theorem, we derive ([17,18])

M[I(α)](s) = M[Pν(2x + 1)](s) ·M[x−β(x− 1)β−1
+ ](s).

Using, one by one, formulas 6(1), (4), 2(4) from [17], we derive

M[I(α)](s) = − sin πν

π

Γ(s)Γ(−ν− s)Γ(1 + ν− s)Γ(β)Γ(1− s)
Γ(1− s)Γ(1 + β− s)

=

= − sin πν

π
Γ(β) Γ

[
s, −ν− s, 1 + ν− s

1 + β− s

]
,

where we use the Slater’s notation for a fraction of gamma-function multiplications. In
terms of the Slater–Marichev theorem, it follows

(a) = (0), (b) = (−ν, 1 + ν), (c) = ∅, (d) = (1 + β),

A = 1, B = 2, C = 0, D = 1.

Applying the Slater–Marichev theore,m we derive an expression for the I(α) under
conditions 0 < α < 1:

I(α) = − sin πν

π

Γ(1 + ν)Γ(−ν)

Γ(1 + β) 2F1(−ν, 1 + ν; 1 + β;−α) =

= Γ(β)α−
β
2 (1 + α)

β
2 P−β

ν (1 + 2α), (21)

with the use of formula (3) from [16], p. 126, and the gamma function identity, cf. [16]

Γ(−ν) =
π

ν Γ(ν) sin πν
.

For α ≥ 1 we get another expression formally not the same:

I(α) = − sin πν

π
Γ(β)×

×
{

αν Γ
[

1 + ν + ν, −ν
1 + β + ν

]
2F1(−ν, 1− 1− β− ν; 1− 1− ν− ν;− 1

α
)+

+α−1−νΓ
[
−ν− 1− ν, 1 + ν

1 + β− 1− ν

]
2F1(1 + ν, 1− 1− β + 1 + ν; 1 + ν;− 1

α
)

}
=

= − sin πν

π
Γ(β) ·

{
αν Γ(2ν + 1)Γ(−ν)

Γ(1 + β + ν) 2F1(−ν,−β− ν;−2ν;− 1
α
)+

+α−1−ν Γ(−1− 2ν)Γ(1 + ν)

Γ(β− ν) 2F1(1 + ν, 1 + ν− β; 1 + ν;− 1
α
)

}
.
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However, from [16], p. 131, formula (19), it follows that two forms for I(α), 0 < α < 1
and α ≥ 1, coincide. This proves Lemma 5.

As a consequence, we receive the desired estimate for Theorem 3, it is completely
proven.

The estimate using values like (19) for a singular potential q(x) = cx−2 for which

β = 1
2 . Using [16] in this case, the Legendre function P−

1
2

ν (z) is expressed via elementary
functions. It follows that an estimate of Theorem 3 also may be written via elementary
functions.

Another case for which a kernel estimate may be further simplified and expressed
via elementary functions is the potential (18) q(x) = x−(2β+1) with a parameter connection
property β = α− 1.

Corollary 1. Let a parameter connection property be β = α− 1. Then an estimate of Theorem 3 is
reduced to

|P(x, t)| ≤
(

t
x

)β+1 2β−2

β

[
t2 + x2

2tx

]β

· exp

[(
t− x

2

)
2β−2

β

[
t2 + x2

2tr

]β
]
=

=
1

4β

1
x2β+1 (t

2 + x2)β exp

[
2β−2

β

(
t− x

2

)(
t2 + x2

2tx

)β
]

. (22)

Proof. In this case, let us transform an estimate of Theorem 3 to the following:

Γ(β)4β−1

(t2 − x2)β
P−β

β

(
t2 + x2

2tx

)
=

Γ(β)4β−1

(t2 − x2)β

2−β

Γ(β + 1)

[(
t2 + x2

2tx

)2

− 1

] β
2

=

=
2β−2

β

1
(t2 − x2)β

(t2 − x2)β(t2 + x2)β

(2tx)β
=

2β−2

β

[
t2 + x2

2tx

]β

, (23)

with the use of the formula from [16],

P−ν
ν (z) =

2−ν

Γ(ν + 1)
(z2 − 1)

ν
2 , z > 1.

From the above, an inequality for kernel function for β = α− 1 follows in the form of
(22). Therefore, the corollary is proven.

Let us note that, for α = 0 in the above proven formulas, our estimates in Theorem 1
reduce to well known estimates for transmutation kernels for Sturm–Liouville equations.

The technique of this paper is also completely applicable to study of non-classical
generalized translations. This problem essentially reduced to connection formulas for
solutions to the equation

Bα,xu(x, y)− q(x)u(x, y) = Bβ,yu(x, y) (24)

via solutions of an unperturbed Euler–Poisson–Darboux equation with Bessel operators by all
variables. Such connection formulas are direct consequences of transmutation theory [1–4].
For generalized translation operators, cf. [19–21].

4. Conclusions

This paper is concerned with a study of a special integral equation. This integral equa-
tion arises in many applied problems, including transmutation theory, inverse scattering
problems, and the solution of singular Sturm–Liouville and Shrödinger equations. A spe-
cial integral equation is derived and formulated using the Riemann function of a singular
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hyperbolic equation. In the paper, the existence of a unique solution to this equation is
proven by the method of successive approximations. The results are applied, for example,
to the representation of solutions to Sturm–Liouville equations with singular potentials,
such as Bargmann and Miura potentials and similiar ones. The treatment of problems with
such potentials are very important in mathematical physics, and inverse, scattering and
related problems. The estimates received do not contain any undefined constants, and for
transmutation kernels all estimates are explicitly written.

5. Designation List

Bα is the Bessel differential operator, Formula (2);
Jα(x) is the Bessel function, Formula (3);
P(x, t), K(x, t)—kernels of transmutation operators, Formulas (3) and (4);
q(x) is the potential function, Formula (3);
Pα is the Poisson transmutation operator, Formula (3);
Sα is the Sonine transmutation operator, Formula (3);
Rν is the Riemann function, Formula (5);
Pµ

ν (·) is the Legendre function, Theorem 3.
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