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Abstract: In this paper, we focus on the higher-order derivatives of the hyperharmonic polynomials,
which are a generalization of the ordinary harmonic numbers. We determine the hyperharmonic
polynomials and their successive derivatives in terms of the r-Stirling polynomials of the first kind
and show the relationship between the (exponential) complete Bell polynomials and the r-Stirling
numbers of the first kind. Furthermore, we provide a new formula for obtaining the generalized
Bernoulli polynomials by exploiting their link with the higher-order derivatives of the hyperharmonic
polynomials. In addition, we obtain various identities involving the r-Stirling numbers of the first
kind, the Bernoulli numbers and polynomials, the Stirling numbers of the first and second kind, and
the harmonic numbers.
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1. Introduction

The n-th harmonic number is the sum of the reciprocals of the first n positive integers

Hn = 1 +
1
2
+

1
3
+ · · ·+ 1

n
,

with H0 = 0. Harmonic numbers play an important role in various branches of mathe-
matics and applications such as number theory, combinatorics, analysis, special functions,
and computer science and have been profusely generalized by many authors (see, for
instance, [1–14] and references therein). In particular, the importance of the harmonic
numbers and their generalizations in the evaluation of the special values of the Riemann
zeta function, Hurwitz zeta function, and more generally zeta functions of arithmetical
nature (see, for instance, [15–19]) should be stressed.

In this paper, we deal with a generalization of the harmonic numbers known as
hyperharmonic numbers, which were introduced by Conway and Guy in 1996 [20] (p. 258).
Following the notation in [17,21,22], we denote the hyperharmonic numbers by H(r)

n . These
can be defined recursively as follows.

Definition 1. For integers n, r ≥ 0, the n-th hyperharmonic number of order r, H(r)
n , is given by

H(r)
n =


0 if n = 0,
1
n if n > 0 and r = 0,

∑n
i=1 H(r−1)

i if n, r ≥ 1.
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Clearly, H(1)
n = Hn. Equivalently, the hyperharmonic numbers can be defined by the

generating function [23]
∞

∑
n=0

H(r)
n tn = − ln (1− t)

(1− t)r . (1)

Moreover, Conway and Guy [20] (p. 258) provided the following formula

H(r)
n =

(
n + r− 1

r− 1

)(
Hn+r−1 − Hr−1

)
, r ≥ 1, (2)

connecting the hyperharmonic numbers with the ordinary harmonic numbers.
Starting with (2), Mező [21] constructed the analytic extension of the hyperharmonic

numbers. Specifically, he defined the hyperharmonic function H(w)
z as follows:

H(w)
z =

(z)w

zΓ(w)

(
Ψ(z + w)−Ψ(w)

)
,

involving the Pochhammer symbol (z)w, the classical gamma Γ(w), and digamma Ψ(w)
functions, and where w, z + w ∈ C \

(
Z− ∪ {0}

)
(see, e.g., [24] (Chapter 1) for a detailed

description of Γ(w) and Ψ(w)). Furthermore, Mező computed the first derivative of H(w)
z

with respect to the variables w and z. Subsequently, Dil [22] presented formulas to calculate
special values of H(w)

z and showed a way to obtain higher derivatives of the hyperharmonic
function with respect to w and z. In this regard, he proved that [22] (Equation (15))

dn+1

dwn+1 (w)z = Γ(z + 1)
dn

dwn H(w)
z ,

showing that the higher-order derivatives (with respect to w) of H(w)
z can be expressed

in terms of the higher-order derivatives of (w)z. For the special case in which z is a
non-negative integer, we have Γ(z + 1) = z!, and thus

dn

dwn H(w)
z =

1
z!

dn+1

dwn+1 (w)z =
dn+1

dwn+1

(
w + z− 1

z

)
, (3)

where the general binomial coefficient [25] (Equation (1.2))(
w + z− 1

z

)
=

w(w + 1)(w + 2) · · · (w + z− 1)
z!

,

applies to any complex number w and non-negative integer z. Evaluating the above
derivative (3) at w = 1 for the simplest case n = 0 gives the well-known relation (see,
e.g., [2] (Equation (8)))

Hz =
d

dw

(
w + z− 1

z

)∣∣∣∣
w=1

=
d

dw

(
w + z

z

)∣∣∣∣
w=0

.

However, the problem of finding closed-form expressions for the higher-order deriva-
tives of H(w)

z considered in [21,22] was left open. In this paper, we completely determine
the higher-order derivatives (with respect to x) of the class of hyperharmonic polynomials
H(x)

j , where the subscript j denotes a non-negative integer variable, while the superscript
x stands for any arbitrary (real or complex) value. Next, we define the hyperharmonic
polynomials H(x)

j through their generating function. Without loss of generality, in what
follows, we may restrict x to belong to R.
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Definition 2. For integer j ≥ 0 and x ∈ R, the sequence {H(x)
0 , H(x)

1 , H(x)
2 , . . . } of the hyperhar-

monic polynomials H(x)
j ∈ Q[x] is determined by the generating function

∞

∑
j=0

H(x)
j tj = − ln (1− t)

(1− t)x , |t| < 1, (4)

where, by definition, H(x)
0 = 0.

Note that (4) is just the generating function (1) with r replaced by the continuous
variable x, so that H(x)

j reduces to the hyperharmonic number H(r)
j when x is the non-

negative integer r. In particular, H(1)
j = Hj. (See [5,26–28] for other types of polynomials

associated with the harmonic numbers.) The hyperharmonic polynomials admit, among
others, the following representations [29]:

H(x)
j =

d
dx

(
x + j− 1

j

)
, (5)

H(x+1)
j+1 =

j

∑
t=0

1
j + 1− t

(
x + t

t

)
, (6)

H(−x)
j+1 =

j

∑
t=0

(−1)t

j + 1− t

(
x
t

)
, (7)

and

H(x)
j+1 =

1
j!

j

∑
t=0

[
j + 1
t + 1

]
Bt(x), (8)

where [jt] represents the (unsigned) Stirling numbers of the first kind and Bt(x) is the t-th

Bernoulli polynomial. For j ≥ 1, H(x)
j is a polynomial in x of degree j− 1 with leading

coefficient 1
(j−1)! and constant term 1

j . The first few hyperharmonic polynomials are given
explicitly by

H(x)
1 = 1, H(x)

2 = x + 1
2 , H(x)

3 = 1
2 x2 + x + 1

3 ,

H(x)
4 = 1

6 x3 + 3
4 x2 + 11

12 x + 1
4 , H(x)

5 = 1
24 x4 + 1

3 x3 + 7
8 x2 + 5

6 x + 1
5 ,

H(x)
6 = 1

120 x5 + 5
48 x4 + 17

36 x3 + 15
16 x2 + 137

180 x + 1
6 ,

H(x)
7 = 1

720 x6 + 1
40 x5 + 25

144 x4 + 7
12 x3 + 29

30 x2 + 7
10 x + 1

7 ,

H(x)
8 = 1

5040 x7 + 7
1440 x6 + 23

480 x5 + 35
144 x4 + 967

1440 x3 + 469
480 x2 + 363

560 x + 1
8 .

Remark 1. Notice that (5) immediately implies that
∫ 1

0 H(x)
j dx = 1 for all j ≥ 1. Furthermore, (5)

entails that
di

dxi H(x)
j =

di+1

dxi+1

(
x + j− 1

j

)
, (9)

in accordance with (3).

At this point, we should remark two previous results that are of particular interest for
the present work. For that, it is convenient to introduce the symbol P(i, j + r, r) (with i, j,
and r being non-negative integers), which will be defined later in Section 4 (see Definition 4).
In essence, P(i, j + r, r) denotes the value of the (exponential) complete Bell polynomial for
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certain arguments related to the harmonic numbers. The first result that we are interested
in was given by Wang [30] (Equation (4.2)) and tells us that (in our notation)

i!
j

∑
k=0

[
j
k

](
k
i

)
(r + 1)k−i = j!

(
j + r

r

)
P(i, j + r, r) =

di

dxi (x)j

∣∣∣∣
x=r+1

.

Let us recall that the r-Stirling numbers of the first kind, [kj]r, count the number of
permutations of the set {1, 2, . . . , k} having j disjoint (non-empty) cycles, such that the first
r elements belong to distinct cycles [31]. In particular, [kj]0 = [kj] and [k+1

j+1]1
= [k+1

j+1], where

[kj] is the ordinary Stirling number of the first kind. Actually, as will be shown in Section 2,
the leftmost part in the above double identity is equal to i! times the r-Stirling number of
the first kind [j+r+1

i+r+1]r+1
. Wang’s result can then equivalently be stated as

(
j + r

r

)
P(i, j + r, r) =

i!
j!

[
j + r + 1
i + r + 1

]
r+1

=
di

dxi

(
x + j + r

j

)∣∣∣∣
x=0

. (10)

In particular, for r = 0, we have

P(i, j, 0) =
i!
j!

[
j + 1
i + 1

]
=

di

dxi

(
x + j

j

)∣∣∣∣
x=0

,

and P(1, j, 0) = Hj.

Remark 2. The relation di

dxi (
x+j+r

j )
∣∣∣
x=0

= (j+r
r )P(i, j + r, r) was rederived (in a somewhat differ-

ent form) by Wang and Jia in [32] (Theorem 2).

The second result that we alluded to before appears in Equation (19) of the paper by
Kargın et al. [12] and tells us that (in our notation)

di−1

dxi−1 H(x+1)
j

∣∣∣∣
x=r

=

(
j + r

r

)
P(i, j + r, r), (11)

relating the higher-order derivatives of the hyperharmonic polynomials and the complete
Bell polynomials.

Combining the mentioned result of Wang in Equation (10) and that of Kargın et al. in
Equation (11), we immediately obtain

di−1

dxi−1 H(x+1)
j

∣∣∣∣
x=r

=
i!
j!

[
j + r + 1
i + r + 1

]
r+1

,

or, equivalently,
di−1

dxi−1 H(x)
j

∣∣∣∣
x=r

=
i!
j!

[
j + r
i + r

]
r
, (12)

which applies to any non-negative integer r.

Remark 3. When i = 1, (12) reduces to

H(r)
j =

1
j!

[
j + r
r + 1

]
r
, (13)

expressing the hyperharmonic numbers in terms of the r-Stirling numbers of the first kind. A
combinatorial proof of (13) was given in [23] (Theorem 2).
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However, although Equation (12) enables us to evaluate the i-th derivative of H(x)
j for

the particular case in which x is a non-negative integer, we still lack a general expression
for the higher-order derivatives of the hyperharmonic polynomials. One of the principal
objectives of the present paper is to provide a thorough account of the hyperharmonic
polynomials and their successive derivatives in terms of the r-Stirling polynomials of the
first kind. The rest of the paper is organized as follows.

In Section 2, we introduce the r-Stirling polynomials of the first kind Rm,i(x) and
Rm,i(x). Based on the properties of these polynomials, in Section 3, we express the higher-

order derivatives of the hyperharmonic polynomials, di

dxi H(x)
j+1 and di

dxi H(x+1)
j+1 , as an explicit

polynomial in x of degree j − i. As anticipated by Equation (12), such derivatives can
in turn be expressed in terms of the r-Stirling numbers of the first kind when they are
evaluated at the non-negative integer r. In Section 4, we exhibit the relationship between
the (exponential) complete Bell polynomials and the r-Stirling numbers of the first kind.
Specifically, we show that Wang’s relation(

j + r
r

)
P(i, j + r, r) =

i!
j!

[
j + r + 1
i + r + 1

]
r+1

(14)

arises as a particular case of a theorem due to Kölbig [33] (Theorem). In Section 5, we study
the connection (already established in [22] (Proposition 3.13)) between the generalized
Bernoulli polynomials and the higher-order derivatives of the hyperharmonic polynomials
and provide a new formula for obtaining the generalized Bernoulli polynomials (see
Equation (51) below). In Section 6, we consider a series of identities obtained by Spieß [34],
Wang [30], and Wuyungaowa [35] involving the numbers (j+r

r )P(i, j + r, r) and recast them,
by means of (14), into a form involving the r-Stirling numbers of the first kind.

In addition, throughout this paper, we obtain various identities involving the r-Stirling
numbers of the first kind, the Bernoulli numbers and polynomials, the Stirling numbers of
the first and second kind, and the harmonic numbers. As a preliminary example of such
identities, let us observe that, from (8) and (13), we quickly obtain

k

∑
j=0

[
k + 1
j + 1

]
Bj(r) =

1
k + 1

[
k + r + 1

r + 1

]
r
, (15)

for any non-negative integers k and r. Furthermore, the Stirling transform [36] (Appendix A)
of (15) yields

Bk(r) = (−1)k
k

∑
j=0

(−1)j

j + 1

{
k + 1
j + 1

}[
j + r + 1

r + 1

]
r
, (16)

and, in particular,

Bk = (−1)k
k

∑
j=0

(−1)j j!
j + 1

{
k + 1
j + 1

}
,

where Bk = Bk(0) are the Bernoulli numbers and {k
j} are the Stirling numbers of the

second kind.

2. r-Stirling Polynomials of the First Kind

In order to properly define the r-Stirling polynomials of the first kind Rm,i(x) and
Rm,i(x), we next formulate the following proposition.

Proposition 1. For integers 0 ≤ i ≤ m and r ≥ 0, we have[
m + r
i + r

]
r
=

m−i

∑
j=0

(
i + j

i

)[
m

i + j

]
rj, (17)
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and [
m + r + 1
i + r + 1

]
r+1

=
m−i

∑
j=0

(
i + j

i

)[
m + 1

i + j + 1

]
rj. (18)

Proof. We prove only the relation (18), since the proof of relation (17) proceeds in an
analogous way. According to [31] (Equation (27)) (see also [37] (p. 224)), [m+r+1

i+r+1 ]r+1 can be
expressed as [

m + r + 1
i + r + 1

]
r+1

=
m

∑
j=i

(
m
j

)[
j
i

]
(r + 1)m−j,

where rm = r(r + 1) . . . (r + m− 1), and r0 = 1. Changing the summation variable from j
to t, where t = m− j, results in[

m + r + 1
i + r + 1

]
r+1

=
m−i

∑
t=0

(
m
t

)[
m− t

i

]
(r + 1)t.

Now, we have

(r + 1)t =
t

∑
k=0

[
t
k

]
(r + 1)k =

t

∑
k=0

k

∑
s=0

(
k
s

)[
t
k

]
rs,

and then[
m + r + 1
i + r + 1

]
r+1

=
m−i

∑
t=0

t

∑
k=0

k

∑
s=0

(
m
t

)[
m− t

i

](
k
s

)[
t
k

]
rs =

m−i

∑
t=0

t

∑
s=0

t

∑
k=s

(
k
s

)[
t
k

](
m
t

)[
m− t

i

]
rs.

Using the well-known identity (see, e.g., [38] (Equation (6.16))) ∑t
k=s (

k
s)[

t
k] = [t+1

s+1], the
preceding equation becomes[

m + r + 1
i + r + 1

]
r+1

=
m−i

∑
t=0

t

∑
s=0

(
m
t

)[
m− t

i

][
t + 1
s + 1

]
rs =

m−i

∑
j=0

(
m−i

∑
t=j

(
m
t

)[
t + 1
j + 1

][
m− t

i

])
rj, (19)

where we have renamed the variable s as j. Invoking the identity (see, e.g., [31]
(Equation (52)) and [37] (p. 224))(

j + i
i

)[
m + r + s

j + i + r + s

]
r+s

=
m−i

∑
t=j

(
m
t

)[
t + r
j + r

]
r

[
m− t + s

i + s

]
s
,

and specializing to the case in which r = 1 and s = 0, it follows that(
i + j

i

)[
m + 1

i + j + 1

]
=

m−i

∑
t=j

(
m
t

)[
t + 1
j + 1

][
m− t

i

]
. (20)

Subsequently, combining (19) and (20), we obtain (18).

Remark 4. From (17), it follows that[
j + r + 1
i + r + 1

]
r+1

=
j−i

∑
k=0

(
i + k

i

)[
j

i + k

]
(r + 1)k =

j

∑
k=0

(
k
i

)[
j
k

]
(r + 1)k−i,

as was noted in the introduction in relation to Wang’s identity (10). On the other hand, from (18),
we can see that [m+r+1

i+r+1 ]r+1 can be expressed as a polynomial in r with constant term [m+1
i+1 ]. Hence,

setting r = 0 and j = 0 in (19) yields the identity (cf. [31] (Equation (30)))
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[
m + 1
i + 1

]
=

m−i

∑
t=0

t!
(

m
t

)[
m− t

i

]
.

Remark 5. For integers k, n ≥ 0 and m ≥ 1, the hyper-sums of powers of integers S(m)
k (n) are

defined recursively by

S(m)
k (n) =

n

∑
j=1

S(m−1)
k (j),

with initial conditions S(0)
k (n) ≡ Sk(n) = 1k + 2k + · · · + nk, and S(m)

k (0) = 0. In [12]

(Equation (27)), Kargın et al. obtained the following formula for S(m)
k (n) (see also the related

paper [39])

S(m)
k (n) =

1
m!

m

∑
i=0

(−1)i
[

m + n + 1
i + n + 1

]
n+1

Sk+i(n).

When k = 0, the hyper-sum S(m)
k (n) is equal to S(m)

0 (n) = (n+m
m+1). Hence, putting k = 0 in

the last equation gives

m

∑
i=0

(−1)i
[

m + n + 1
i + n + 1

]
n+1

Si(n) = m!
(

n + m
m + 1

)
. (21)

In particular, for n = 1, we find

m

∑
i=0

(−1)i
[

m + 2
i + 2

]
2
= m!.

In view of Proposition 1, and following Broder [31] (Equation (56)) and Carlitz [40]
(Equation (5.2)), we define the r-Stirling polynomials of the first kind as follows.

Definition 3. For integers 0 ≤ i ≤ m, the r-Stirling polynomials of the first kind Rm,i(x) and
Rm,i(x) are defined as

Rm,i(x) =
m−i

∑
j=0

(
i + j

i

)[
m

i + j

]
xj, (22)

and

Rm,i(x) =
m−i

∑
j=0

(
i + j

i

)[
m + 1

i + j + 1

]
xj, (23)

respectively.

By construction, Rm,i(x) and Rm,i(x) reduce to Rm,i(r) = [m+r
i+r ]r and Rm,i(r) = [m+r+1

i+r+1 ]r+1,
respectively, when x is a non-negative integer r, so that Rm,i(r) = Rm,i(r + 1) for any integer
r ≥ 0. Since Rm,i(x)− Rm,i(x + 1) vanishes for infinitely many r ∈ N, Rm,i(x) = Rm,i(x + 1)
for an arbitrary x. Hence, we have

m−i

∑
j=0

(
i + j

i

)[
m + 1

i + j + 1

]
xj =

m−i

∑
j=0

(
i + j

i

)[
m

i + j

]
(x + 1)j. (24)

In particular, when x = −1, it follows that

m−i

∑
j=0

(−1)j
(

i + j
i

)[
m + 1

i + j + 1

]
=

m

∑
j=0

(−1)j−i
(

j
i

)[
m + 1
j + 1

]
=

[
m
i

]
,
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which corresponds to the identity [38] (Equation (6.18)).

3. Hyperharmonic Polynomials and Their Derivatives

From [31] (Theorem 28), we know that Rm,i(x) = 1
i!

di

dxi xm. This follows immediately
from the horizontal generating function of the Stirling numbers of the first kind, namely,

xm =
m

∑
j=0

[
m
j

]
xj. (25)

Indeed, differentiating i times (with respect to x) both sides of (25), we obtain

1
i!

di

dxi xm =
m

∑
j=0

(
j
i

)[
m
j

]
xj−i =

m−i

∑
j=0

(
i + j

i

)[
m

i + j

]
xj.

Thus,
di

dxi xm = i!Rm,i(x). (26)

Now, we present the following theorem, which shows the explicit expression of the
higher-order derivatives of the hyperharmonic polynomials H(x)

j+1 and H(x+1)
j+1 .

Theorem 1. For integers i, j ≥ 0, the i-th derivative of H(x)
j+1 and H(x+1)

j+1 with respect to x is given,
respectively, by

di

dxi H(x)
j+1 =

(i + 1)!
(j + 1)!

j−i

∑
t=0

(
i + t + 1

i + 1

)[
j + 1

i + t + 1

]
xt, (27)

and

di

dxi H(x+1)
j+1 =

(i + 1)!
(j + 1)!

j−i

∑
t=0

(
i + t + 1

i + 1

)[
j + 2

i + t + 2

]
xt. (28)

Proof. Relation (27) readily follows from (26) and the representation (9) for the i-th deriva-
tive of H(x)

j . Thus, combining (9) and (26), we obtain

di

dxi H(x)
j+1 =

di+1

dxi+1

(
x + j
j + 1

)
=

1
(j + 1)!

di+1

dxi+1 xj+1 =
(i + 1)!
(j + 1)!

Rj+1,i+1(x).

Now, using the expression for Rj+1,i+1(x) that is obtained from (22), we obtain (27).
On the other hand, we have

di

dxi H(x+1)
j+1 =

(i + 1)!
(j + 1)!

Rj+1,i+1(x + 1) =
(i + 1)!
(j + 1)!

Rj+1,i+1(x),

and, using the expression for Rj+1,i+1(x) that is obtained from (23), we then obtain (28).

Letting i = 0 in (27) and (28) gives us, respectively, H(x)
j+1 and H(x+1)

j+1 as polynomials
in x of degree j, namely,

H(x)
j+1 =

Rj+1,1(x)
(j + 1)!

=
1

(j + 1)!

j

∑
t=0

(t + 1)
[

j + 1
t + 1

]
xt,
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and

H(x+1)
j+1 =

Rj+1,1(x)
(j + 1)!

=
1

(j + 1)!

j

∑
t=0

(t + 1)
[

j + 2
t + 2

]
xt.

Additionally, setting x = 1 and j → j − 1 in the first of the two equations above
produces the well-known identity Hj =

1
j! ∑

j
t=0 t[jt].

The following corollary is a direct consequence of Theorem 1 and Definition 3.

Corollary 1. For non-negative integer r, we have

di

dxi H(x)
j+1

∣∣∣∣
x=r

=
(i + 1)!
(j + 1)!

[
j + r + 1
i + r + 1

]
r
, (29)

and

di

dxi H(x+1)
j+1

∣∣∣∣
x=r

=
(i + 1)!
(j + 1)!

[
j + r + 2
i + r + 2

]
r+1

. (30)

Note that, obviously, any of (29) or (30) is equivalent to (12).

Example 1. As a simple application of Theorem 1, we may use the representation (6) in combination
with (28) to obtain

j

∑
t=0

1
j + 1− t

di

dxi

(
x + t

t

)
=

(i + 1)!
(j + 1)!

j−i

∑
t=0

(
i + t + 1

i + 1

)[
j + 2

i + t + 2

]
xt.

Therefore, it follows from (30) that

j

∑
t=0

1
j + 1− t

di

dxi

(
x + t

t

)∣∣∣∣
x=r

=
(i + 1)!
(j + 1)!

[
j + r + 2
i + r + 2

]
r+1

.

Since di

dxi (
x+t

t )
∣∣∣
x=r

= i!
t! [

t+r+1
i+r+1]r+1, this can be expressed as (after replacing r by r− 1)

j

∑
t=0

1
t! (j + 1− t)

[
t + r
i + r

]
r
=

i + 1
(j + 1)!

[
j + r + 1
i + r + 1

]
r
, (31)

which holds for any integers 0 ≤ i ≤ j and r ≥ 0. In particular, for r = 0, we have

j

∑
t=0

1
t! (j + 1− t)

[
t
i

]
=

i + 1
(j + 1)!

[
j + 1
i + 1

]
. (32)

Furthermore, setting i = r = 1 in (31) yields the identity

j

∑
t=0

Ht

j + 1− t
=

2
(j + 1)!

[
j + 2

3

]
= H2

j+1 − H[2]
j+1,

which can also be found in [41] (p. 544), and where the notation H[2]
j means ∑

j
t=1 1/t2.

Remark 6. Using (25) and the recurrence relation [j+1
i+1] = j[ j

i+1] + [ji], it is easy to show that

di+1

dxi+1 xj+1 = (x + j)
di+1

dxi+1 xj + (i + 1)
di

dxi xj,
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or, in view of (26),
Rj+1,i+1(x) = (x + j)Rj,i+1(x) + Rj,i(x).

Hence, setting x = r (where r is a non-negative integer), we obtain the corresponding
recurrence for the r-Stirling numbers of the first kind[

j + r + 1
i + r + 1

]
r
= (r + j)

[
j + r

i + r + 1

]
r
+

[
j + r
i + r

]
r
. (33)

Furthermore, letting i = 0 in (33) and recalling (13) leads to the following recurrence for the
hyperharmonic numbers:

H(r)
j+1 =

r + j
j + 1

H(r)
j +

1
j + 1

(
j + r− 1

j

)
,

which holds for any integers r, j ≥ 0. In particular, when r = 1, we recover the recurrence relation
defining the harmonic numbers, namely, Hj+1 = Hj +

1
j+1 , with H0 = 0.

4. Complete Bell Polynomials and r-Stirling Numbers of the First Kind

Let Yn(x1, x2, . . . , xn) be the n-th (exponential) complete Bell polynomial defined by
Y0 = 1 and (see, e.g., [42] (p. 134))

exp

(
∞

∑
j=1

xj
tj

j!

)
= 1 +

∞

∑
p=1

Yp(x1, x2, . . . , xp)
tp

p!
,

and let H(j, k; r) be the function

H(j, k; r) =
j

∑
t=1

1
(t + r)k ,

for integers r ≥ 0 and j, k ≥ 1. Following Spieß [34] and Kargın et al. [12], we define the
symbol P(i, j + r, r) as follows.

Definition 4. For non-negative integers i, j, and r, we have

P(i, j + r, r) =


1, for i = 0, and j, r ≥ 0,
Pi
(

H(j, 1; r), H(j, 2; r), . . . , H(j, i; r)
)
, for 1 ≤ i ≤ j, j ≥ 1, and r ≥ 0,

0, for 0 ≤ j < i, i ≥ 1, and r ≥ 0,

where the polynomial Pi(x1, x2, . . . , xi) is defined by

Pi(x1, x2, . . . , xi) = (−1)iYi(−0!x1,−1!x2, . . . ,−(i− 1)!xi),

or, equivalently,

Pi(x1, x2, . . . , xi) = Yi(0!x1,−1!x2, . . . , (−1)i−1(i− 1)!xi).

The first five polynomials Pi(x1, x2, . . . , xi) are given by

P1(x1) = x1,

P2(x1, x2) = x2
1 − x2,

P3(x1, x2, x3) = x3
1 − 3x1x2 + 2x3,

P4(x1, x2, x3, x4) = x4
1 − 6x2

1x2 + 8x1x3 + 3x2
2 − 6x4,

P5(x1, x2, x3, x4, x5) = x5
1 − 10x3

1x2 + 20x2
1x3 + 15x1x2

2 − 30x1x4 − 20x2x3 + 24x5.
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Thus, we have, for example, P(1, j + r, r) = H(j, 1; r), P(2, j + r, r) =
(

H(j, 1; r)
)2 −

H(j, 2; r), P(3, j + r, r) =
(

H(j, 1; r)
)3 − 3H(j, 1; r)H(j, 2; r) + 2H(j, 3; r), etc.

Remark 7. By letting i = 1 and r → r − 1 in (11), and noting that P(1, j + r − 1, r − 1) =
H(j, 1; r− 1), we obtain (assuming that r ≥ 1)

H(x+1)
j

∣∣∣
x=r−1

= H(r)
j =

(
j + r− 1

r− 1

)
H(j, 1; r− 1)

=

(
j + r− 1

r− 1

) j

∑
t=1

1
t + r− 1

=

(
j + r− 1

r− 1

)(
Hj+r−1 − Hr−1

)
,

thus recovering Conway and Guy’s formula (2).

With these ingredients at hand, next we show that Wang’s relation (14) (which we
reproduce here for convenience)(

j + r
r

)
P(i, j + r, r) =

i!
j!

[
j + r + 1
i + r + 1

]
r+1

, (34)

is a direct consequence of the following theorem set forth by Kölbig [33] (Theorem).

Theorem 2 (Kölbig, 1994). Let α ∈ R with α 6= −1,−2, . . . ,−j, and

H(j, k; α) =
j

∑
t=1

1
(t + α)k ,

for integers j, k ≥ 1. We then have

Pq
(

H(j, 1; α), H(j, 2; α), . . . , H(j, q; α)
)
=


q!

(1 + α)j
S(j, q; α), q ≤ j,

0, q > j,

where

S(j, q; α) =
j

∑
t=q

(
t
q

)[
j
t

]
(1 + α)t−q.

Indeed, taking α = r in Kölbig’s theorem (with integer r ≥ 0), we have(
j + r

r

)
P(i, j + r, r) =

(
j + r

r

)
Pi
(

H(j, 1; r), H(j, 2; r), . . . , H(j, i; r)
)

=

(
j + r

r

)
i!

(1 + r)j
S(j, i; r),

where it is assumed that i ≤ j, with i = 1, 2, . . . . Furthermore, it turns out that
(j+r

r ) = 1
j! (1 + r)j; thus, (

j + r
r

)
P(i, j + r, r) =

i!
j!

S(j, i; r),

where

S(j, i; r) =
j

∑
t=i

(
t
i

)[
j
t

]
(1 + r)t−i.

On the other hand, we have
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[
j + r + 1
i + r + 1

]
r+1

= Rj,i(r + 1) =
j−i

∑
s=0

(
i + s

i

)[
j

i + s

]
(r + 1)s =

j

∑
t=i

(
t
i

)[
j
t

]
(r + 1)t−i.

Therefore, S(j, i; r) = [j+r+1
i+r+1]r+1

; thus, we obtain (34).

Remark 8. By setting r = 0 in (34), we recover the well-known result (see [42] (Equation (7b)))[
j + 1
i + 1

]
=

j!
i!

P(i, j, 0) =
j!
i!

Pi
(

H[1]
j , H[2]

j , . . . , H[i]
j
)
,

where the notation H[i]
j means ∑

j
t=1 1/ti.

Remark 9. According to [34] (Theorem 16), it turns out that, for m, r ≥ 0,

m

∑
k=0

P(r, k, 0)
k + 1

=
P(r + 1, m + 1, 0)

r + 1
.

Noting that P(r, k, 0) = r!
k! [

k+1
r+1], the above relation is equivalent to the identity (cf. [38]

(Equation (6.21))) [
m + 1
r + 1

]
= m!

m

∑
k=0

1
k!

[
k
r

]
.

Remark 10. The generating function of the numbers (j+r
r )P(i, j + r, r) is given by (see, e.g., [30]

(Equation (1.6)))
∞

∑
j=i

(
j + r

r

)
P(i, j + r, r)tj =

(− ln(1− t))i

(1− t)r+1 . (35)

Therefore, taking r → r − 1 in (34) and using (35), we obtain the exponential generating
function of the r-Stirling numbers of the first kind, namely,

∞

∑
j=i

[
j + r
i + r

]
r

tj

j!
=

1
i!
(− ln(1− t))i

(1− t)r .

In particular, for r = 0 and i ≥ 1, it follows that

(− ln(1− t))i =
∞

∑
j=i

i!
j!

[
j
i

]
tj =

∞

∑
j=i

i
j
P(i− 1, j− 1, 0)tj,

in agreement with [34] (Theorem 9). Note that setting i = 1 in the last equation yields the Maclaurin
series of the natural logarithm

ln(1− t) = −
∞

∑
j=1

tj

j
= −t− t2

2
− t3

3
− . . . .

Remark 11. Using (34) into (21) leads to the relation

m

∑
i=0

(−1)i

i!
P(i, m + n, n)Si(n) =

n
m + 1

,

and, in particular,
m

∑
i=0

(−1)i

i!
P(i, m + 1, 1) =

1
m + 1

.
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We conclude this section by noting that, by virtue of (34), the theorem [12] (Theorem 6)
can be reformulated as follows:

n

∑
k=l

[
n + r
k + r

]
r

(
k
l

)
Bk−l(q) =

l + 1
n + 1

[
n + q + r
l + q + r

]
q+r−1

, (36)

where Bk−l(q) is a Bernoulli polynomial. Equation (36) may also be written as

n

∑
k=l

[
n + r + 1
k + r + 1

]
r+1

(
k
l

)
Bk−l(q) =

l + 1
n + 1

[
n + q + r + 1
l + q + r + 1

]
q+r

, (37)

or else,
n

∑
k=l

[
n + r
k + r

]
r

(
k
l

)
Bk−l(q + 1) =

l + 1
n + 1

[
n + q + r + 1
l + q + r + 1

]
q+r

, (38)

for non-negative integers l, q, r, and n ≥ l. As an example, putting l = 2, q = 0, and r = 1
in (38), we obtain

n

∑
k=2

(−1)k
[

n + 1
k + 1

]
k(k− 1)Bk−2 =

6
n + 1

[
n + 2

4

]
= n!

(
H3

n+1 − 3Hn+1H[2]
n+1 + 2H[3]

n+1
)
,

in accordance with the particular identity found in [12] (p. 8). Moreover, from (37) and (38),
we find that

n

∑
k=l

[
n + r + 1
k + r + 1

]
r+1

(
k
l

)
Bk−l(x) =

n

∑
k=l

[
n + r
k + r

]
r

(
k
l

)
Bk−l(x + 1),

which holds for an arbitrary x. In particular, for r = 0, and renaming the indices k− l → j,
l → i, and n→ m, the preceding identity becomes

m−i

∑
j=0

(
i + j

i

)[
m + 1

i + j + 1

]
Bj(x) =

m−i

∑
j=0

(
i + j

i

)[
m

i + j

]
Bj(x + 1),

which may be compared with (24).
Moreover, (36) can be generalized as follows:

n

∑
k=l

[
n + r
k + r

]
r

(
k
l

)
Bk−l(x) =

l + 1
n + 1

n

∑
k=l

(
k + 1
l + 1

)[
n + 1
k + 1

]
(x + r− 1)k−l , (39)

which holds for an arbitrary x. For l = 0, (39) can be compactly written as

n

∑
k=0

[
n + r
k + r

]
r
Bk(x) = n!H(x+r−1)

n+1 . (40)

Conversely, (39) can be obtained by performing the l-th derivative with respect to x of
both sides of (40).

5. Connection with the Generalized Bernoulli Polynomials

For a complex parameter α, the generalized Bernoulli polynomials B(α)
n (x) are gener-

ated by the relation (see, e.g., [43–45])(
z

ez − 1

)α

exz =
∞

∑
n=0

B(α)
n (x)

zn

n!
, |z| < 2π,

where B(α)
0 = 1. Note that the value α = 1 corresponds to the classical Bernoulli polynomi-

als Bn(x) = B(1)
n (x). In the same way, B(α)

n = B(α)
n (0) are the generalized Bernoulli numbers
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(also known as Bernoulli numbers of order α or Nörlund polynomials), which are rational
polynomials in α of degree n. In particular, Bn = B(1)

n are the ordinary Bernoulli numbers.
There is a close relationship between the generalized Bernoulli polynomials and the

higher-order derivatives of the hyperharmonic polynomials. This relationship stems from
the fact that (see, e.g., [46] (Equation (2.5)) and [22] (Equation (35)))

B(m+1)
ν (x) = (−1)m ν!

m!
dm−ν

dxm−ν
(1− x)m, (41)

where m and ν are non-negative integers. Equivalently to (41), we have

B(m+1)
ν (x + 1) = ν!

dm−ν

dxm−ν

(
x
m

)
, (42)

in accordance with the result found by Gould in [25] (Equation (13.2)). In particular, for
ν = m, from (42), we quickly obtain

B(m+1)
m (x + 1) = m!

(
x
m

)
= (−1)m

m

∑
j=0

(−1)j
[

m
j

]
xj.

As indicated in [25] (see the sentence immediately following Equation (13.2) of [25]),
a negative exponent in dm−ν

dxm−ν (
x
m) has to be interpreted as integrating ( x

m) ν − m times.
Therefore, for example, when ν = m + 1, from (42), we have

B(m+1)
m+1 (x + 1) = (m + 1)!

∫ ( x
m

)
dx = B(m+1)

m+1 (1) + (−1)m(m + 1)
m

∑
j=0

(−1)j

j + 1

[
m
j

]
xj+1,

where B(m+1)
m+1 (1) is the integration constant. Likewise, when ν = m + 2, from (42) and the

preceding equation, we have

B(m+1)
m+2 (x + 1) = (m + 2)

∫
B(m+1)

m+1 (x + 1)dx = B(m+1)
m+2 (1)

+ (m + 2)B(m+1)
m+1 (1) x + (−1)m(m + 1)(m + 2)

m

∑
j=0

(−1)j

(j + 1)(j + 2)

[
m
j

]
xj+2,

where B(m+1)
m+2 (1) is the integration constant. In general, for an arbitrary m ≥ 0 and ν ≥ 0,

we have

B(m+1)
m+ν (x + 1) =

ν−1

∑
t=0

(
m + ν

t

)
B(m+1)

m+ν−t(1) xt + (−1)m
(

m + ν

ν

) m

∑
j=0

(−1)j
(

j + ν

ν

)−1[m
j

]
xj+ν, (43)

where it is understood that the first summation on the right hand side of (43) is zero when
ν = 0. For the special case in which m = 0, (43) yields the Bernoulli polynomials evaluated
at x + 1, namely,

Bν(x + 1) = (−1)ν
ν

∑
t=0

(−1)t
(

ν

t

)
Bν−t xt,

with Bν−t being the Bernoulli numbers.
On the other hand, as can be easily verified, (41) can be expressed in terms of the

hyperharmonic polynomials as follows (see [22] (Proposition 3.13))

B(m+1)
ν (1− x) = (−1)νν!

dm−ν−1

dxm−ν−1 H(x)
m . (44)

(Note the corrected factor (−1)ν in (44) instead of the original factor (−1)m+1 appearing
in [22] (Proposition 3.13).) Furthermore, (44) can in turn be written as
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(
j
i

)
B(j+1)

j−i (1− x) = (−1)j−i j!
i!

di−1

dxi−1 H(x)
j . (45)

Remark 12. Recalling (12), it follows from (45) that

B(j+1)
j−i (1− r) = (−1)j−i

(
j
i

)−1[j + r
i + r

]
r
, (46)

which holds for any integers 0 ≤ i ≤ j and r ≥ 0. The following special cases can be obtained
from (46):

• B(j+1)
j (1− r) = (−1)j

[
j + r

r

]
r
= (−1)jrj. In particular, B(j+1)

j = (−1)j j!.

• B(j+1)
j−1 (1− r) = (−1)j−1(j− 1)!H(r)

j , j ≥ 1.

• B(j+1)
j−i = (−1)j−i

(
j
i

)−1[j + 1
i + 1

]
. In particular, B(j+2)

j = (−1)j j!Hj+1.

• B(j+1)
j−i (1) = (−1)j−i

(
j
i

)−1[j
i

]
. In particular, B(j+2)

j (1) = (−1)j j!
j+1 .

Let us now invoke the so-called harmonic polynomials Hj(x), which were introduced by
Cheon and El-Mikkawy in [5] (Section 5). They are defined by the generating function

∞

∑
j=0

Hj(x)tj = − ln(1− t)
t(1− t)1−x , (47)

where Hj(0) = Hj+1. The first few harmonic polynomials are given explicitly by

H0(x) = 1, H1(x) = −x + 3
2 , H2(x) = 1

2 x2 − 2x + 11
6 ,

H3(x) = − 1
6 x3 + 5

4 x2 − 35
12 x + 25

12 , H4(x) = 1
24 x4 − 1

2 x3 + 17
8 x2 − 15

4 x + 137
60 ,

H5(x) = − 1
120 x5 + 7

48 x4 − 35
36 x3 + 49

16 x2 − 203
45 x + 49

20 ,

H6(x) = 1
720 x6 − 1

30 x5 + 23
72 x4 − 14

9 x3 + 967
240 x2 − 469

90 x + 363
140 ,

H7(x) = − 1
5040 x7 + 1

160 x6 − 13
160 x5 + 9

16 x4 − 1069
480 x3 + 801

160 x2 − 29531
5040 x + 761

280 .

Upon comparing (4) and (47), it is clear that

Hj(x) = H(1−x)
j+1 , j ≥ 0. (48)

Therefore, by virtue of (48), we can write (44) as

B(m+2)
ν (x) = (−1)mν!

dm−ν

dxm−ν
Hm(x), (49)

where now we assume that ν ≤ m. In particular,

B(m+2)
m (x) = (−1)mm!Hm(x).

As with the hyperharmonic polynomials, the harmonic polynomials enjoy different
representations [5,29]. Among them, we highlight the following one:

Hm(x) =
1

m!

m

∑
t=0

(−1)t
[

m + 1
t + 1

]
Bt(x), (50)

expressing the harmonic polynomials in terms of the Stirling numbers of the first kind and
the Bernoulli polynomials. Therefore, combining (49) and (50) yields
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B(m+2)
ν (x) = (−1)m

(
m
ν

)−1 m

∑
t=m−ν

(−1)t
(

t
m− v

)[
m + 1
t + 1

]
Bt+ν−m(x). (51)

Thus,

B(m+2)
ν = (−1)m

(
m
ν

)−1 m

∑
t=m−ν

(−1)t
(

t
m− v

)[
m + 1
t + 1

]
Bt+ν−m,

and

B(m+2)
ν (1) = (−1)ν

(
m
ν

)−1 m

∑
t=m−ν

(
t

m− v

)[
m + 1
t + 1

]
Bt+ν−m.

It should be emphasized that, by using (51), one can obtain (at least in principle) the
explicit expression of the generalized Bernoulli polynomial B(α)

ν (x) for any ν ≥ 0 and
arbitrary parameters α and x. For example, setting ν = 1, . . . , 6 in (51), we obtain in the
first place

B(m+2)
1 (x) = x− 1

2 (m + 2),

B(m+2)
2 (x) = x2 − (m + 2)x + 1

12 (m + 2)(3m + 5),

B(m+2)
3 (x) = x3 − 3

2 (m + 2)x2 + 1
4 (m + 2)(3m + 5) x− 1

8 (m + 1)(m + 2)2,

B(m+2)
4 (x) = x4 − 2(m + 2)x3 + 1

2 (m + 2)(3m + 5)x2 − 1
2 (m + 1)(m + 2)2 x

+ 1
240 (m + 2)(15m3 + 60m2 + 65m + 12),

B(m+2)
5 (x) = x5 − 5

2 (m + 2)x4 + 5
6 (m + 2)(3m + 5)x3 − 5

4 (m + 1)(m + 2)2 x2

+ 1
48 (m + 2)(15m3 + 60m2 + 65m + 12)x− 1

96 (m + 1)(m + 2)2(3m2 + 5m− 4),

B(m+2)
6 (x) = x6 − 3(m + 2)x5 + 5

4 (m + 2)(3m + 5)x4 − 5
2 (m + 1)(m + 2)2 x3

+ 1
16 (m + 2)(15m3 + 60m2 + 65m + 12)x2 − 1

16 (m + 1)(m + 2)2(3m2 + 5m− 4)x

+ 1
4032 (m + 2)(63m5 + 315m4 + 315m3 − 539m2 − 938m− 240).

Subsequently, making the transformation m → α − 2 in the above expressions for
B(m+2)

ν (x), ν = 1, . . . , 6, we obtain the corresponding generalized Bernoulli polynomials
(cf. [45] (p. 143))

B(α)
1 (x) = x− 1

2 α,

B(α)
2 (x) = x2 − αx + 1

12 α(3α− 1),

B(α)
3 (x) = x3 − 3

2 αx2 + 1
4 α(3α− 1)x− 1

8 α2(α− 1),

B(α)
4 (x) = x4 − 2αx3 + 1

2 α(3α− 1)x2 − 1
2 α2(α− 1)x + 1

240 α(15α3 − 30α2 + 5α + 2),

B(α)
5 (x) = x5 − 5

2 αx4 + 5
6 α(3α− 1)x3 − 5

4 α2(α− 1)x2 + 1
48 α(15α3 − 30α2 + 5α + 2)x

− 1
96 α2(α− 1)(3α2 − 7α− 2),

B(α)
6 (x) = x6 − 3αx5 + 5

4 α(3α− 1)x4 − 5
2 α2(α− 1)x3 + 1

16 α(15α3 − 30α2 + 5α + 2)x2

− 1
16 α2(α− 1)(3α2 − 7α− 2)x + 1

4032 α(63α5 − 315α4 + 315α3 + 91α2 − 42α− 16).

Note that, when α = 1, the above generalized polynomials B(α)
ν (x), where ν = 1, . . . , 6,

become the ordinary Bernoulli polynomials
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B1(x) = x− 1
2 ,

B2(x) = x2 − x + 1
6 ,

B3(x) = x3 − 3
2 x2 + 1

2 x,

B4(x) = x4 − 2x3 + x2 − 1
30 ,

B5(x) = x5 − 5
2 x4 + 5

3 x3 − 1
6 x,

B6(x) = x6 − 3x5 + 5
2 x4 − 1

2 x2 + 1
42 .

Furthermore, when x = 0, the above generalized polynomials B(α)
ν (x), where ν = 1, . . . , 6,

reduce to the following Bernoulli numbers of order α:

B(α)
1 = − 1

2 α,

B(α)
2 = 1

4 α2 − 1
12 α,

B(α)
3 = − 1

8 α3 + 1
8 α2,

B(α)
4 = 1

16 α4 − 1
8 α3 + 1

48 α2 + 1
120 α,

B(α)
5 = − 1

32 α5 + 5
48 α4 − 5

96 α3 − 1
48 α2,

B(α)
6 = 1

64 α6 − 5
64 α5 + 5

64 α4 + 13
576 α3 − 1

96 α2 − 1
252 α.

Of course, by setting α = 1 in B(α)
ν , ν = 1, . . . , 6, we recover the ordinary Bernoulli

numbers B1 = − 1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , B5 = 0, and B6 = 1

42 .

6. Further Identities Involving the r-Stirling Numbers of the First Kind

In this section, we will provide further identities involving the r-Stirling numbers of
the first kind, the Bernoulli numbers and polynomials, the ordinary Stirling numbers of the
first and second kind, and the harmonic numbers.

The following proposition exceptionally involves the r-Stirling numbers of the second
kind {k+r

j+r}r
[31]. It provides a representation of the Bernoulli polynomials Bk(x) evaluated

at x = −r (with r being a non-negative integer).

Proposition 2. For any non-negative integers k, r, we have

Bk(−r) = (−1)k

({
k + r

r

}
r
+

k

∑
j=1

(−1)j+1 (j− 1)!
j + 1

{
k + r
j + r

}
r

)
, (52)

where it is understood that the summation on the right hand side of (52) is zero when k = 0.
In particular,

Bk = δk,0 + (−1)k+1
k

∑
j=1

(−1)j (j− 1)!
j + 1

{
k
j

}
.

Proof. First note that, for x = −r, (40) can be written as

k

∑
j=0

[
k + r
j + r

]
r
Bj(−r) = k!H(−1)

k+1 ,

whose Stirling transform is given by

Bk(−r) =
k

∑
j=0

(−1)k−j j!
{

k + r
j + r

}
r
H(−1)

j+1 .
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On the other hand, it can be seen from (7) that

H(−1)
j+1 =

 −
1

j(j + 1)
, j ≥ 1,

1, j = 0.

Therefore, by combining the last two equations, we arrive at (52).

Remark 13. The above representation (52) for Bk(−r) complements the formula for Bk(r) given
in (16) as well as the following formula established in [47] (Theorem 1.1):

Bk(r) =
k

∑
j=0

(−1)j j!
j + 1

{
k + r
j + r

}
r
.

Moreover, as was noted in the introduction, Spieß [34], Wang [30], and Wuyun-
gaowa [35] derived a number of identities involving the numbers (j+r

r )P(i, j + r, r). By
making use of (34), we next restate some of these identities in terms of the r-Stirling numbers
of the first kind.

• From [34] (Theorem 10) and (34), we obtain

m

∑
k=0

(−1)k

k!

(
r

m− k

)[
k + r
i + r

]
r
=

(−1)m

m!

[
m
i

]
, (53)

which holds for any integers r, i ≥ 0. When r = 1, (53) gives the recurrence
[m+1

i+1 ] = [mi ] + m[ m
i+1]. On the other hand, when i = 1, we can write (53) in terms

of the hyperharmonic numbers H(r)
k as

m

∑
k=0

(−1)k
(

r
m− k

)
H(r)

k =
(−1)m

m
, m ≥ 1.

• From [34] (Theorem 13) and (34), we obtain

m+1−s

∑
k=r

r!s!
k! (m + 1− k)!

[
k
r

][
m + 1− k

s

]
=

(r + s)!
(m + 1)!

[
m + 1
r + s

]
,

which holds for any integers r, s ≥ 0. In particular, for s = 1, we retrieve the identity
in (32).

• From [34] (Theorem 15) and (34), and after some rearrangements, we obtain

qr
m

∑
k=1

1
(k + q)!

[
k
r

]
=

1
q!
− 1

(m + q)!

r

∑
j=1

qj−1
[

m + 1
j

]
, (54)

which is valid for any integers 1 ≤ r ≤ m and q ≥ 1. Setting r = 1, 2, and 3 in (54) gives

m

∑
k=1

1
k(k + 1) · · · (k + q)

=
1

q · q!
− 1

q(m + 1) · · · (m + q)
,

m

∑
k=1

Hk−1
k(k + 1) · · · (k + q)

=
1

q2 · q!
− 1 + qHm

q2(m + 1) · · · (m + q)
,

and

m

∑
k=1

H2
k−1 − H[2]

k−1
k(k + 1) · · · (k + q)

=
2

q3 · q!
−

2 + 2qHm + q2(H2
m − H[2]

m
)

q3(m + 1) · · · (m + q)
,
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respectively. The above three identities are to be compared with the corresponding
Examples 1, 2, and 3 previously obtained in [34] (p. 849). Moreover, it is worth
pointing out that, for the case in which r = m, (54) yields the horizontal generating
function for the Stirling numbers [m+1

j+1 ], namely,

m

∑
j=0

[
m + 1
j + 1

]
qj = (q + 1)(q + 2) . . . (q + m),

which holds for an arbitrary q.
• From [30] (Equation (3.4)) and (34), we obtain

m

∑
k=0

(−1)k

k!

(
m
k

)(
k + r

r

)−1[k + r + 1
i + r + 1

]
r+1

=
(−1)i

m!

(
m + r

r

)−1[m
i

]
.

Setting here r = i = 1, we obtain

m

∑
k=0

(−1)k
(

m
k

)
Hk+1 = − 1

m(m + 1)
, m ≥ 1,

which may be compared with the more commonly known identity (see, for exam-
ple, [32] (Equation (3.2))) ∑m

k=0(−1)k(m
k )Hk = − 1

m , where m ≥ 1.
• From [30] (Equation (3.22)) and (34), we obtain[

m + r + 1
i + r + 1

]
r+1

= m!
m

∑
k=0

1
k!

(
m− k + r

r

)[
k
i

]
= m!

m

∑
k=0

(−1)k−i 1
k!

(
m + r
k + r

)[
k
i

]
.

In particular, for r = 0, we have (cf. [30] (Equation (3.25)))[
m + 1
i + 1

]
= m!

m

∑
k=0

1
k!

[
k
i

]
= m!

m

∑
k=0

(−1)k−i 1
k!

(
m
k

)[
k
i

]
.

• From [30] (Equations (3.32) and (3.33)) and (34), we obtain

m

∑
k=0

1
k!

(
r + m− k− 1

m− k

)[
k + s
i + s

]
s
=

1
m!

[
m + r + s
i + r + s

]
r+s

, (55)

and [
m + r
i + r

]
r
= m!

m

∑
k=0

1
k!

(
r + m− k− 2

m− k

)[
k + 1
i + 1

]
, (56)

respectively, where r and s are non-negative integers. Notice that, from (55) and (56),
one quickly obtains

m

∑
k=0

1
k!

(
r + m− k− 1

m− k

)[
k + s
i + s

]
s
=

m

∑
k=0

1
k!

(
r + s + m− k− 2

m− k

)[
k + 1
i + 1

]
.

Furthermore, regarding (56), for r = 2, it reads[
m + 2
i + 2

]
2
= m!

m

∑
k=0

1
k!

[
k + 1
i + 1

]
,

or, equivalently,

Pi
(

H(m, 1; 1), H(m, 2; 1), . . . , H(m, i; 1)
)
=

i!
m + 1

m

∑
k=0

1
k!

[
k + 1
i + 1

]
.
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In particular, when i = 1, we recover the well-known identity ∑m
k=0 Hk = (m+ 1)Hm−m.

• From [30] (Equations (4.1) and (4.3)) and (34), we obtain

m

∑
k=0

(−1)m−k
{

m
k

}[
k + r
i + r

]
r
=

(
m
i

)
rm−i, (57)

and
m

∑
k=i

(−r)k−i
(

k
i

)[
m + r
k + r

]
r
=

[
m
i

]
, (58)

respectively, where i and r are non-negative integers. When r = 1, (57) and (58)
reduce to

m

∑
k=0

(−1)m−k
{

m
k

}[
k + 1
i + 1

]
=

(
m
i

)
,

and
m

∑
k=i

(−1)k−i
(

k
i

)[
m + 1
k + 1

]
=

[
m
i

]
,

respectively. Furthermore, when i = 1 and r = 2, from (57) we obtain

m

∑
k=0

(−1)m−k(k + 1)!
{

m
k

}(
Hk+1 − 1

)
= m2m−1.

On the other hand, putting i = 1 in [30] (Equation (4.5)) yields

m

∑
k=0

(−1)m−k(k + 1)!
{

m
k

}
= 2m.

Therefore, combining the last two identities, we obtain

m

∑
k=0

(−1)m−k(k + 1)!
{

m
k

}
Hk+1 = (m + 2) 2m−1,

which may be compared with [30] (Equation (4.10)).
• From [30] (Equation (4.40)) and (34), we obtain

m

∑
k=0

(−1)k−ii!
{

k
i

}[
m + r + 1
k + r + 1

]
r+1

= m!
(

r + m− i
m− i

)
,

which holds for any integers 0 ≤ i ≤ m and r ≥ 0. For r = 0, the above identity becomes

m

∑
k=0

(−1)k−ii!
{

k
i

}[
m + 1
k + 1

]
= m!.

• As we saw at the beginning of Section 5, the generalized Bernoulli numbers B(i)
k are

defined by the generating function(
t

et − 1

)i
=

∞

∑
k=0

B(i)
k

tk

k!
,

where B(1)
k = Bk corresponds to the ordinary Bernoulli numbers. In what follows, we

restrict the superscript i to be a positive integer i ≥ 1. Then, from [30] (Equations (5.2))
and (34), we obtain
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m

∑
k=0

(−1)k
[

m + r
k + r

]
r
B(i)

k =

(
m + i

i

)−1[m + i + r
i + r

]
r
. (59)

In particular, for i = 1, we obtain

m

∑
k=0

(−1)k
[

m + r
k + r

]
r
Bk =

1
m + 1

[
m + r + 1

r + 1

]
r
,

which, for r = 1, reduces to the well-known identity (see, e.g., [30] (Equation (5.6)))

m

∑
k=0

(−1)k
[

m + 1
k + 1

]
Bk = m!Hm+1.

Moreover, substituting the representation of B(i)
k given by Kim et al. [48]

B(i)
k =

k

∑
j=0

(−1)j
(

i + j
i

)−1[i + j
i

]{
k
j

}
,

into (59), we obtain

m

∑
k=0

k

∑
j=0

(−1)k+j
(

i + j
i

)−1[i + j
i

]{
k
j

}[
m + r
k + r

]
r
=

(
m + i

i

)−1[m + i + r
i + r

]
r
. (60)

In particular, setting i = 2 and r = 0 in (60) leads to

m

∑
k=0

k

∑
j=0

(−1)k+j j!
j + 2

{
k
j

}[
m
k

]
Hj+1 =

m!
m + 2

Hm+1.

Likewise, employing the representation of B(i)
k given in [43] (Equation (15)),

B(i)
k =

k

∑
j=0

(−1)j
(

k + i
i + j

)(
i + j− 1

i− 1

)(
k + j

j

)−1{k + j
j

}
,

we obtain from (59)

m

∑
k=0

k

∑
j=0

(−1)k+j
(k+i

i+j)(
i+j−1

i−1 )

(k+j
j )

{
k + j

j

}[
m + r
k + r

]
r
=

(
m + i

i

)−1[m + i + r
i + r

]
r
. (61)

In particular, when i = 3 and r = 0, (61) implies the relation

m

∑
k=0

k

∑
j=0

(−1)k+j(j + 1)(j + 2)
(k+3

j+3)

(k+j
j )

{
k + j

j

}[
m
k

]
=

6 ·m!
m + 3

(
H2

m+2 − H[2]
m+2

)
.

• From [30] (Equations (5.3)) and (34), we obtain

m

∑
k=0

[
m + r + 1
k + r + 1

]
r+1

Bk(i + 1) = m!
(

m + i + r + 1
i + r

)(
Hm+i+r+1 − Hi+r

)
. (62)

Taking r → r− 1 and i→ i− 1 in (62) gives

m

∑
k=0

[
m + r
k + r

]
r
Bk(i) = m!

(
m + i + r− 1

i + r− 2

)(
Hm+i+r−1 − Hi+r−2

)
= m!H(i+r−1)

m+1 ,
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which is just the identity (40) with x replaced by i.
• In [30] (p. 1508), we find the identity

m

∑
k=0

P(k, m + r + i, r + i)
B(i)

k
k!

=

(
r + i

i

)(
m + i

i

)−1
P(i, m + r + i, r).

Using (34), and after some minor manipulations, we can write this as

m

∑
k=0

[
m + r + i
k + r + i

]
r+i

B(i)
k =

(
m + i

i

)−1[m + i + r
i + r

]
r
. (63)

In particular, if r = i = 1 here, then we have

m

∑
k=0

Pk
(

H(m, 1; 1), H(m, 2; 1), . . . , H(m, k; 1)
)Bk

k!
=

Hm+1

m + 1
.

Furthermore, from (59) and (63), we find

m

∑
k=0

(−1)k
[

m + r
k + r

]
r
B(i)

k =
m

∑
k=0

[
m + r + i
k + r + i

]
r+i

B(i)
k .

Lastly, it is to be noted that, by setting i = 1 in (59) and (63), and comparing the
resulting equations with (15), we obtain the double identity

m

∑
k=0

(−1)k
[

m + r
k + r

]
r
Bk =

m

∑
k=0

[
m + r + 1
k + r + 1

]
r+1

Bk =
m

∑
k=0

[
m + 1
k + 1

]
Bk(r),

which holds for any non-negative integers m and r.
• Combining the recurrence of the numbers (j+r

r )P(i, j + r, r) appearing in [30] (p. 1505)(
j + r

r

)
P(i, j + r, r) =

(
j + r− 1

r− 1

)
P(i, j + r− 1, r− 1) +

(
j + r− 1

r

)
P(i, j + r− 1, r)

as well as (34), we readily obtain the corresponding recurrence for the r-Stirling
numbers of the first kind:[

j + r + 1
i + r + 1

]
r+1

=

[
j + r
i + r

]
r
+ j
[

j + r
i + r + 1

]
r+1

,

which may be compared with (33).
• From [35] (Equation (4)) and (34), we obtain the identity

m

∑
j=i

1
m + 1− j

1
(j− 1)!

[
j + r
i + r

]
r+1

=
i

m!

[
m + r + 1
i + r + 1

]
r+1

,

which holds for any integers 1 ≤ i ≤ m and r ≥ 0. Note the close resemblance of this
identity to (31). In particular, for r = 0, we find

m

∑
j=i

1
m + 1− j

1
(j− 1)!

[
j
i

]
=

i
m!

[
m + 1
i + 1

]
,

which may be compared with (32).

7. Conclusions

In this paper, we have unified and generalized some previous, unconnected results
obtained in [12,30] (see also [21–23,29]) concerning the higher-order derivatives of the
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hyperharmonic polynomials and their relationship with the complete Bell polynomials.
Specifically, we have fully characterized the hyperharmonic polynomials and their suc-
cessive derivatives in terms of the r-Stirling polynomials of the first kind. In particular,
when evaluated at some non-negative integer r, such derivatives can be expressed in
terms of the r-Stirling numbers of the first kind or, equivalently, in terms of the numbers
P(i, j + r, r), which, in turn, can be expressed in terms of the complete Bell polynomials.
Moreover, by exploiting the link between the generalized Bernoulli polynomials B(α)

n (x)
and the higher-order derivatives of the hyperharmonic polynomials, we have derived a
new formula that enables us to obtain B(α)

n (x) for any non-negative integer n. Finally, we
have provided a number of identities involving the r-Stirling numbers of the first kind, the
Bernoulli numbers and polynomials, the ordinary Stirling numbers of both kinds, and the
harmonic numbers.

It is to be noted that some of the identities obtained in this paper may be new, including
the identity considered in the following proposition.

Proposition 3. For any integers 0 ≤ i ≤ m and r ≥ 1, we have

m

∑
j=0

1
j!

[
j + r
i + r

]
r
=

(−1)i

m!ri+1

i

∑
k=0

(−r)k
[

m + r + 1
k + r

]
r
. (64)

Proof. We start with the following elementary identity

m

∑
j=0

(
x + j + r

j

)
=

(
1 +

m
x + r + 1

)(
x + m + r

m

)
.

On the other hand, from (10), we have

di

dxi

(
x + j + r

j

)∣∣∣∣
x=0

=
i!
j!

[
j + r + 1
i + r + 1

]
r+1

.

Hence, it follows that

m

∑
j=0

i!
j!

[
j + r + 1
i + r + 1

]
r+1

=
di

dxi

(
1 +

m
x + r + 1

)(
x + m + r

m

)∣∣∣∣
x=0

. (65)

Now, applying the Leibniz rule for the i-th derivative of the product of two func-
tions yields

di

dxi

(
1 +

m
x + r + 1

)(
x + m + r

m

)∣∣∣∣
x=0

=
i

∑
k=0

(
i
k

)
di−k

dxi−k

(
1 +

m
x + r + 1

)∣∣∣∣∣
x=0

dk

dxk

(
x + m + r

m

)∣∣∣∣∣
x=0

=

(
1 +

m
r + 1

)
i!
m!

[
m + r + 1
i + r + 1

]
r+1

+
i−1

∑
k=0

(
i
k

)
di−k

dxi−k

(
1 +

m
x + r + 1

)∣∣∣∣∣
x=0

dk

dxk

(
x + m + r

m

)∣∣∣∣∣
x=0

(66)

=

(
1 +

m
r + 1

)
i!
m!

[
m + r + 1
i + r + 1

]
r+1

+
i−1

∑
k=0

(−1)i−ki!
(m− 1)!(r + 1)i−k+1

[
m + r + 1
k + r + 1

]
r+1

.

Thus, from (65) and (66), we have

m

∑
j=0

1
j!

[
j + r + 1
i + r + 1

]
r+1

=

(
1 +

m
r + 1

)
1

m!

[
m + r + 1
i + r + 1

]
r+1

+
i−1

∑
k=0

(−1)i−k

(m− 1)!(r + 1)i−k+1

[
m + r + 1
k + r + 1

]
r+1

,
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which can be expressed more compactly as

m−1

∑
j=0

1
j!

[
j + r + 1
i + r + 1

]
r+1

=
i

∑
k=0

(−1)i−k

(m− 1)!(r + 1)i−k+1

[
m + r + 1
k + r + 1

]
r+1

.

Finally, making m→ m + 1 and r → r− 1 in the last equation, we obtain (64).

Remark 14. For i = 0, 1, and m, (64) leads to the relations

m

∑
j=0

(
r + j− 1

j

)
=

(
r + m

m

)
,

m

∑
j=0

H(r)
j =

1
m!r

[
m + r + 1

r + 1

]
r
− 1

r

(
r + m

m

)
,

and

rm+1 = (−1)m
m

∑
k=0

(−r)k
[

m + r + 1
k + r

]
r
,

respectively, where r stands for any arbitrary integer r ≥ 1.
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